
‘
r
o

os

)

a

PRIME

PRIMOS INTERNALS

Revision 19.1

VPCCet S
 

THMT -
Un AS WR —Uitohn |



PRIMUS REV 19.1 PRIMOS INTERNALS

MPRCALCS

PRIMGS INTERNALS

Ravision 19.1

MiancceS

Date: May 13) 1989

Ravision: 1

Copyright (c) 1983, Prime Computer, Inc., Natick, MA 91/60

PRELIMINARY TLTLe PAGE





PRIMOS REV. 19.1 | PRIMOS INTERNALS

Hardware Architecture Uverview.....000.0.000 00002, i- |

Peripherals and Controllers... 0. lee, 1- 4

REQISbETS.occ cere cents tebe eet een benbens l- 3

PB, LB, SB, and XB...ee, i- 8

Keays and Modals.................been cence ene 1- 9

Instruction Pre-fetch. 0.00ee. 1 - ll

P80 Functional Diagram........ 0. ee eee eee 1 - 12

DMY Operation. cece etter rete e nee 1- 13

Lab Exercise 1, installing a Ring 0 Gate... 2- |

Building PRIMOS. 0.cece eee eee ees 2- 2

Booting PRIMUS...ieee cee eer eae es 2- 8

a3-1
Cache............, cece eee Cece cece eee eeeees 3-2

INGEPLOAVING. oc cece etter eet enter ne ennnenns 37 3

SEQMentatiOn. ccc ccc c eect ten eens enna eany g- 4

RUMGS. ccc cece ce eee cere eect eee tee teeneennennne 3- §

Memory Management... cece creer eee ees 3- 7

|)3- 8

Virtual Address Translation (memory mapping)... 9- 9

FULL MAPPING... cece eee ees 37 10

STLBeeeeee ees 3- 14

PRELIMINARY - {- CONTENTS



PRIMOS REV. 19.1 PRIMOS INTERNALS

Process Exchange... cree eee c tence ener eeen A- |

State Diagram. 0... secs ccs eeeeuesaeveuverney 4- 2
Wait List.eeeee. 4- 4

Process Control Block (PCB)...........0.............. 4- 5

Ready List.ccc cece reeset vneereennes f- §

EXSMDLOS. occ cece ccc eeenevseaenevevnes f- ]

Locked Semaphores...0.. ceee eee eee 4 - 26
Ordered Locks... 4 - 2]

Traps, Interrupts, Faults and Checks.................... do il

External Interrupts... 0... eect eee e eee r ene J- 3
Real Time Clock...ee. a7 9

aa7 &

Checks.cececece eee 3 - 10

System Initialization... cece cece ee eee ee 6- |

Cold Start.eee &- 4

Watm Start...ceeee. &- /]

Condition Mechanism... 0...ee. 7- |}

Definitions...eee. 7- 3

‘QUITS’, DF_UNIT : Example...eee /-4

Program Example... .. 0... ccccc ccs eeeeseeeueeeueenasT-1b
Stack Illustrations......00000000000.0000....., 7 - 14

'REENTERSccceee eee 7 - 18

Crawlout.0.ccccee. 7-19

PRELIMINARY - ~@ - CONTENTS



PRIMOS REV. 19.1 PRIMOS INTERNALS

Fault Handling... ccc cece escent ener sete enneny g- |

Ring O Faults...eceter eevee nebo ny g- 2

Process Faults....0.00.0.0eee. H- 3

software Interrupt Handling.................00. B- 9

Pointer Fault...eee. G- §

Page Fault. cece cette eee n nent ernees g- 9

PAGTUR.00ceceeee 8 - 10

HMAPeee, § - 10

LMAP.eee. 8 - il

WMAP.eee, 8 - 12

PAGTUR FlowchatTt.....000.000000000000000.,. 8 - 13

Ring 2 Faults... creer eee eee e ees g- 14

Restricted Instruction Fault..............0.... 8 - 14

Automatic Ring 3 Stack Extension.......... devas B- 15

Pointer Fault...eee, 8 - 14

Direct Entrance Calls.....000..00000000 0000. 8 - 1/

Interrupt Handling... cece cee e eee eevee e eee 7- |

Clock Process...0.0cee. G- 2

AMLQ/ICS Driver. oooee G- 4

AMLC Command... 0.000000eee. G- 4

AMLDIM (AML@) Block Diagram.................... G- 7

CONFIG Directives...ee. 9- 9

AMLDIM Flowchart.....0.0.0000000.000000000 ccc, 9 - il

PRELIMINARY - 93-7 CONTENTS



|
PRIMOS REV. 19.1 PRIMOS INTERNALS

Scheduling of USers... cece eee eee e eee n es 1Q- |

BackStOP PrOCGSS. 0.ccc e eet eee reer en nnes Q- 3

SCHED Flowchatt......0000000000 0.00.00... ee eee i0- 5

User Priorities and Time Slice.......000 2... 10- 8

MAXSCH00ceceeee een e ees 10- 9

User Profiles.eee.li- |

Definitions...eee,li- 3

System Administrator Directory (SAD)..............., li- 4

Project Files... ccc cece eee ene eres li- 8

Login/Logout MEChanisms. 0.0.00... ccc cece ccc ee eee ees lg- 1

9|lg@- 2

~ Routine Flow. ......eee.lg2- 4

Routines..... cece eee ee eee eeteeeneeenneeees le - &

Secutity Validation... 0... eee eee eae ee 12 - 1!

NLOGIN Validation Flowchart................00.. le - 12

LOQQUT. ccc cece cere eee tees eee teeteeeneenneens IZ - 16

Routine Flow...eee. le - 17

RouUtINeS.0eeele - 18

'LOGOUTS’ Condition......00000.000000, ld - 22

Logout Notification... 0... cee cece e cree eae l2 - 23

Database...eee,le - 2/

Getting into the Command Loop.............. eu eee 12 - 28

PRELIMINARY - 4 - CONTENTS



PRIMOS REV. 19.1 PRIMOS INTERNALS

Command Processor Extended Features... lll, 1g- 1

ROUTINES.eeeeen lg- 3

BUPSEM Flowchatt.......00000000000.0. 00 ee, ig- 6

STDSCP Flowchart....000000ee,i3- 7

Detailed Flowchart.........0.00000.0000 00, ig- 8

Static On-Units...000eee.14- |

Filing SYSTOM 00. cece cect r eet ernie benno es ly- |

Disk Structures...ee,lg- 2

Directory Structures... cece cece eee reves ly- 9

Directory Entry Types... eee cece eee eee eee 19 - 11

Directory Entry Structures. ..... 0. eee een 19-17

ACL ENtTY. ccc cere teen eee een nees 19 - 18

Access Category Entry... eee eee es 1) - 2l

Unit Tables...16- 1

Definitions...eee16- 3

Data Structures...eee.16- §

LOCATE Data Structures.....00000.000.lj - |

Buffer Control Block (BCB)................0......... i7- 2

LOCATE Flowchatt....00. 00oe,l7- @

Configurable Associative Burfers............... vee, 7 - 4

Disk Quotas... cece ec ce cece eve eves eee. iB- 1
Data Structures...eee. 1B - 5

EXSMPlOS. ccc cece ener ee ene bene r tere nees 18 - 10

PRELIMINARY - 39-7 CONTENTS



PRIMOS REV. 19.1 PRIMOS INTERNALS

Attach Functlonality....... 0... ccs e eae cceeeevueuees

Attach Scan...cece,

Common cleanup routine {ATCLEAN)..................,
Access Control Lists (ACLs)... 0.0...

PrIOTity ACLS.erect e eee n tere verry

Calculating Acc@SS... 0.0. ccc reece caer eees

Miscellaneous...eee

File System Locks... cere c cece eee e es

PRIMOS Seqment Usage.............. eee,lbveuvenenes
Locked Memory Requirements...................0.,

19.1 I/O Enhancements.....0000000000000 ee.

SYSTOM LUMLES.cere eee e eter tenneny

Area Management... 0.cece eee e eens ene ene

ADDANGLY AL. cece ccc ee cess ences eereeereneetrnnens
Programmed Input/Qutput (PIO)... eee

Device Drivers..........oebebe bbb eee,

General Purpose Parallel Interface.............

APPONGLY Bocece cece tenet teen eee e beens

Process EXChang@.. 0.0... ccc cece eece eres esvenens

ADPGNG1LY Coo cece reer treet e ete en ener ennnns

Procedure Call (PCL) Mechanism.....................

ADPONd1Y Dore cece cence ee eretetnevrenvees

Revision 19.0 Routine List..........................

PRELIMINARY - § 7

P
h
o

re
R
e
O
n

CONTENTS



PRIMGS REY. 19.1 PRIMOS INTERNALS

Section 1 - Hardwate Features

PRELIMINARY L- | HARDWARE FEATURES



 

TY

PRIMOS rey. 19.1 PRIMOS INTERHALS

PRIMOS OPERATING SYSTEM

The chier features of the Primos operating system are:

1. INTERACTIVE - up to 128 user processes

(14+ interrupt processes)

2, d2 MB maximum virtual address space per user (Aymgathet
3. Users share the resources of the system

High speed memory

Peripherals and controllers ~

System Console é

Real Time Clock i ead | bis)

Disk Driveis) 7% ty.
(ow, _

ames) /tesi(s) Vo Daye (nitlt eneie + ty PEyo Vue Date Lule (Pt Pt
SMLC (5) /MDLC (6 Syn -

Ring Node conerol len (PAC)

Magnetic Tape Drive(s)
Line Printer(s) /

PRELIMINARY l- 2 HARDWARE FEATURES



 

   

 

  
 

 

 

 

 

  
 

 

 

 
    

 

  

 
          
      

PRIMOS REV. 19.1 PRIMOS INTERNALS

Meso

Afb Me,

pooes ConThee bute os eid
eo) ge (ie Bri) Meee(* [eo Koes Pde.

natn
|

= Cnivd Oat =

—~e ee Mico Code —btAds_ _— —

! |

Prevert Crubir had
=] foster Ale > Chu

A L.v.

3

ZN ZN 4S oy

Je
 

  
 

Reasteys
eisofa eSts

PRELIMINARY HARDWARE FEATURES



PRIMOS REV. 19.4 oo PRIMOS INTERNALS

 

 

 

   

 

  

 

 

   
 

 

 

       

   
 
  

 

 

    
 

CENTRALPROCESSORUNIT -

Meu |
Bus Mew -

Bhs
CPU | Lo

CONTROL UNIT = | _

rover CACHE
—

| ——

R. F ALU STLB

sydli a. a (ned

Ruy Nel -
| a CH

To :
Bus  
 

 

 

 

 

     
PRELIMINARY t- 4 HARDWARE FEATURES



C
o
n

-
-
C
I
m
j
e

c
S

~ |

—ll
12
3
14

15
“16
17
~20
2

_22
23

2a

2
727

20
-31
32
2

34
x

L
we

i]

PRIMOS REV. 19.1

MICROCODE SCRATCH

HIGH LOW
[TRG

TRI
TRe
TRS
TR4
TRY
TR
TR/ n

a
r
a
e
n
e

 

ADMY
 

ADMAS
 

RATMPL
 

Ragll
 

RaGT2
 

RECO!
 

RECO
 

REQLY
 

UNE
 

 

 

 

 

EREGSET CHKREG
 

DSWPARITY
 

PSWPE
 

PSWAEYS
 

PPA:PLA PObA
 

PPB:PLE PCbB
 

DSWRMA
 

DSWSTAT  
 

DSWPE
   RSAVPTR|

PRELIMINARY

a
n
e
t
t
e

e
s
p
e

m
e
F
D
S
o
n
o
N

c
S

le

o
s
F
O
P
O

c
i
n
F

co
.)

h
s

c
e

17
2)
el
ee
a
a4
29
26
e/
30
dl
Je
33
34
39
36
J]

REGISTER FILE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
 

 

 

 

  
 

 

 

 

  

DMA

HIGH LOW
L
I
7

(29) (21)

(22) (23)

(24) (25)

(26) (27)

(39) (31)

(32 } (33)
I

(34) ! (35)

(36) J (37)
| 

PRIMOS [eTERE

jry - 32 Sit Resi

CURRENT REGISTER

HIGH LUM
 

(GRO: OLT2
GRLPTS
 

GRe (1, Ay LH) (2) By LL)
 

 (EL)
 

GH4
 

GR (357)
 

)
|
e
J JoR3 (EH)
4
)
6 GRO
 

7 GR? 19) 4)
 

10 FARO (13)
 

11 FLRO
 

Le JFARL/FALS4) 10)
 

13 JFLRL/FAC(G)
 

14 PB
 

13 5B (14) (19)
 

16 LB 15) (i/)
 

17 XB
 

20 DTARD (i0)f
 

ol DIAR2
 

oc DARI
 

od DIARY ~~? (rime   
24 KEYS
2) OWNER
26 FCODE (11)]
2/ FADDR re
30 CPU TIMER
31 MICROCODE SCRATCH

1
|

Je |
ag v

34 H

35 Nu

36 v

3] H 
[ MODALS |

(1

HARDWARE FEATURE



 

PRIMOS REV. 19.1 PRIMOS INTERNALS

 

 

  

  

  

HIGH LOW
0 GRO THE USER REGISTER SET
1 CRI
2 A B  GR2 Ar & yale -
9 FH EL tugetter ts
4 (exkusu (ea H) (Crtoson rig L) i fake _

5 S/y
_ td

& Pur Octal

/ k 9ib -

10 FARO
11 FRO a been’ -
12 FAR/FAC (hal dite Pratt
19 eLar/eac (et ,
14 PR Maehes _

joree
15 SB bit (4
14 LB -
17 1B /
m0 DTAR3

ried2 DTAR2 idee -
29° DTARI cpa
29 DTARO -
24 KEYS/MODALS lovird Steck ;
25 DUINER — Pood: tak tn Proceese
2 Fcoue «| _
27 FADDR

fe,30 CPU TIMER < INTORY -
31 MICROCODE SCRATCH

3/ i  
PRELIMINARY 1 - 6 HARDWARE FEATURES —



PRIMGS REV. 19.1 PRIMOS INTERNALS

THE USER REvISTER SET
 

A Accumulator Register

B Accumulator Extension (A # B = L)

EH) EL Accumulator Extension for long integers (64 bit)

5 Stack Register (R § Modes)

Y Alternate Index Register (Y Mode only)

i index Register (R, S, ¥ Modes)

GRO-GR/ General Registers O-7 (1 Mode only)

FARO Field Address Register 0

FLRO Field Length Register 0

FAR I Field Address Register | (ror flock moves

FLA 1 rield Length Register 1 char. /dec. data)

FAC Figating Point Accumulator

PE Frocedure Base Register

5b stack base Register

LE Link Base Register

KE Auxiliary Base Register

OWNER Address of User Register Set Quner’s PCB

FCODE Fault Code

FADDR Fault Address

CPU TIMER overflow of two's complement value ends timeslice

User programs may access the Register-file using LDLR and SILR (64Y).

(nly locations ‘0 - ‘1/7 are accessible.

Any attempt to access location ‘14 (PB) will give undefined results.

The first sight locations are interpreted for V-mode (default.

PRELIMINARY L- 7 HARDWARE FEATURES



PRIMOS REY. 19.1 PRIMOS [INTERNALS

PRUCEDURE/LINK/STACK ARCHITECTURE

PROCEDURE AREA

- | per system if shared

~ contains gure code and literals

~ pointed to by Procedure Base Register (PB)

LINKAGE AREA

- | per user

- Contains local variables and pointers

- pointed to by Linkage Base Register (LB)

STACK FRAME

- | per invocation

~ contains caller's saved state, argument pointers,

and dynamic work space

- poOlnted to by Stack Base Register (50)

 
PRELIMINARY l= 48 HARDWARE FEATURES



PRIMOS REV.

= S
e
n
n
w
k

>

|S
R
E

t
J
]

f
F

e
e

4 b

0
o
O

—
™

10

1]

an13

14
&
wd

16

PRELIMINARY

194

AEYS

puUTpOSe

S RR Modes

Arithmetic Error Cond.

Double Pracision Bit

reserved

Mode bits

000 165 mode

001 32S

Oll eR

O10 44k

119 64yV

100 32]

reserved |
reserved

Bits 9-16 are fits 9-16

of address 6

PRIMUS INTERNALS

Y[ Modes

C Bit

reserved

Link Bit

Mode Bits (CmSoith
Boker Keys)

(Cary 4ii)

Floating Point Exception

Integer Exception

LT (less than) bit Caldew

EQ (equal) bit Ait
DEX (decimal exception)

reserved piles O%

In CHECK bit (890 only) sqee7

I bit - In Dispatcher “*°
S bit - Save Done

HARDWARE FEATURES



 

PRIMOS REY.

7-11

lg

14

lg - 16

PRELIMINARY

MODALS

PURPOSE (Y 1 modes oniy)

Interrupts Enables

Veactored Interrupt Mode

Disable Prefetch Overlan (P/20)

Disable Indirect Overlap (P7900)

reserved - Must bea zara

Current Register oat

Mapped 1/0 Mode

Process-eychange Mode

Segmentation Mode

Machine Check Mode

OO = Report no errors

O1 = Report ECCU errors only

(Error Checking and Correction

10 = Report all unrecoverable err

(only ECCC errors are unrecord

li = Report and record all errors

PRIMOS INTERHALS

Usedat Cold Strct

Uncorrectable)

OTs

eq)

HARDWARE FEATURES



PRIMOS REV. 19.1 PRIMOS INTERNALS

INSTRUCTION pREFFICH UNIT DSe /E WD

 

MAIN MEMORY

CACHE MEMORY K

   

 

 

 

    

 

\

INSTRUCT ION "INSTRUCTION
PREFETCH . > EXECUTION

UNIT UNIT    
 

 

P fetch Lb ber ?

rc pe lad) Cache

PRELIMINARY. 1- ii HARDWARE FEATURES



PRIMOS REV. 19.1 : PRIMOS INTERNALS

 

PRIMEP850FUNCTIONALDIAGRAM

Te Bus _~

f = 2
 

  

  

  

    
  

     

  

         

    
   
 

oven ——
| MewGus
 

-

gso lung Slewed newBedte -
Sea co pl fur [threw CU

orWvrdpee Cache te ~

prevert beeps Chih evn

 

eens:

PRELIMINARY l- 12 HARDWARE FEATURES



PRIMOS REV. 19.1 PRIMUS INTERNALS

DMx Coeration

DMx 15 a method whereby an [/Q data/memory transfer may occur without

program intervention. [0 perform such operations 4 temporary

diversion in the sequence of microcode from CPU instruction to DMy

transter routines occurs. This 1s called cycle stealing or a TRAP.

At the end of the DMz/memory transfer, the CPU instruction microcode

confinues as though nothing had happened. The actual trap diversion

gccurs ai the and of the micro step in which 1% was sensed. At the

Same time, information about the next CPU micro step is saved to

effect a return to the original sequence.

There are four types of DMx transfer: DMA, DMC, DMT, and DM@,

Each method has advantages and disadvantages in terms of speed,

volume and control features and so form a comprehensive range of

methods. 51 WwCamry

 

|
}“cpu |

  

 

Vv
inTrMM ue

Fo Dy

uypurses CPU

PRELIMINARY L - |g HARDWARE FEATURES



PRIMOS REV. 19.1 | . PRIMOS INTERNALS |
1).° DIRECT MEMORY ACCESS (DMA)

DMA transfers are controlled by pairs of registers 7

(channels) in the CPU register file. There are 32

such register channels, locations ‘40 - ‘77 in the

Pegister file (de bit locations). The high 12 bits -

of each location govern the number of words to be

transfered and the low 16 bits specify the start

address of the buffer to be used.

DIRECT MEMORY ACCESS 'OMA)*
 

 

   

 

    
      

 
 

 

      
  

 

      

 

       
 
 

 

      

MEMORY FOR OMA TRANSFERS THE CONTROLLER
—— SUPPLIES THE CPU WITH AN ADDRESSOF

ONE OF THE AEGISTER FILESS
LL sooo DATA POR OMA.THIF RE CONTAING THE
a vr PARAMETERS FOR THE TRANSFER. _

~- MAXIMUM AMOUNT OF WORDS THAT BL .

16020 OaTa CAN BE TRANSFERREDIS 4096. f

- MAXIMUM NUMBER OF OMA CHANNELS

(P400; 1S 32. _

= <
2 <]-

cru VO CONTROLLER

‘OMA CHANNELS) DMA/C ADORESS REG. 1238 § 6 18 —
137400 006000 |*9 CHAIN 12 OMC CHANNEL

NUMBER] ¢ = OMA ADDRESS

yl 77 .

i-———-—— 12 13. 14 15 16 17 32

xl x TRANSFER ADORESS
. 99001 16 _.

gSe.ke°F scaneepeder altos esecenste-ters toot ot TELE wecned traannter treesee tee levcutieenn need ftneSn

ON

| Pxases_Merde Before transfers begin, the program must set up the
15 Used withWaele LODlider, channel registers in the CPU. Up to 4076 words per

preys: ¢X Channel may be transfered. Successive channels may

«ASamd be chained by setting channel registers in the CPU

and the chaining register in the controller

llars have thi ahilitn) _PRELMINOR all controllers vet tgean ilitr HARDWARE. FEATURES



_ PRIMOS REV. 19.1 . PRIMOS INTERNALS

2). DIRECT MEMORY CHANNEL (DMC)

DMC transfers are controlled by pairs of words (Channels)
In main memory. The first (even) word controls the first
and current address of the buffer, and the second word
controls the last address of the buffer. There is potential

_ For transferring 65536 words, but in practice transfers are
usually very much smaller than this.

DIRECT MEMORY CHANNEL (DMC)*

 F |
MEMORY - OR OMC TRANSFERS THE CONTROLLERSUPPLIES THE CPU WITH AN ADORESS Ib Bh| 3000-6000 THAT IS ACCESSED IN MEMORY.THIS diustiredf= | 3001 10020 L ADDRESS SPECIFIES AT WHICH LOCATION vy_ , 6000/ DATA THE TRANSFERIS TO TAKE PLACE.

POSSIBLE ADDRESSES THAT THE
CONTROLLER CAN SUPPLY ARE ANY   

 

 

| EVEN NUMBER UP TO 3776, THIS MEANS_ 10020/ OATA THERE CAN BE UPTO A
— MAXIMUM OF 1024 DMC CHANNELS Va2y ,a (THEORETICAL)

S — MAXIMUM AMOUNTOF WORDS THAT Canad— a CAN BE TRANSFERREDIS |< ALMOST 64K (THEORETICAL)

_ cpu
1/0 CONTROLLER
i

CPU OETECTS OMC

 

 

 

AND PASSES THE OMA/C ADORESS REG. 1234 5 § 16— ADORESS PORTION
> CHAIN

|

1 = DMC CHANNEL
AEGTOMEMORY omens 007000 “——"——INUMBERI 0 = OMA ADORESS. i .

.       

 L
T

     

  A! FIRST LOCATION/TRANSFER ADORESS
| SECONO LOCATION/FINAL ADDRESS

* Lvample shows parameters fora (St word trausfer framiie locations 6000-. LN020.

1024 DMC channels are available in the system but the use
oF memory for control words makes it slower than DMA.

PRELIMINARY L- 19 HARDWARE FEATURES



PRIMOS REV. 19.1 PRIMOS INTERNALS

3). DIRECT MEMORY TRANSFERS (DMT)

DMT transfers are controlled by the device controllers
themselves. The memory of the start and current location
of the buffer, and the memory address of the last location ~
of the buffer are held in the controller.

DIRECT MEMORY TRANSFER (DMT)*

 

MEMORY

FOR OMT TRANSFERS THE CONTROLLER
6000/ DATA SUPPLIES AN ADDRESS WHICH IS THE

ACTUAL ADDRESS OF THE DATA TRANSFER.
THE NUMBER OF WORDSTO BE
TRANSFERRED VARIES ACCORDING
TO THE SPECIFIC DESIGN AND
FUNCTION OF THE CONTROLLERS
USING DMT.

w
e
e

 

A
D
D
R
E
S
S

 
 

CPU : I/O CONTROLLER

CONTROL

 

CPU DETECTS OMT —
AND PASSES THE
ADDRESS DIRECTLY
TO MEMORY.

DMT ADDRESS REG.
 

ADDRESS 006000 _

   

DATA a
T

     

 

* Example shows parameters fora trausfer to/from location 6000.

PRELIMINARY 1- 16 HARDWARE FEATURES



PRIMOS REV. 19.1

 

 

 

  
 
 

   
 

 

PRIMOS INTERNALS

  

  

 

   

 

   

  

4). DIRECT MEMGRY QUEUE (DMG)

DMG moce provides 2a Ting-structured memory buffer for the

reception and transmission or stream I/O. Stream I/O is a

data transfer in which data is transfered in continuous streams

of bits, characters or words rather than in discrete records

This mode allows the AML@ driver to queue messages using

queing instructions, without the need for extensive software

management of character time interrupts on transmit. Therefore urd

DMG mode substantially reduces the system overhead in dealing | t

with terminal output.

MEMORY (2k unt Glee ,
acs ~—H A .

100/1000 fl UL .

ye 1071/1050 Segment’o wnt strred

ial 13720 | seieters,Saconcen” Sfpodh
wesc aps of a queue control block (OCB)for Neve iL

ps ro RRS HERE: dBg S02 ts gorge, tong.

OSV

Sewor is a rea pointer,
Segment'21 the second a “write” pointer, the Guy

ee | [aonwss naskwhichspecifics the
ple size of the Queue DataBlock(DB).
um? The ODB is the area of memory the

My data is taken from.

ltrs ndSay Fl of

CPU | AMLQ .

nes pasecs tee OMQ ADORESS REG.

neeTowemone

KC

aooness

>

ess peor

K DATA >

PRELIMINARY 1- 17 HARDWARE FEATURES



PRIMOS REV. 19.1 PRIMOS INTERNALS -

DMG Operation

The control information 15 held in segment 0 of memory in an area

known as the Queue Control Block (QCB).

Each queue is implemented by an array of 2##N words where N is greater

than or equal to 4, and less than or equal to 16.

Fach @CB is a four word structura:

TOP POINTER (read) word number of the head of the queue

BOTTOM POINTER (write) word number of the tail of the queue .

SEGMENT NUMBER or PHYSICAL ADDRESS

segment number or PPN of above pointers -

MASK eee - | defines the size of the buffer

The instructions provided for DMG and GUEVE manipulation are:

ATG | add to the top of the queue

ABQ or DMG input : add to the bottom of the queue

RiG or DMG output > remove from top of the queue

REG ' pemove from the bottom of the queue

TSta | feast the queve (# of ifems—2A, 1FemptyeG-700 )

PRELIMINARY 1 - 18 HARDWARE FEATURES



PRIMOS REV. 19.1 PRIMOS INTERNALS

Section 2 ~ Lab Exercise |

PRELIMINARY 2 = i Lab Exercise i



PRIMOS REV. 19.1

pr* Male

FILES RINGO. MAP

RINGS. MAP

wot RINGO. LOAD
ce ‘i RINGS. LOAD

bo

SUBDIRECTORIES
CPLS
C3
ES
FS

INSERT

R39

RJES

FINDOBJ

PRELD

MAPGEN

USAGE

PRELIMINARY

Ring 0 SES map

Ring 3 SES map

Ring 0 SEG load control file

Ring 3 oeS load control file

CPL interoreter

COMMUNICATIONS: SUNCHTONOUS

PRIMOS INTERNALS

Emulators: date ~1,thdtrpoe ‘ystems

File system

Insert files

Kernel

MPX (slave)

Networks: FAM 1, FAM I]

Binaries

Wired debugger

Ring 3 and command processor

Remote job entry

Utility to use a load control file and merge
/ Lo&y 2

Dinaries from two separate vtds COdees

Primos preloader

Program to generate initial pane maps

Usage monitoring wtility—- P

R
S i

m
o

5 ivtit

Ct CG DLE)

Lab Eyercise |



PRIMGS REY. 19.1 PRIMOS TNTERMALS

PRIMGS BUILD ~ COMPILE, CPL

R COMPILE Liobjectvd

C-FIN] [-PLP] [-PMA]

[-Bin <treenames] ([-List «treenames |

[-AFter “date [-BeFore “date?] (date = MM/DD/YY)

[“NoCOmol [-COMO <tresnames]

The caller may specify a “sourcetrees of an item, sub-dit or file,

to be compiled. The default is to compile 311 languages in all dirs.

The user is also allowed to specify the ~BEFORE and -AFTER arguments

to compile only modules changed during 4 specified time interval.

[f ang of -FTN, “PMA or -PLP is given, then only modules written in
those languages are compiled. If all are omitted, all languages are

compiled.

If -AFTER and/or ~BEFORE is given, only those modules which also

have a date-time-moditied within the bounds specified by ~AFTER and

“BEFORE, are compiled. If meither is given, dtm 15 not checked.

If -NOCOMO is given, a Separate comoutput file 15 not produced.

Otherwise, AdITs. como 15 produced,

PRELIMINARY ¢o= 63 Lab Evercise i



 EEO)

PRIMGS REV. 191 PRIMUS INTEAHALS
ee

FRIMOS BUILD - COMPILE. CPL examples

A file may D2 specified in 4 number of ways:

kSeainit. fin . kSSaimit » ainit. ttn. ainit

[f a Sub-di? is omitted, each one one 1S searched for the file.

If the language suffix 15 omitted a search is done using PMA, FIN;

and PLP until the file is found.

NOTE: ::: Any unclaimed arguments will be used a5 compiler options! !' -

Evamp les:

R COMPILE compiles everything, creates compile. coma :

R COMPILE -PLP -AF 9 -NCO compiles only PLP modules modified after

midnight this morning; no como fils.

R COMPILE ks -BF I-l compiles all modules in AS modified before ~

midnight on Jan. 1 of the current year.

R COMPILE ksvainit. fin compiles #eks/ainit. tin

R COMPILE ksvainit searches ks tar ainit. (PMA FIN PLP)

R COMPILE ainit. ttn searches all Sub-dirs, #2@@>ainit. ttn

R COMPILE ainit compile #7@@/ainit. (PMA FIM PLP) ~

Lo xyBE

m
3 i =PRELIMINARY Lab Exercise i



PRIMOS REV. 19.1 PRIMUS INTERNALS

por Pra ®& CouWl

PRIMGS BUILD - LOAD. CPL |

R LOAD Cilogd datafiles]

[“LIBRARY <11b paths | -LIB ¢lib paths]

[-OBJECT “obj path? i -OBJ “obj paths] ~

C“RING “rings | 7R “ring?]

C-VERSION “version? 1 -V <versions]

C-NOCOMO : -NCO]

“load datafile’ file with seq commands and name of files to load

“lib pathy dir containing binary files af installed (base) Primos

“obj path» dir containing binary files that are new

“TAnge ring #9 load (currently 9 or 3)

“versions char string of this version of Primos (e.g. 18.9. 10)

defaults: load data file= lip path= obj path= Ting= version=

RINGring. LOAD PRII9. CKPOB) #20BU ) 19.0

This CPL procedure accepts 4 load data file in the following format:

/* comment line - ignored

SES “command? - direct command to seg, passed a5 is

filename foptional seg numbers for segs

When the ling is a file name,

Filemame. bin 1s searched for in the object directory;

if found the object pathname 15 prepended to filename

else the library pathname 15 prepended to filename

(in both cases BIN is appended to the filename)

PRELIMINARY eo=- § Lab Evyercise |

_ nstteleh Grase] Hoes



PRIMOS REV. ty1

PRIMGS. BUILD, CPL

PRIMOS BUILD -

—

PRIMOS INTERNALS

more CPL utilities

eenepals 5 Leads eviajting

R PRIMOS. BUILD {versionnumber} {-LUAD}

Compiles and/or load all of PRIMUS.

MOVSYS.CPL (in PRIRUN)
- Crpies qe fp pwr

R MOVSYS “sourcetrees <targettree, [© -OPSY5 ] (default)

[ “ALL ]

[“HELP : -USAGE ]

Copy primos and/or prirun modules between utds.

VERSIONSTAMP. CPL

COLD. CPL

PRELIMINARY

“w

~ hog versuin type fe

Type out version number and creation date of this PRIMUS,

Buulds ple + Cota for oni Aypioos

Build #colds and Tun mapgen.

r
o - § Lab Exercise j



PRIMGS REV. 19.1 PRIMOS INTERNALS

MOTIVATION

- Allows Primos $9 be booted in two steps:

New BOOT command to the VCP

SETIME command to Primos

- (Jr in three steps:

Gid or Ney BOOT command to VCP

PRIMOS command to BOS (Primas I1i

SETIME command to Primos

[MPLEMENTATION

- Software required for new GUOT command:

New BOOT file from rev 19 Master Disk or rev 19 MAKE

Rey 19.9 #00564 in DOS

PRIMOS command in CMDNCO
RTANSTROTTS

COMDEY must be first partition on device

PRELIMINARY 2 = | Lab Exercise tf



PRIMGS REV. 19.1 PRIMOS INTERNALS

NEW BOOTSTRAP

NEW BOOT COMMAND:

-~ Utes switches 4 and 9.

4° down - prompt for ‘Physical Device=’

UD = Use FITSt partition on davice specified in BOOT

command

 

3: gown - prompt for user input in Primos IT via ‘QA: ’ ~

Wp =~ execute PRIMUS command for user

- PRIMOS command defaults to booting out of PRIRUN.

- Must pe-issue PRIMOS command to change default directory. —

- Hote, PRIMOS command will work without new BOOT/DO5. ~

(However, if the command device is Tev 19 format, ONLY the

new DUS will recognize the dish. }

- & Lab Eyvercise |f
3PR mLIMINARY



PRIMGS REV. 1901 PRIMOS INTERNA:S

Installing a RING O GATE

This lab exercise consists of two distinct parts: modifying PRIMUS

to add the gate and writing an application routine to take advantage

of the New gate. 70 Artif Prue

Adding a Gate to PRIMOS |

PRIMOS RING O Gates are defined in PRIMUS2AS2SEG5. PMA -

Fach Gate takes the form: Ente Sec At

GATE =» 4fing 3 namev.4ring 0 name,

 

 

Where

“ring 3 namer 13 the routine mame the application will use

“Ping 9 name is the actual routine name in Ting 0

if only one argument is present, then «ring 3 namey = “ring 0 namey

Add your new gate, being careful to place if at the end of the list,

after all the other gates. Also be sure that the name you use is

UNIQUE,

The next steo is to invoke COMPILE. CPL in order to recompile the

aporopriate module(s), (Hint--Look st source comments)

The newly compiled modules need to be Te-loaded.

Use PRIMOS BUILD. GPL or LOAD. CPL, remember to seat the version number.

| ants te EW) / list

“= 4PRELIMINARY c. Lab Exercise |



PRIMOS REV. 19.1 PRIMOS INTERNALS -

Calling a RING 9 GATE

The application program should be kept a5 Simple as possible, and must —

contain a “CALL “ring 3 names" with arguments as required.

In order to get a LOAD COMPLETE message from SES, you will need to

write a short PMA program as follows:

SEG

DYNT “Ting 3 name?

END

SEG

eg. DYNT SRCHES

END -
NOU Ausrenlony, SPme Cour)

STwoe - ($7 we , wT)

 TNOU | STWOY

Gide My ga, THOv
Testing the program

First try executing your application program under standard PRIMUS,

REBOOT the system with your modified PRIMOS, |
Try executing your application program again.

PRELIMINARY ¢ = 4G Lab Eyercise |



PRIMGS REY. 19.1 PRIMUS INTERNALS

Section 3 - MEMORY

PRELIMINARY go> | MEMORY



PRIMOS REV. 19.1 | PRIMOS INTERNALS

 

   
 

  

  

0.
Likwoe fn >

CACHE FUNCTIONAL DIAGRAM jo24 eubties

MAIN
NEMORY

DATA
~~~ f- oe AND

Spud | | ~ INSTRUCTIONS

CACHE akon | word wt y tue

MEMORY wn | Doty  
 

/

7 |
| processor | ! Lovp ype us ebeqenw

: EXECUTION | Cache owtoahenge
.) UNIT    

PRELIMINARY 3 o- a MEMORY



PRIMOS REV.

c
S

~
O
O
&

-
F

f
a

~
3
4

s
l

c
n

E
Q

e
e

Intarleaving 15 Implemented using two identical boards.

19.1

 

 

MOS

Memory

EVEN

Addresses   
 

 

AOS

Remory

UDD

Addresses   

—
m
i
m
=

w
h
l

 

 

   

One board contains the sven addresses, the other board

contains the odd addresses.

This fas the effect of speeding up sequential access and

increasing the cache hit rate.

PRELIMINARY

 
 

PRIMOS [NTERMALS

INTERLEAY LAG Pew ig .

cyte oe fae

16 (32 bits on P730/P890)

C

E A

-j———>] CFU

5 4

E

precaved

4 Alo JES

16 (32 bits on P7a0/F600) Ne 7g Po

Wierd VES 32 oy

# of its

gos 6d MEMORY



PRIMGS REY. 19.1 PRIMOS [NTERHALS

SEGMENTATION - Dtwihe) op “|SEATON Uirlond Melons
Virtual Memory 13 divided into variable length SEOMENTS (64K words maz)

PctSEGMENTS 4define 3l2 MB of Virtual Memory.

“tne virtual address space is divided into 4 areas (DTARS),

each area consisting of 1024 ('2000) segments.

MemonVika memory CURRENTLY ENABLED
 

 

 

 

‘7777

PRIVATE PER USER (SYSTEM)
‘6000
‘5777 |

i —— —
wee PRIVATE PER USER (USER)

ve’ B00 “4000 Io Stegner
‘3777

SHARED BY ALL USERS
2000
4777

EMBEDDED OPERATING SYSTEM
‘9000 Fy PRs    

Juda! Totany, 5 détenncd bv

het Bits flWe
PRELIMINARY 3 MEMORY



PRIMOS REV. 19.1 PRIMOS INTERNALS

EFFECTIVE ADDRESS FORMAT

PROGRAM INSTRUCTIONS GENERATE AN EFFECTIVE ADDRESS (EA).

- 2 Bits RING NUMBER (defines privileges)

~ 12 Bits SEGMENT NUMBER

- 16 Bits WORD NUMBER (within SEGMENT)

| 2 24 5 1b 17
[Teel~ [seovent no. T worp_nunper

tt | anpit S se t/ F2

The eerie ADDRESS (28 BITS) 15 mapped to PHYSICAL MEMORY.

 

~ dé Bits PHYSICAL ADDRESS

- Up to 8M Bytes of PHYSICAL MEMORY.

c
nPRELIMINARY 37 MEMORY



PRIMOS REY. 19.1 PRIMOS INTERNALS

RING NUMBER

There are o RINGS which define the privileges of access

to the SEGMENT.

RING O 1s the most privileged and allows unrestricted

access to all seqments. Ring 9 15 the only Ting

that can eyecute restricted instructions.

PRIMOS runs in RING 0.

RING | Not currently used by software

RING 3 The least privileged. |

USERS run in RING 3 Seq 5ohMoverad

Hardware derines access rights of:

[rinar Ting accessing memory in an Guter ring. _

Outer ring accessing memory in an inner ring.

«GATE access LJarck
‘ “Can . . _

eres (Shitefer)
Cue Un

 

Shine bw relaled

,, Pete : Gerd ayPRELIMINARY 3 7



PRIMGS REV. 19.1 PRIMOS INTERNALS

MEMORY MANAGEMENT TECHNIGUES

GIA Seq Gh Rew 114

The total number of segments available 1s currently Ode, ihe ipey

All 1022 segments cannot be contained 1n physical memory. Ie A zx

Virtual Memory 15 divided into two parts: aod ett

1} the part in physical memory wax Addins

2} the part on the paging disk 4) 4

Certain information is too critical to be on the paging disk,

16°15 "WIRED" ("LOCKED") into physical memory.

At COLD START, PRIMOS “wires” critical information, this area will

grow as PRIMUS requires certain per-user data to be wired.

When User segments ate allocated, paging space 1s allocated.

Urvtung Merym ae

Programs generate VIRTUAL ADDRESSES. oy OES
The VIRTUAL ADDRESS 15 translated (mapped) to 4 main memory address.

If the required physical address 15 resident within physical memory,

the access may proceed without interruption.

If not in physical memory, a PASE FAULT will occur.

When a PAGE FAULT does occur, the program is suspended while the

Tequired page 15 moved from the PASING DISK into main memory.

This 18 called PAGING IN.

If there 15 no physical memory page available, PRIMOS will use a

Approximately-Least-Reacently-Used algorithm to determing which

nage in physical memory will be PAGED QUT to allow Space for the

InmCOMing page.

PRELIMINARY 3 = 7 FEMURY



PRIMOS REV. 19.1

 

MAPPING

LOGIC

PRIMOS INTERNALS

MEMORY MANAGEMENT

 

 

 

VAVAAVANY-PAGE-OUT

VAAAAVAMA PLAAAAAAAAA
 

 

 

 

APPTTTTTT

ATTTTTTTT

  

 
 

 

ATLITTTTT)) -PAGE-IN

NHL -

   
   

USER
VIRTUAL
MACHINE

PRELIMINARY

PAGE

 Port PILL TIT   

 

REAL

MEMORY |

(Achenk page
Wn Woinory PAGING

varjull pldert pire |
retard bo pag OSC

   
FAULT (Access then proceeds)

= ort Wevds (1 K werk)Pree = _
- 8 |

Pag divide up pip Scinl  Aeeneree
3 MEMORY



PRIMOS REY. 17. 1 PRIMOS [NTERNALS

ADDRESS TRANSLATION
 

Every VIRTUAL ADDRESS 15 fransiated (mapped) to a physical address by

accessing the STLB (Seqmentation Translation Lookaside Buffer). The

STILB holds the 64 most recent virtual to physical address translations.

When the STLB does not have a valid entry for the virtual address to

be translated, hardware calculates the address translation using

Descriptor lable Address Registers, Seqment Descriptor Tables and

Hardware Page Maps. The SILB is accessed again, this time being sure

to get a SILB hit. During the translation, a page fault will occur

if the desired page 15 nat in physical memory.

Simultaneous to the STLB access, hardware starts a CACHE access.

If the word from cache is from the correct physical page, then the

access is complete. If the word sought is not a valid cache entry,

then the information 15 brought into cache trom physical memory.

In summary fastest to Slowest:

STLB ‘hit’ + CACHE ‘hit’

STLB ‘hit’ + EMORY it’, CACHE ‘hit’

full translation, STLB ‘hit’ + CACHE ‘hit’

full translation, STLB ‘hit’ + MEMORY ‘hit’, CACHE ‘hit’

Full translation (PAGE FAULT), STLB ‘hit’ + MEMORY ‘hit’, CACHE ‘hit’

PRELIMINARY go- 7 MEMURY



PRIMOS REV. 19.1 PRIMUS INTERNALS —

FULL ADDRESS TRANSLATION

SEGMENT NUMBER WORD NUMBER _

234 56 7 1b b7 1h
LL: Dore TL seovent orrser [pace no, [pace orrer
  

   
  

HMAP

=

 

 

   

   
 

DTAR ~ Descriptor Table Address Register Y

SD. - Segment Descriptor Table | G

SDW - Seqment Descriptor Ward | le 1d ae

HMAP - Hardware page MAP

PPN - Physical Page Number

PRELIMINARY 3 o- 10 MEMORY



PRIMOS REV. 191 PRIMOS INTERNALS

DTAR ~ DESCRIPTOR TABLE AUDRESS REGISTER

 

  

  
| 10f tt 14]

i7h18 32|

Bits t-10 = 1024 minus number of entries in SDT

11-16 = High order 21 bits of physical address

le-32 of SDT origin

17 = must be zero

Oly cil Powers yr # o] Latte ef

PRELIMINARY 3g 7 MEMORY



PRIMOS REY. 19.1 FRIMOS [ATERNALS

SDW - SEOMENT DESCRIPTOR WORD

 

  

     

| 10111 14
cLaamtepeicce
17 1820 2123 2426 2 a -

Bits 2/-32

1-16

17

L820

Physica: address of Page Map Table (HIMAP)

(Bits 11-16 must be zero)

Fault Bit

(AAA) Access rights from RING 1 -

OOO no access

H map chs 001 Gate access only
O10 Read access only

th wat Ve Br O11 Read and write access

100 pasearved

TOL reserved

110 Read and @48cute access

Lil Read, write, and execute access

BBB) raserved for future use

(COC) Access rights from RING 3

ame as RING 1 access bits

el-23

e4elh

ai

n
r
o
,

c
a
6 b
e
e
e
e
l

il

n
e
y
,

w
n

c
v
3

PRELIMINARY 3 - le MieMURY



PRIMOS REV. 19.1 PRIMOS INTERNALS

HMAP - HARDWARE PASE MAP ENTRY |
gz Bile 4 pblhres; .

tn Fars & MA him iry

 

      

1 2 3 4 3 16

ViERPUTS FPR

Bis 1 (V) = YALID Bit, set when page is in physical

MeMOTY,

REFERENCED Bit, set by PAGTUR when the

page is brought in.

3 (J) = UNMODIFIED Bit, Teset ty hardware whenever

the page 15 modified.

4 (5) = SHARED Bit, set at cold start for memory

pages, 50 that each location in the

page 16 not put in cache.

Physical Page Humber (PPN)

P
3
3

w
T us

716

(hits 29 indicate page status if Valid bit 13 reset)

PRELIMINGRY see /WmLaky . 13 MEMORY
24 P13



PRIMOS REV. 19.1 ; PRIMUS INTERNALS

VIRTUAL ADDRESS

 

    
 

 

 

 

     
 
   

 

    
 

    
 

 

123 45 6 1 b 7 1o-

R SEGMENT # : PAGE # PAGE OFFSET =
C | -

Sey THOLE Lodcrside Bufter

IOTLB STILE CACHE

USER 0 i ~

Used for NUMBER A

| Segment Oo 3

addresses 1 {

| Only '
\ _

<—12— eet33——Be12-4 |

1o2ge :
| i3

COMPARE

(12 = INDEX)

( 1 = VALID) DATH

ADDRESS ._ppn_|_Pace aH :
{ l2 13 ae

PRELIMINARY 3 - 14 EMORY



PRIMOS INTERNALSPRIMOE REV. 19.1

E
V
D
P
I
T

 

 

  

 

 

S
L
I
G

l
e
o

A
O
I
1
V
A
-
A

T
S

W
i
r

b
y

J
?
.

S
N
O
I
L
V
I
O
7

W
e
A
g

>
r
c
O
l

a
S
Z
3
N
O

S
L
I
G
A
L
I
Y
V
d

2
#
J
9
V
d
W
I
I
S
A
H
d

t
S
p
o

S
L
I
G

V
L
V
O

S
l

S
L
I
G

Z
l

mouset
i 

 
 

 
 

V
L
V
O

X
A
a
N
I

A

MEMORY19PRELIMINARY



PRIMOS INTERNALSPRIMOS REV. 19.1
|

|

Sila
S
p

S
N

A
l
e
d

P
u
s
r
Y
S
-
a
!

 

O
/

B
O
E
yp of

pgrery
eV

u
g
2
b

wos
byd

U
r
r
y

S/

p
r
e
4
)

 
 

T
e 

   
   
 

 

S
U
G

c
t
.

S
U
G

c
l

SHUG
c
l

sild
©

s
i
a

©
j
a

b
i
l
a
b
y
e

t

C
o
n
a
6
8
y

‘
S
A
Y
G
S
O
N

j
u
a
u
I
b
a
g
Y
G
]

S
S
2
2
0
s
q

ce
b
u
r
y

,
B
u
r
y

s
n
n

A

a
s
y
y
6
i
u

s
s
v
o
o
y

g

t
l

conn

A
1
L
s

 

p
a
r
p
o
u
u
n
—
N

P
I
L
A
-
A

suojyjyeoo07]
9

MEMORY16~ PRELIMINARY



PRIMOS REV. 19.1 PRIMOS INTERNALS

 

   
 

mo
—!
—

O sg
c , |
C ”
S —_
e. oO .

| 3 :
2 ™ |

>
<= ; .

a.

>

eeeee

c
&
cS
© . ;

©
ow)

<e)

PRELIMINARY 3 > t/ MEMORY



 
      



PRIMOS REV. 19.1 PRIMUS INTERMALS

Section 4 - Process Exchange

PRELIMINARY 4 - |i PROCESS EACHARGE



PRIMOS INTERNALSPRIMOS REV. 19.1

 

 

 
 

PROCESS EXCHANGEPRELIMINARY



PRIMOS REV. 19.1 | PRIMOS INTERNALS

PROCESS EXCHANGE

Process Exchange 15 the hardware/firmware mechanism used to switch

the CP from being used by one user to being used by a different user.

A context switch occurs whenever a higher priority user or system

requires the use of the CP. The context switch involves saving the

registers and state of the currently running process and placing the

needed information in the current register set for the new user or

system. This 15 accomplished by the firmware/hardware and the two

user register sets in the High Speed Register File.

A process 15 a sequential flow of execution (a user, an I/O driver).

The process 15 described to PRIMUS by a PCB (Process Control Block),

Each process has its own PCB. A proces must be in one of two states:

1). Walting tor an event or non-CP resource

2). peady to execute.

When the process has all the resources Tequired to run and is only

Waiting for the CP, the process’ PCB is placed on the READY LIST.

If the process 15 walting, its PCB is threaded onto 4 semaphore or

ait list.

 

PRELIMINARY A - 3 PROCESS EXCHANGE



PRIMOS REV. 19.1 : PRIMOS INTERNALS

WAIT LIST (Semaphore)

 

 
 

 
 

 
     

  

PCE PCR
r—>|COUNTER LEVEL [> LEVEL -
Bo LINK 0

| wsN Ke> [|WSN -_
WLWN _WLUN -

   
Note: Gueving is priority order with FIFO for equal priority.

However, there are different flavors of NOTIFY, Notify
end or Notify beginning.

 

 
WAIT “semaphore names NOTIFY “semaphore name,

access semaphore access semaphore

count = count + 1 count = count - 1 |

if count 2 0 first PCB --7 Ready List ~

then PCB --> Wait List

pe else process continues

PRELIMINARY 4 - & PROCESS EXCHANGE



PRIMOS REV. 19.

N
O
O
A
b
W
M
r

Oo

~
o
s

b
e

p
e

m
-
O

pe na

“13
‘14
“15
‘16
“17
“20
‘el
‘ale

‘61
‘62
‘63
‘64
"635
‘66
‘S7
*79
‘71
‘72
‘73
‘74
‘75
‘76
77

PROCESS CONTROL BLOCK

POINTER TO WAIT LIST

RESERVED
np

PROCESS ELAPSED TIMER

DTAR =

DTAR 3
"

REGISTER SAVE AREA

e
-
-

2

RING O FAULT VECTOR

RING 1 FAULT VECTOR
n

NOT USED

RING 3 FAULT VECTOR

PAGE FAULT VECTOR

 

PRIMOS INTERNALS

4S. Fo NOTpret,

=eabote 0D Thre S l

yHe Syn fv

ove oy

 



PRIMOS REV. 19.1

LEVEL

READY LIST

 

| CLOCK PROCESS/FNTSTOP(cc“cK >) |

AMLC PROCESS (Churrnatir wasteoh
 

OMLC PROCESS
 

MPC PROCESS, MP2 (frrll Pade
 

VERSATEC PROCESS, MPC-4
 

RING NET CONTROLLER PROCESS —
 

oPARE
 

DISK PROCESS
 

SUPERVISOR PROCESS
 

0
C
O
m
m
s

O
&
O
—

C
F
F
P
R

USER LEVEL 3
 

Q
o

<
= USER LEVEL 2
 

m
e
d

o
s

 

Q
e

r
o USER LEVEL 0
 

e
e C
J BAIPCR (BACKSTOP 1) CPU #1
 

BUSPCR (BACKSTOP 2) CPU #2
  o

n
e

{
>  END OFREADY LIST = 1
 

PRELIMINARY

|
PRIMOS INTERNALS —

iid om
Hay bs

tne :

Netle Cede

Voi Deh Lent
USER LEVEL 1 (DEFAULT LEVEL) ~7

PROCESS EXCHANGE



Disc press 1b

PRIMOS REV.

PPA/PLA

Bean- 400
"O01

‘O02

‘60d

"O04

“O09

‘O06

‘607

‘61/7

‘O24

‘G29

‘G26

‘O2/

"630

‘O31

‘O32

‘63g

"634

PRELIMINARY

 

 

    

 

 

 

    
    
 

 

 

 

    
 

 

   

 

 

    

 

 

 

 

 

   

 

     

  

 

 
 

     

19.1 PRIMOS INTERNALS

READY LIS: EXAMPLE #1

LEVEL A PCB A PPB/PLB LEVEL BY PCB

1 BOLO |

EOL 9

1 BOL1 |

EOL 1

} 9 _|
0

BOL 3 |

EOL 3

__PCp

L BOL 7 | Level
EOL 7 Link &

{. BOL 19|

EOL 10 PCB PCB POR

L. BOL tly Level Level Level

EOL il Link Link 0

| BOLizg| ™ ™ " “oO”

EOL 12 POR PCB

| BAIPCE| Level Level

EAEPCE Link
nv / ny ny

4 / PROCESS EXCHANGE



|
PRIMOS REV. 19.1 PRIMOS INTERNALS

To move a PCR from the Ready List to a Wait List, the WAIT

instruction 15 used. The NOTIFY instruction will move a process

from a walt list to the Ready List. Both instructions must always

reference a semaphore or wait list. The NOTIFY removes the first

PCB from the semaphore and places if onto the Ready List at the

proper level. When the process has completed execution or requires

another resource, a WAIT is executed and the process moves from

the Ready List to the specified Wait List or semaphore. PCBs are

placed in the Wait List queve in priority level order.

READY LIST

The firmware dispatcher uses two locations in the High Speed Register

File Group 0, The first location is called PPA/PLA. PPA holds the

pointer to the PCB of the currently running process. PLA contains

the Ready List level of the currently Tunning process. The currently

running process will be the highest priority process on the Ready

List. PPB contains the PCB address of the next process to tun. PLE

has the level of the next process. This allows the User Register set

for the next process to be set up while still running another process

at a higher level.

PRELIMINARY 4 - 4 PROCESS EACHAGE



PRIMOS REV. 19.1

 

  

READY LIST EXAMPLE #2

PRIMUS INTERHALS

 

 

  

 

 

 

    

  

  
 

 

 

 

  

 

 

 

 

 

 

 

 

    

 

 

 

 

> Level a
 

      
  

 

  

 

 

 

PA/PLA LEVEL A} PCB.A |  PPB/PLE fLEVEL B | PCR B |

‘600 | BOLO |
‘601 EOL 9
‘oo2 |BOL 1 |
603 EOL 1
“4 | Oo |
605 0
‘606 | BOL 3 _
‘607 EOL 3

‘bl |
——————> BOL 7 |=

'b17 FOL 7

‘624 | BOL 10-{
‘625 EOL 10 {| 7
‘bah =| BOL les Level oP level
‘ba7—«|_EOL 11 TL Link Link
630 | BOL t2_| Le 7 _
‘631 EOL 12 -
‘632rsfeb +(— Lave
‘633 BKaPCB ee | Link fy 0

:   
PRELIMINARY

   

PROCESS EXCHANGE



PRIMOS REV. 19.1 PRIMUS INTERNALS

The Ready List and the PCBs are all in Segment 4. This 15 one of the

‘wired’ segements of PRIMUS. This means if never gets paged out to

the paging disc. The Ready List begins at Segment 4, address ‘S00 and

extends through address ‘634.

The PCB address and User Number bear a direct relationship to one

another. For eyample; the address for User 1's PCR is 100100. The

address for User 7’s PCB 1s 190700. The PCB at address 101200

belongs to User 10. Addresses are in octal, user numbers are

decimal. All PCBS are 64 ('100) words long so the least significant

two octal digits of any POB address is ‘90,

pcg | oo foo

Ja DER
; 02 Bee

ww,
Px 9 5 gus

yr

PRELIMINARY 4 - 10 PROCESS EACHANGE



 

 

  

 

 

 

    
 

   

 

 

 

 

 

 

 

 

    

 

   

 

 

   

 

 

    

 

 

   

PRIMOS REV. 19.1 PRIMOS INTERNALS

ede READY LIST EXAMPLE #3
. fl }

praeLa ‘sis [77700 | pepere ‘426 ‘100200
Vo, -

chock 600 |BOLO | foie
‘eo. "74600 pace

AMC 602 | BOLL pe .
‘oa [77100 KgAle

gmc 404 | | ns 2+]
05 [oO her gine

mpc 606 «=| BOL 3 Mee, viv
‘oo7 "77200 gee P

. ~ 177700
pisk ‘616 |'77700 | |. ‘al6

‘e17— L'7700 Q

LEVEL 2 ‘624 | BOL 10_]
‘o25 EDL 10 100200 ‘102000 102300

LEVEL 1 ‘626 |‘100200| ‘428 ‘bab ‘bab
‘627 "102300 102000 102300 Q

LeveL 0 '60 | Big] * 8 so °
31 EOL 12 71400 74500

pacKSTOR /4a2 | ‘7b400| *432 ‘b32
A fi 76500 ‘76500 0yw

vot 1434 . » 8 .   
This example shows actual addresses found using VPSD on Rev 18.2

The contents pr PPA/PPB are calculated.

(mm My-o Crd)

PRELIMINARY POA 15 Ce willy es, On PROCESS EXCHANGE



PRIMOS REV. 19. 1 PRIMOS INTERHALS

In Example #3, PLA points to the currently active level (Disk) and PPA

points to the PCB of the currently running process. The Disk Driver

is mow the highest priority process on the Ready List. PLB and PPH

contain the level and PCB address of the next process to Tun. In our

example, the next process happens to be User 2.

A CLOCK interrupt occurs, The interrupting controller places its

address on the CPU bus. The currently funning process 13 suspended

at the completion of the current instruction. The firmware uses the

controller address a5 an index or vector into the interrupt segment

which 15 also segment 4. At this address 15 a pointer to the

Interrupt Response Code (IRC) which handles the interrupts trom this

particular controller. This code 15 not associated with any specific

process and cannot have a PCB of its own. The IRC can do no more

than acknowledge the interrupt and schedule the device driver to

actually handle the event. This code 15 called the PHANTOM INTERRUPT

CODE or PIC. The PIC will acknowledge the interrupt and execute an

INEC (Interrupt Notify to End of list and Clear active interrupt).

For a clock interrupt, the INEC will reference the semaphore CLASEM,

The INEC causes the clock to be scheduled on the READY LIST by moving

the PCB from the Wait List to the appropriate level on the Ready

List. PRIMOS has assigned the Clock the highest priority and all

clock interrupts are placed on the Ready List at address ‘600 or

level 0. If location ‘600 contains a zeTo, the address of the PCW is

placed into location ‘690, If ‘600 15 not zero, the firmware will

access ‘401 and thread the new PCB onto the end of the chain.

PRELIMINARY 4 - ie PROCESS EACRANGE



FRIMGS REV.

PPA/PLA

SEGMENT #4

CLOCK “600

‘O01

‘60¢

"O03

"O04

"B09

‘606

‘O07

‘O16

'61/

DISA

‘G24

‘bed

‘O26

‘G2/

‘630

‘G31

‘632

"O33

‘634

LEVEL ¢

LEVEL 1

LEVEL 9

BACKSTUP

PRELIMINARY

 

 

PRIMOS INTERNALS

 

    
 

 

 

 

 

  
 
 

 

  

 

     

102300
|'e2b|

0
"Y "y

19. |

READY LIST EXAMPLE #4

‘ooo [76400 prevpee | ‘o16. | ‘77700

76600
[74600 |

76600
| pi| 4

77100
tL 9

0
| a3 |
7200

. ~ 177700
|"77700 ts}
| 77700 pg

| Bo. 10|
FOL 10 100200 102000 _

|‘190200| ‘426 ‘42h |
‘yop300 |402000 192300 |

| pig] vos %
FOL 12 74400 76500
eeee

746500 | "76500 og
rr 7

4 - 13 PROCESS EACHANGE



PRIMOS REV. 19. 1 PRIMOS INTERNALS

The NOTIFY instruction causes the firmware dispatcher to update the

contents of PPA and PPR. As the clock interrupt 15 4 higher priority

than that of the currently running process, the contents of PPA/PLA

is moved to PPB/PLB and the Clock’s PCB address and level are placed

into PPA/PLA.

The clock driver will now run to completion. At the completion of

the driver routine a WAIT CLASEM will be executed. This removes the

clock’s PCB from the Ready List, places it on the CLASEM Wait List,

and allows the dispatcher to move PPE/PLB to PPA/PLA and update

PPB/PLE for the next ready process. PPE/PLB is updated by the

dispatcher performing a scan of the Ready List. This is done by

comparing the BUL (Beginning Uf List) and EOL (End OF List) for

this level. If they are not equal, the next process is on the same

level and PPB/PLE are updated. If they are equal, the next word (BOL

for the next level) is checked. If this value is not zero, then the

next process is on this level and PPB/PLB are updated. If BOL 15

repro, there 15 no ready processes on this level and the next lavel’s

BOL will be checked. This procedure will continue until PPB/PLB are

updated with a PCB address and a process’ level.

PRELIMINARY 4 - 14 PROCESS EXCHANGE



PRIMOS REV. 19.1 PRIMOS INTERNALS

READY LIST EXAMPLE #5

 
 

    PPA/PLA [ ‘O16 ‘T7100 PPB/PLE [ ‘B26 (100200
 
 

 

 

 

 

2EGMENT #4
clock ‘400 | oF |

‘601 76400
amc ‘402 | BoLi |

‘603 ‘77100
cmc 404 | oO |

605 0
mpc 406 «| BOL |

‘607 ‘77200   
. ” ‘T7100

DISK ‘615 |77700 ‘616

617) | 77700 0
“ % vy “

 

 

 

 

  

 

    
lever 2 ’624 [ Bol 10|

425 [coc 10 “100200 "102000 102300
eve. 1 426 |‘100200 | [| ‘a2e

427 y02300 [102000 ‘og900 [oo
ever o 630 | BoLiz| v4 uN "

'ozn [gon 2 "7400 76500
aacusTor ‘b32 | ‘7agoo.| | ‘432 432

aaa, 7as00 [76500 |
ea to  

PRELIMINARY 4 - 15 PROCESS EXCHANGE



PRIMOS REV. 191 PRIMUS INTERNALS —

READY LIST EXAMPLE #4

  

      PPA/PLA ‘o26 | 100200 PPE/PLB | ‘hed ‘102000
  

SEGMENT #4
 

 

 

 

  
 

clock ‘400 «| Oo
‘601 “74400

amc ‘402 | BOL. |
‘603 ‘77100

smc 404 «| CO
605 0

mpc ‘406 =6| BOL 3 |
‘607 77200

DISK ‘616 | O°
‘ol7 | ‘77700

ny "y

 

   

  

      

  

 

    

reve. 2624 | Bot 10|
425 EOL 10 ‘100200 ‘102000. =» 102300

LEVEL 1 ‘426 |‘100200| Pn ee
‘sa7 [102300 102000 ‘92300 |g

evel 630 | poi] * v4 v4 .
gt EOL 12 74400 74500

gacugTor ‘432 | ‘76400_| 432
433 7a500 ‘74500 | 0
a4 ; . CG .   

PRELIMINARY 4 - 16 PROCESS EXCHANGE



PRIMOS REV. 19.1 PRIMOS INTERNALS

The process at the head of User Level 1 will now run until it

completes execution, requires another resource, does an 1/0

operation, a fault occurs, or the process’ time slice 15 used up. All

of these conditions cause the PCD to be removed from the Ready List

and placed on the appropriate Walt List. The firmware then

dispatches the next PCR to PPB/PLB.

When a process terminates “normally” (runs to completion), PRIMUS

places the process’ PCB on that User’s BUFSEM Wait List. BUFSEM is

the semaphore the User waits on while entering commands and typing 4%

the terminal.

If a process 15 terminated because of a time-slice end, the process’

PCB is placed on a lower priority queue dependent upon which how much

CP time the process fas used and the User priority level.

PRELIMINARY 4 - j/ PROCESS EACHANGE



PRIMES REV. 19.1 PRIMOS INTERNALS

READY LIST EXAMPLE #7

  

    ppaypLa |. ‘62h A ‘102000 —PPB/PLE ‘bah ‘102300
  

 

 

 

   
 

SEGMENT #4
cLocK ‘400 [| 30 |

"60! 76600
AMLC ‘602 | BOLi |

'403 ‘77100
sac 604 of OQ

‘HOS 0
MPC 6406 «=6| «BOL |

'607 ‘77200

DISK ‘6146 | OF |
'b17 ‘77100   

y ny

LEVEL 2 ‘624 |BOL 10]
 

  

 

    

  

 

       
‘625 EOL 10 102000 102300

LEVEL 1 ‘626 |‘102000| | 426 ‘nah |
‘s27 ‘192900 | 102900| 0 |

LEVEL o 420 |BOLiz] ° vo "
‘631 EDL 12 7400 76500

BACKSTOP ‘632 | ‘7od00| | ‘43¢ 632
693 74500 |_'74500 Q
63d l " yo "
 

PRELIMINARY 4 - 18 PROCESS EXCHANGE



_ PRIMOS REV. 19.1 PRIMOS INTERNALS

~ READY LIST EXAMPLE #8

  

       

 

 

 

   
 

PPA/PLA ‘600 | 74400 PPB/PLB ‘426 "102000

SEGMENT #4 76600
- cock 600 |‘74400 |

‘601 76600 Fg
AML 602 BOL| .

‘603 ‘7100
sac 404 «| Og

- ‘05 Q
mpc | 406 «6BOL

7 's07 "77200

Disk ‘46 | Oo |
- ‘617 |'77700   

%y ™%

LEVEL 2 ‘6¢4 | BOL 10]
 

  

 

 

     

   

  

       

_ ‘O29 EUL 10 102000 102300

LEVEL 1 ‘626 |102000| | ‘626 ‘G26

- ‘62/ 192300 L 1102300 !

LEVEL 9 “620 | BOUL le| ”™ " . "

7 ‘oul EUL 12 ‘76400 ‘76900

_ BACASTOP ‘6g2 | '76400_] ‘63 ‘632

'63¢ ‘76300 (7600 i!

— ‘634 | . . . ”   
PRELIMINARY A - 19 PROCESS EXCHANGE



PRIMOS REV. 19.1 PRIMOS INTERNALS -

READY LIST EXAMPLE #9

  

   PPA/PLA ‘O00 | ‘76600 PPE/PLE [ ‘616 ‘T7790
 

 

  

 

    

SEGMENT #4 T6600
CLOCK ‘400 |‘74600 | ‘600 | -

‘601 74600 0 | ;
amc ‘402 | BOL1 | * ‘

‘603 ‘77100
omc 404 «| Oo

605 0
mpc 406 «=| BOL |

‘607 |'77200
‘ ‘ 77700

Disk ‘416 ‘77700 |hth|
'bi7 ‘77700 -

y % y

 

  

 

   

  

 

   

revel 2 ‘424 | BOL 10]
‘425 BOL 10 192000 192300

evel 1 '626 {| ‘102000| [‘42e
‘4a7— {192300 192300 | 0

‘eve. 0 (430 |Big| * v8 "
‘4gi [EOL 12 76400 74500

pacnsTor ‘432 | '74400_| 1499 | ‘432
433 76500 74500 | 9
‘4h . On :   

PRELIMINARY 4 - PROCESS EXCHANGE



PRIMOS REV. 19.1 PRIMOS INTERNALS

READY LIST EXAMPLE #10

  

      PPA/PLA ‘O16 ‘T7190 PPB/PLE ‘626 192000
  

SEGMENT #4
 

 

 

cock ‘400 | Oo |
‘601 ‘74600

AMLC ‘402 | BOL 1 |
‘603 ‘77100

smc 604 «| OO
‘605 0
 

MPC ‘606 | BOL |
‘607 (77200
 

 

  

 

 

      
  
   

   

 

    

~ 77700
DISK ‘b16 |‘7700 | | ‘até

‘e7 L770 | _

LEVEL 2 ‘624 | BOL 10]
‘oh |_EOL 10 ‘102000 ‘102300

LEVEL 1 ‘626 |‘192000| | ‘424 | ‘426
‘oo7 ‘1023001 | ‘102000} | 0

LEVEL O ‘690 | BLIZf ~*~ ”™ * .
oa) | EOL 12] 76400 ‘74500

BACKSTOP ‘622 | ‘75400 ‘632 ‘32
‘o3g 76500 =| 74500 Q
438 " vo . 

PRELIMINARY 4 - 2 PROCESS EXCHANGE



PRIMOS REV. 19. 1 | PRIMOS INTERNALS |

READY LIST EXAMPLE #11

 
 

     PPA/PLA ‘626 192000 PPE/PLB ‘O26 ‘102300 |
 
 

SEGMENT #4
 

 

 

  

clock ‘600 | o |
‘601 *74400

AMLC '402 | BOLL |
603 ‘77100

omc 404 «| Oo
605 0

mpc 406 «| BOL |
‘07 77200 | 

my Y

DISK ‘Gl 0

'O1/ ‘T7199
™% "

 

 

 
 

 

   

LeveL 2 ‘624 | po to]
‘a5 EOL 10} ©. 192000 102300

eve. 1 ‘626 |‘toz000| | ‘az
‘427 192300 102300 Q

LeveL oO '630 | poLig} y o8 .
‘431 EOL 12 76400 76500

BACKSTOP ‘632 | ‘76400 } | ‘32
‘63a, 76500 | “74500 Foo
‘4d ; sn ,
  

PRELIMINARY 4 - 22 PROCESS EXCHANGE



PRIMOS REY. 19.1 PRIMOS INTERNALS

READY LIST EXAMPLE #12

  

   

 

 

 

 

PPA/PLA ‘2h | ‘102300 | pPavpLB «of‘402 | ‘74400 |

SEGMENT #4
clock ‘400 | o |

‘sot "76600
mmc ‘402 | Bot |

03 77100
sic 404 «| Oo]

405 Q
mpc 606 «| Bo |

‘407 ‘77200   
ty my

DISK ‘O16 1

‘617 ‘T7109
wv yy

 

 

 

  

 

    

eve. 2424 [ po10]
425 [EOL 10 102300

cevel 1 ‘sas |"wo2a00| [4p
‘sa7 “492300 Q

eve. o 690 | poi] * :
“at eo 12 74400 74500

—packsTor ‘632 | ‘76400_| 492 |
633 ‘74500 |‘7es00f | o |
494 ! . v8 .
 

PRELIMINARY Af = 2 PROCESS EXCHANGE



PRIMOS REV 191 PRIMOS INTERNALS -

READY LIST EXAMPLE #13

  

  ppavpla [| ‘432 |‘76400 | pppvea [ ‘sae | ‘7opag®
 

 

 

 

 

SEGMENT #4
cock ‘400 | oo |

‘01 [76400
auc ‘602 | BOL |

603 77100
sc 404 «| Ol]

‘405 0
mpc 404 «| BOL |

‘607 |'77200   
ny %

DISK “616 — 0

'O1/ ‘T71Q0
% y

LEVEL 2 ‘424 |BOL 10]
'o25 EOL 10

LEVEL 1 ‘626 | OF |
‘627 102300

LEVEL 0 ‘430 |BOL 12]

 

 

 

 

 

‘og1 EOL 12 74400 76500
BACKSTOP ‘632 | ‘7600 | | ‘sae

633 [75500 74500
‘bad 1 ry my my ry   

PRELIMINARY A - dh PROCESS EXCHANGE



PRIMOS REV. 19.1 PRIMOS [NTERMALS

The BACKSTOP processes PCBs are ALWAYS On the Ready List. he

purpose of BACASTOP is to call the SCHEDULER. The SCHEDULER is used

to move any process which has taken a time-slice end or is on the

'HI-PRI’ queve to Ready List with another time-slice. There are two

BACKSTOPS as the P8o0 requires one BACKSTOP for each CP. a)

PRELIMINARY 4 - 25 PROCESS EXCHANGE



PRIMOS REV. 19.1 PRIMOS INTERNALS

SE OF LOCK SEMAPHURES - Simple Lock

 

  

 DATA

Two processes are sharing the same data area, Process A could be

changing data at the same time as Process Bis reading the data,

B may Tead incorrect data.

To pravent this, use a Simple Lock Semaphore (initial count = -1).

In order to access the data

Process A must wait on the semaphore (count = 9)

Process A proceeds

If Process B attempts to access the data if must first wait on

the semaphore. (count = 1)
Process B goes onto the Wait List for that semaphore

Process A must NOTIFY the semaphore. (count = 9)

Process B returns to the Ready List and proceeds

All processes that access the data must first WAIT on the semaphore

and NOTIFY the semaphore when access 15 completed.

PRELIMINARY 4 - 26 PROUESS EACRAHGE



PRIMOS REV. 19.1 , PRIMOS INTERHALS

USE OF LOCK SEMAPHORES ~- Ordered Locks

 

SEMAPHORE

—Cua:+
A 3

 

L SEMAPHORE

| DATA ¢ —

Two processes are sharing two data areas.

 
EhPireres

If using simple locks: ne

Process A WAIT on semaphore 1 U4 nhate
64 spud

Process B WAIT on Semaphore 2

Process B WAIT on semaphore |

Process A WAIT on semaphore 2

A "Deadly Embrace” situation will be the result.

To avoid the "Deadly Embrace", it 15 vital that all processes that

share data areas order their locks. The WAITS on the various

semaphores must occur in the same order for each process.

Process A WAIT on semaphore | Process B WAIT on semaphore |

Process A WAIT on semaphore 2 Process B WAIT on semaphore 2

Process A NOTIFY semaphore 1 Process B NOTIFY semaphore |

Process A NOTIFY semaphore 2 Process B NOTIFY semaphore 2

PRELIMINARY 4 - 2/ PROCESS EACRANGE





PRIMOS REV. 19.1 PRIMOS [NTEABALS

section 3 - Traps, Interrupts, Faults and Checks

PRELIMINARY 3 - | TRAPS, INTERRUPTS, FAULTS, CHECKS



PRIMOS REV. 19.1 PRIMOS [NTERMALS

There ate 3 categories of software breaks in program execution:

1). INTERRUPTS

2}. FAULTS Brees Un Execution

3). CHECKS

7IRAP refers to a break in eyecution on the microcode level. TRAPS

x.
Dmg

Can Occur for many reasons, some of which may directly or indirectly

cause breaks in software eavyecution. Not all software breaks are a

result of a TRAP. |

1). INTERRUPT (External Interrupt)

A Signal] has been received from a device in the external world

(including clocks) indicating that the device either requires service

or has completed an operation.

  

2), FAULT
A FAULT is a condition which has been d@facted as a result of the -

currently running softwareand which requires software intervention.

A FAULT may be handled by the currant software though most frequently

common supervisor code will handle the FAULT (6.9. Page Fault).

3). CHECK
A CHECK is an internalCPconsistencyproblem that requires software
intervention. The problem may be an integrity violation, reterence to

a fon-existent memory module or a power failure.

PRELIMINARY 9 ~ @ TRAPS, INTERRUPTS, FAULTS, CHECAS



PRIMOS REV. 19.1 pI¢c- Plum Pr Interrupt ms PRIMOS [NTERMALS

(Seq Y Us Lntervregt Spm

EATERMAL INTERRUPTS
 

When an EXTERNAL INTERRUPT is generated by a controcler, the

controller places a 16 bit interrupt vector address onto the bus.

This address 15 used a5 an index into the interrupt segement (Seq 4)

Segment 415 "wired memory” and will, therefore, always be present

in physical memory. The PB and Keys até saved in the microcode

scratch registers PSWPB and PSWKEYS.

Further interrupts are then inhibited and the Interruot Response Code

(IRC) begins execution in 64V mode. [i 15 the responsibility of the

IRC to issue a CAL (Clear Active Interrupt) to the interrupting

controller.

The IRC 15 Segment 4 does not belong tO any specific process and has

no PCB assigned to it. As it has no PCB, the IRC cannot save its

registers and context. Clearly, there 1s little the IRC can do. [tf

returns to PROCESS EXCHANGE as quickly 35 possible. [he IRC 1s

generally referred fo as the PIC (Phantom Interrupt Code).

The PIC must perform one of two operations:

1). If the interrupt is very simple, the PIC will handle the

interrupt

2). in the case of 4 more complex handling routine, PIC will

reset the interrupt and NOTIFY the remainder of the PIC.

PRELIMINARY 9 - 3 TRAPS, INTERRUPTS, PAULIS, CAECKS



PRIMGS REV. 19.1 PRIMUS INTERNALS

1}, Simple Case

The IRIN (Interrupt Return) will be executed. This will restore the

Po and KEYS and enter the dispatcher.

2}, NOTIFY IRC Case

In order to NOTIFY a process, PIC must ensure that the PB and KEYS

are restored before issuing the NOTIFY. The INQUIFY instruction will

do both the restore and the Notify.

Thera are two ways by which the PIC can issue a CAT.

1). CAI instruction

2). Set bit 15 of the IRTM/INOTIFY instruction.

In practice, the PIC combines all of the above steps with a singls

instruction INEC.

PRELIMINARY 9 - 4 TRAPS, INTERRUPTS, FAULTS, CHECKS



PRIMOS REV. 19.1 PRIMO C
¥
} INTERNALS

CLOCK INTERRUPTS (on UCP)
Most current Prime systems use a device called the Programable

Interval Clock (PIC). The PIC is a counter that 15 initialized ar

loaded by system software and once it 15 loaded it counts up at a

pate of g.2 us. until it overflows. The overflow 15 used fo generate

an interrupt via location ‘63 to wake up the clock interrupt handler

(and hence the clock process). The counter is located on the

controlller itself and can be counted independently of CPU operation.

The PIC counter is initialized at cold start to a -747.

947 # 3.2 us. = 3.0303 ms.

After the PIC counts up 947 times af a 3.2 us. rate 1f overflows and

generates an interrrupt via location ‘63 at 4 3.0303 ms. rate, The

PIC need only be preset once, thereafter 1f will reinitialize itsely

to a ~947 after each time it overflows.

Earlier systems used a hardware controller called an Option A

instead of a Diagnostic Processor (DP), system Option Controller

(S0C), om Virtual Control Panel (VCP). The Option A board contains 4

Real Time Clock (RTC) which depends on the CPU to increment a memory

location, which results in greater CPU overhead.

PRELIMINARY 9 - 9 TRAPS, INTERRUPTS, FAULTS, CHECKS



PRIMOS REV. 19. 1 PRIMOS INTERNALS

FAULTS

FAULTS are CPU events which are synchronous with and caused by

software. Prepare Cuaugedt tye Fy stop

Two data areas are used:

1). PCB FAULT VECTORS and concealed stack pointers

2). the FAULT TABLEs pointed to by the PCB vectors, eas,
Therefore each process can define its own fault handlers and the

concealed stack allow FAULTS to be stacked. The PAGE FAULT has its

Own vector and only one system-wide handler is used so all PAGE FAULT

vectors point to the same place.

Each FAULT TABLE entry consists of 4 words, of which the first 3 must

be a CALF instruction. The CALF (CAL] Fault) instruction 15

essentially a PCL (Procedure CaLl) instruction for the various Fault

handling routines. The PB and KEYS from the concealed stack are

placed in the Fault Handler’s stack frame along with other base

registers. The Fault Code and Fault Address are placed in words

‘t2,/13, ‘14 of the Fault Handlar’s stack. The first word of the

new stack frame 15 set to a value of 1. [his 15 to distinguish the

CALF stack frame from the normal PCL stack frame. [he ECB (entry

Control Block) addressed by the CALF must not specify any arguments.

Return from the fault handler is by normal PRIN instruction.

PRELIMINARY 9 - & TRAPS, INTERRUPTS, FAULTS, CHECKS



PRIMOS REY. 1%. |

 

PRIMOS INTERNAL x
2

 

 

 

 

 

 

 

 

 

 

 

        
 

veiyek,Hat

FAULT PROCESSING pres’ fonett aaHdler
PLeederwtptBased i ee

foCY VEDPh ’ >

TYPE OFESET RING SAV FCODE ~ FApDR
RESTRICTED | oO cuRRENT BACKED _ _-
INSTRUCTION
PROCESS 4 0 current agory --

FLAGS
PAGE 10 i BACKED -- ADDRESS

fave Fessiclad 14 CURRENT CURRENT _ _-
UNIMPLEMENTED| 20 current packeD CURRENT P EFF ADDRESS
{NSTRUCTION COUNTER
ILLEGAL 40 curRENT packeD cuRRENT P EFF ADDRESS
INSTRUCTION COUNTER
ACCESS,Tenu,)| 44 0 BACKED _- ADDRESS
VIOLATION
ARITHMETIC 50 CURRENT CURRENT EXCEPTION  OPERAND
EXCEPTION CODE ADDRESS
STACK 7 Q BACKED _- LAST STACK
OVERFLOM SEGMENT
SEGMENT- 40 Q BACKED # too large ADDRESS

CprBuy [ooobaeRau lt Bit
POINTER 44 CURRENT BACKED PTR ist ADDRESS OF

wor PTR

PRELIMINARY 5 - 7 TRAPS, INTERRUPTS, FAULTS, CHECKS



PRIMGS INTERNALSPRIMOS REV. 19.1

 

  

 

  

 

 

 

 

 

 

 
 
  

 

   
 

  
  

:
—
—
—
>

N
N

c
r

=
o

C
w

.
a

wadva
a
r

<2
C
T
,

cry
qdoj4

a
w

7wadVva
=

|
|

AGODA
a

Shay
|

,
S
A
W

i
l
d

|
4

a
|

a
.

oe
|

pe
T
=

SOVId
—
—

"16
=

LSV'l
on

LXSIN
OL.

-
LSutl

oe
U
O
L
I
T
A
_
L
I
N
V
A

W9Vd
€

Y
O
L
I
T
A

L
I
N
V
A

OG
 

 

 

C
H
A
U
A
S
T
U

T
T
O
L
I
A
A
  

 

|

t
o
y
s
o
m
y

q9g
7

|
raef

F
q
v
o

sy
m
a
g
n

my
aywh

1
0
9

|
OZ,

.
y
e
e
o
v

UA
TUNVII<—]-
L
T
V

  

 

 

 

 
 

 
  

 
 

 
 

 

 

 

A
T
G
V
L

L
I
N
V
E

|
q
d

£
O
N
I
U

(¢
d
u
r
y

u
r

y
r
q

3
a
)

p
p
L
U
t
y
m
e

p
e
e
p
t
e
r
s
e
s
r
v
ao
e
o
r
m

L
v

e
l
y

e
A
L
S
E
S

‘

PRELIMINARY

 



PRIMGS REV. 19.1 PRIMOS INTERNALS

ACTION ON FAULT

1). Create an entry in the Concealed Stack (Firmware).

2}. Transfer control to the Fault Table at the correct offset, in 64V

Mode, with interrupts enabled.

3). Execute the Fault Handling routine a5 a part of the current

process. The entry in the Fault Table will a CALF instruction.

This creates a Stack Frama and transfers the Fault Code and Fault

Address into this Stack Frame, The Fault Handling routine

(software) is now called.

4), The Fault Handling routines executes a Procedure Return to exit

the Fault processing and resume “normal” program execution.

REFALT A pry pred Oy me Airngen 07

Ln Lust f45f prt - ff "Sgoe vedbl

t). Mechanism for deferring faults until the return fron ‘Ege i

2), REFALT modifies the return (PB) in a stack frame and pushes a

frame in the concealed stack so that a simulated fault may oe

taken when leaving POFSTH.

PRELIMINARY 2 — 9 TRAPS, INTERRUPTS, FAULTS, CHECKS



PRIMUS REV. 19.1 PRIMOS INTERNALS

CHECKS

A CHECK 16 4 CPU event which 15 asynchronous with and not caused by

normal instruction execution. CHECKS can most easily be classified

a5 some sort of hardware physical failure.

There are four types of CHECKS:

 

CHECK HEADER LOC FIRST INSTRUCTION DSW

OF HANDLER ia

Power Failure 4/7200 4/'204 | Ho

Memory Parity 4/270 4/ 27g Single Fite,
Machine Check  4/'300 Ay 90g -ey ™ 4 OS yg,
Missing Memory  4/°310 4/14 Yes

Each CHECK class has a single save area consisting of 9 words in the

interrupt segment: in which the PB and KEYS are saved in the first 4

locations and the remaining 4 locations Contain software codes.

Three ge bit registers are used as a Diagnostic Status Word (DSW) to

help a software Check Handler determine the cause of the CHECK.

Check Handling software has the responsibility of clearing the

DSW after every CHECK,

Pvtet bog$e ~ TyAvsfer L “fees Les A CBee ’ ~

pop files Noa,

PRELIMINARY 9 - 10 TRAPS, INTERRUPTS, FAULTS, CHECH! c
r



PRIMOS REV. 19. 1 PRIMUS [NTERMALS

Section 6 - System Initialization

PRELIMINARY 6 - | SYSTEM INITIALIZATION



PRIMGS REV. 19.1 PRIMOQS [ATERMALS

SYSTEM INITIALIZATION

PRIMOS 15 initiated trom PRIMUS I] by atteching to the UFD PRIRUN

(Normally found on the command disk) and resuming PRIMOS. The routine

PRMLD. FIN is then entered and the following actions are performed:

1). Attach fo CMDNCO and open the fileo-PRMO for command input.

2), If the file is not found, output theTesesae (fe-020)
‘PLEASE ENTER CONFIG’ and return to console input. {OLD STYLE)

3). Read in the first command from the file ot Tead the

command from the console.

4). If the first command is not a CONFIG, output the message
‘FIRST COMMAND MUST BE CONFIG’ and return to the

messagé in 2).

3). Close the (PRMO file and proceed with configuration.

Configuration,

NEW STYLE CONFIGURATION

1). Open CONFIG data area

2). Read in commands and check legality,

3). When ‘GO’ command is inputted, close data file and proceed

a5 "OLD STYLE CONFIGURATION" from step 1),

4) Jf mo ‘GD’ 15 inputted and the end of file 1s reached,

output the message ‘MISSING G0’.

PRELIMINARY 6 - @ SYSTEM INITIALIZATION



PRIMOS REV. 19.1 PRIMOS INTERNALS

OLD STYLE CONFIGURATION

1). Check, configura, and start-up the main and alternative

paging devices (if applicable).

2}. If the device 1s illegal, output the massage ‘ILLEGAL PAGDEYV’.

3), If the device contains normal file formats rather than paging

formats, output the message ‘USE DISK FOR PAGING’. & ‘YES’

or ‘NO’ answer must be given. THINK TWICE OR THRICE BEFORE

ANSWERING ‘YES’. BY ANSWERING ‘YES’ THE SURFACE IS MADE INTO

A PAGING SURFACE AND ALL FILE DATA IS DESTROYED AND LOST.

4), Check, configure and start-up the command device,

a). If the device is illegal, output the message ‘ILLEGAL COMDEV’.

5). Check the paging devices for split disk. If the name 15

‘PAGING’, it can contain a ‘BAUSPT’ file.

7), Read in the page maps from #COLUs.

d). If there is a BADSPT file, adjust the page maps accordingly.

9). Pre-page all PRXXXX files as necessary.

10). Resume #COLDS.

 

There are tuo possible entry points to the system:

1). COLD START - enter at SEG ‘14 ‘a000

2). WARM START - enter at SEG ‘14 ‘1000.

PRELIMINARY 6 - 4d SYSTEM (NITIALTZAT ICM



PRIMOS REV. 19.1 PRIMOS [NTERMALS

GOLDSTART

1). Enter 64V mode.

2), Set up CPU model number, u-cod@ Tevision number, and write

PRIMOS version into LOGBUF.

3), Set up controls for OPTION A or SOC 1s ASRDIM, -

4). perform memory scan to $1z@ memory, check parity, and

Find bad pages.

Invalidate the STLB.

. Clear the DSW.

, Set up the interrupt processes PCBs.

Set up and start the clock.

Enter PROCESS EXCHANGE mode.

), Set up Stack Base Register for USER 1.

). Call AINIT.

O
-

c
n

“
O
o

o
O

—
-
l

B
a
e
e
e
e

|

1

PRELIMINARY 6b - 4 SYSTEM INITIALIZATION



PRIMOS REV. 19.1 PRIMOQS [NTERMALS

AINIT

1), Turn off input from system console until 1/0 buffers

are configured,

), Set up system console baud rate if necessary.

}, Print the system ID and memory 5178.

), Set up ‘MAXSCH’ based on available memory.

). Checx that ‘CONFIG’ information 1s available.

). Check NUSR, PAGDEY, COMDEV, MAAPAG, ALTDEV, NAMLC,

NPUSR, NRUSR, and SMLC.

), Set up PAGREL for PAGDEY and ALTDEY (split disks only).

), Unlock pages not needed for MMAP and adjust page maps.

). Allow PAGE FAULTs.

). Initialize USRCOMs.

), Set login name for USER 1.

). Attach to CMDNCO.

), Establish terminal buffers for configured lines.

), Call CINIT to process CONFIG commands.
), Allow input from system console.

), Initialize and wire PCBs for configured USERS 2 and up.

). Calculate NSEG as follows:

A). Seqments that will fit into specified paging space.

G). Specified NSEO command.

C). Default NSEG setting (Pre-Rev. 18).

PRELIMINARY 6 - 39 SYSTEM INITIALIZATION



PRIMOS REV. 19.1 PRIMO [MTERHALS

AINIT - continued

16). Initialize DIAR2 and DIARS for users.

19). Set page maps for RINGO Stacks. -

e%). Invalidate all except first two pages.

ol). Set up templates for USER’s PUDCOM and RING 9 Stacks.

ce}. Set up PUDCOM and USRCOM for configured users.

23). Lock network code if networks configured.

24). Lock SMLC driver if configured.

co). Initialize ECBs in Gate (Seqment 9).

26). Initialize USER priority level.

27). Open CPRMO if found, and skip the first -

executable statement.

2g). Turn on AMLC and networks (1f configured).

29), Calculate and print wited memory if WIRMEM

directive is found.

30). Print message ‘PLEASE ENTER DATE’.

31}. Call FATALS to exit command for USER 1.

Once the date and time have been entered by the SE command, USERS

may LOGIN. The form of the SE command 15: SE -MMDDYY ~HHMM.

ge). Process other commands in ¢PRAQ

PRELIMINARY 6b - & SYSTEM INITIALIZATION



PRIMOS REV. 19.1 PRIMGS INTERNALS

1).

e),

3).

4),

WARM START

Enter 44V mode.

Set up DIARS, Link Base, and enter Segemented Mode.

Initialize IOQTLB.

Save registers on interrupted VBSER,

MOTE: WARM START cannot be done if no registers have

heen saved. If this is the case, HALT.

. LOG if power fail.

. Move Tegisters from save area to PCBs.

, Correct PB/KEYS for process that was running. [his

15 necessary if the HALT was in Phantom Interrupt Code

ar after a Machine Check.

. Reset PCBS for device driver processes.

, Initialize various flags and control registers far

device controllers and device drivers.

. Reset USER 1 Stack; reset Clock; and enter PROCESS

EXCHANGE made.
. Handle UPS (Uniterruptable Power Supply) if present.

. Log WARM START in LOGBUF.

, Reset critical state variables and semaphores.

, NOTIFY DSKSEM 1f user waiting.

_ Set WARMALM for USER 1. Other USERS should continue

normally.

. Exit into clock process.

PRELIMINARY 5 - / SYSTEM [NITLALIZAT LUN





PRIMUS REV. 19. 1 FRIMGS INTERNALS

Section / - Condition Mechanism

PRELIMINARY fr | CONDITION MECHANISM



PRIMGS REV. 19.1 PRIMQS INTERNALS

Farelts Signal Cmddows contron MECHANTSN
Conds wort Tt ty stuck

MOTIVATION

system software error handling

manage reentrant/recursive command environment

user program error (and avent} handling

support ANSI PL/I condition machanisn _

IMPLEMENTATION

extended stack header

on-unit descriptor block (on stack!

condition frama header (on stack}

faulf frame header (on stack?

~ 3 CONDITION MECHANISMPRELIMINARY ‘o
ra



PRIMOS REV. 19. 1 PRIMOS INTERNALS

CONDITION MECHANISM-derini tions

CONDITION - unscheduledevant (iHAOus)

ON-UNIT - 4 procedure to handle an event

SIGNAL - telling the world the event happened

RAISE “ procedure which searches the stack for the ON-UNIT

CRAWL = procedure which switches from inner ting to ring 3 stack

(erty Rog vt Log 3)

MAKE ON-UNIT - turn on event handler for this activation

REVERT ON-UNIT - turn off event handler for this activation

NON-LOCAL-GOTO - a goto to a predefined label not i this activation
(-GoTo  ftrvmsfas it fo RUS

DEFAULT UN-UNIT ~ One example of System use of condition mech.

PRELIMINARY 7 - 3 CONDITION MECHANISM



PRIMGS REV. 19.1 PRIMGS INTERNALS

ok. e) seq sleep

This 15 SLEEP. FIN: going to sleep for one minute /* notmal

This 1s SLEEP. FIN, finished sleeping, exiting fe execution

Ok. @: Seq sleep

This 1§ SLEEP. FIN, going to sleep for one minute é* control P

fe Tyoed

QUIT.

ok.e, dmstx -all -onunits

Backward trace of stack from frame 1 at 4002(3)/ 7/642.

STACK SEGMENT [S &002. -

(1) O07642: Duner= (LB= 13(0)/13dé2).

Called from 13(3)/101525; returns to (303) /10t5a1.

(2) 006564: Quner= (LB= 13(0)/103240).

Called from 13(3)/100723) returns to lsd) /ldoyey.

(3) O@4S3¢0: Qunear= (LB= 13(0)/10G240).

Called from 13(3)/10284) returns to [3(4)/10884

PRELIMINARY y- 4 CONDITION MECHANISM



PRIMGS REV. 19.1

(4) O0U5/6: QGuner= (LB= 13(0)/13062).

Callad from 13(3}/2/17) paturns to 13(G)/2791.

Gnunit for "CLEANUPS" 16 13(3)/14063.

Gnunit for “STOPS" is 13(3)/13663.

Gnunit for “SUBSYSERRS" 1s 13(3)/13702.

) OO260: Guner= (LB= 13(0)/3700),

Called from 13(3)/75554) paturns to 1303) /79962.

Gnunit for "CLEANUPS" is 13(3) /4432.

Gnunit for “ANY$" is 13(3)/704d6.

Gnunit for “LISTENERORDERS" is 13(3)/44/72.

Gnunit for “SETRCS" is 13(3)/4452.

Gnunit for “REENTERS" 18 13(3)/4312.

003234: Quner= (L8= 13(0)/75172).

Called from 1303) /353464) peturns to 1309) /98s66.

002544: Quner=  (LB= 13(0)/97774).

Callad fram 13(3)/45217; peturns to 13(3) /4e23.

) 002444: Duner= (LB= 13(0)/44734).

Callad from 18(3)/4d267; paturns to L3(3)}/44se0l.

PRELIMINARY fo- 3

FRIMGS INTERNALS

P& LISTEN

é% COMLVS

PS DFOUNIT_

f% RAISE

CONDITION MECHANISM



-
PRIMGS REV. 19.1 PRIMUS INTERNALS

(9) QO2316: CONDITION FRAME for “QUITS"; returns te [3(3)/51247.

Condition raised at 6(0)/3433) LB= é(Q}/ag14, Kays= 014000

(Crawlour to 4001(3)/1043; LB= 4002(0)/177400.}

Inner ping fault: type “PRUCESS" (4); code= Q00Z00: addr= O(0}/Q =~

Registers at time or fault in inner ring:

Save Nask= 000000; XB 6(0)/1372
eo 00 0 Glo 0.

LOR? 00 OEGR3 0 0 0
pea 0 Ov Od 0 0
cee OXGR7 0 0 0

FARO 0(0)/0 FLRO Q FRO 0. 00000000E 00
FAR! 010) /0 FLAY Q FRI 0. O0000000E 00

(10) Q02114: Quner= (LB= 1370) /50840), (* CRFIM
Called from $001(3)/1043; returns to 4001(3)/1043.

STACK SEGNENT IS 4001. /* control P typed here

(11) QO1174: Ouner= (LB= 4002(0)/177400). /# SLEEP. FTN
Called from 4000(3)/54547; paturns te 4000(3)/34351.

PRELIMINARY fo- CONDITION MECHANISM —



FRIMGS REV. 19.1 FRINGS INTERNALS

STACK SEGMENT IS 4000.

(12) 150062: Guner= (LB= 4000(0)/54234). f* SEG (VRUNIT)

Called from 400003) /1723) returns ta 4000(3)/1725.

Proceed to this activation 1s prohibited.

(13) 190012: Quner= (LB= 4000(0)/5130). /* SEG (MAIN)

Called from 4000(3)/1100; paturns to 4000(3)/1102

Ununit for "CLEANUPS" is 4000(3)/57340.

(14) 150000: Guner= (LB= 4002(0)/177400). /* invalid frame

Called from Q(0)/177776) returns to O10} /0. /S set up by SEG

PRELIMINARY f- 7 CONDITION MECHANISM



PRIMOS REV. 19.1

STACK SEGMENT IS 4002.

(19) Q01632: Uuner=  (LB= 19(9) /31260).

Called from 13(3)/12610; peturns to iota) /ifage.

Ununit for “CLEANUPS$" 1s 13(3)/31743.

Gnunit for “ANYS" 1s 13(3)/31729.

(16) 001472: Quner= (LB= 13(0)/13062).

Called fram 13(3)/11632) peturns to 1303) /11436.

(17) Q0G730: Quner= (LB= 13(0)/13062).

Callad from 13(3)/2717i returns te 1303) /2731.

Gnunit for "CLEANUPS" 1s 13(3)/14083.

Gnunit for "STOPS" is 13(3)/13663.

Gnunit for “SUBSYSERRS" 1s 1G(3)/13703.

(18) Q00432: Quner= (LB= 13(0)/3700).

FRIMNGS INTERNALS

/% INVASM_

tu S

poreSét

#* STDSCP
C Suaurnd

CAM

/% LISTEN

Called from 13(3)/142374; returns to 13(3)/142400,. Cant g~

Ununit for "CLEANUPS" 1s 13(3)/4432.

Gnunit For “ANY$" is 13(3)/70446.

Gnumit for “LISTENERORDERS" 1s 13(3)/4472.

Gnunit for “SETRCS" is 13(3) /4452.

GQnunit far “REENTERS" is 13(3)/4812

(19) O00424: Quner= (LB= 13(0)/142014).

Called from O(0)/142374) returns to O10) /0.

PRELIMINARY fo- 8

uu |

(ee)
4

M _/% INF

CONDITION MECHANISM



PRIMGS REV. 19.1 PRIMOS INTERNALS

The condition mechanism 1s activated whenever a condition 15 raised

by the PL/I <SIGNAL STATEMENT? or by a call to SIGNLE or SGNLSF. It

scans the stack Dackwards In sequence until an activation 15 found

with an on-unit the condition or for ANYS is found.

POSSIBLE ACTIUNS GF AN QN-UNIT

1), Perform application specific tasks (e.g. closing

files, updating files).

c}, Repair cause of condition and resume execution.

3}. Decide that the normal flow can be interrupted

and the program re-entered at a known point by

performing a non-local GOTO to some previously

defined label.

4}. Signal another condition.

Q}. Transfer user to command level.

4} Continue the search for more on-units.

7}, Run diagnostic routines.

PRELIMINARY fo- Y CONDITION MECHANISM



PRIMGS REV. 19.1 FRIMNGS INTERNALS

CONDITIONS

1}, A name (Up to dé characters).

ec). Machine state at the time the condition occured.

3}, Auxiliary information (e.g. file control olock af PLAT I/U

condition}.

4}, Continue switch (continue to signal)

3). Return switch (on-unit may return) -

6}, Inaction switch (on-unit may return without taking any action)

GN-UNIT

1}. Name of condition fo be handled.

}), A pointer to the procedure to handle the condition.

3}. Reverted switch (the on-unit is no longer active if set)

}, Specifier (set if more than the condition name is required

fo completely describe the condition)

Sh. Specifier pointer (to file descripter if required)

PRELIMINARY fo- 10 CONDITION MECHANISM —



PRIMUS REV. 190] FRINUS INTERNALS -

30

100

110

1000

1010

CLEANUP. FIN

EXTERNAL BRAHDLR

INTEGER DUMMY

REALS8 BRARTN

COMMON /BRALBL/ BRKRTN

LOGICAL? MAINBK

COMMON #BRACOM/ MAINE

MAINBK = . FALSE. /*% BREDLR NOT YET ENTERED

CALL MKONSF ( ‘QUITS’, 93, BRHDLR} /# MAKE ON-UNIT FOR MAIN

CALL MKLBSF ($1000, BRARTN) f* LABEL FOR NON-LOCAL GOTO

PRINT 10

FORMAT (“Entering MAIN after invocation trom Seo')

PRINT 20

FORMAT (‘Type SRETURND to call SUBA, <BREAKS to test on-unit’)

READ (1,29) BUNNY

FORMAT (Az)

IF (MAINBK) GOTO 100

CALL SUBA

PRINT 30

FORMAT (‘Returned te MAIN normally from SUDA‘)

CALL EXIT

PRINT 110

FORMAT (‘Returned to MAIN from BAHDLR‘)

CALL EXIT

PRINT 1010

FORMAT (“Returned to MAIN via NON-LUCAL go to’)

CALL EXIT

END

PRELIMINARY foe CONDITION MECHANISM



PRISUO REV. iF PR INUO LNTERNALO |

SUBROUTINE SUBA

PRINT 10

10 FORMAT (‘Entering SUBA called by MAIN, call SUBB*)

CALL SUBB

PRINT 20

c0) FORMAT (‘Returned to SUBA normally from SUBB’

RETURN

END

SUBROUTINE SUBB

EXTERNAL HDLRB

CALL MAONSF (‘QUITS 5, HDLRB}

PRINT 10

10 FORMAT (Entering SUBB called by SUBA, call SUBC’)

CALL SUBC

PRINT 20

20 FORMAT ("Returned to SUBB normally from SUBC*)

RETURN

END -

SUBROUTINE SUBC

INTEGER DUMMY
EXTERNAL CLEDLR

CALL MKONSF ( ‘CLEANUPS’, 8, CLHDLR)

PRINT 10

10 FORMAT (‘Entering SUBC called by SUBBY)

PRINT 20

2) FORMAT (“Type SRETURND to EXIT, SBREAK? to test on-unit’)

READ (1,29) DUMMY

23 FORMAT (A2)

PRINT 30

SQ FORMAT (‘SUBC exiting normally’)

RETURN

PRELIMINARY ?o- if CONDITION MECHANISM —



PRIMUS REV. TS t - FRINUS INTERNALSee
e

CUNDITIUN MECHANISM--CLEANUP. FIN.

SUBROUTINE BKHDLR (PNTR)

INTEGERS4 PNTR

LOGICALS! MAINBK

COMMON /BRKCOM/ MAINBK

CALL TNGUC‘BRKHDLR called by condition QUITS, return’, 40)

PAUSE I /* needed since [/U on return

MAINBK = . TRUE. /* BRHDLR now antered

RETURN

END

SUBROUTINE HDLRB (PNTR)

INTEGERS4 PNTR

REAL#8 BRARTN

COMMON /BRELBL/ BRARTN

PRINT 10

10 FORMAT (‘Entering HDLRB called by condition QUITS, call PLISNL‘)

CALL PLISNL (BRKRTN)

RETURN

END

SUBROUTINE CLHDLR (PNTR)

INTEGER#4 PNTR

PRINT 10

10 FORMAT (‘Entering CLHDLR called by condition CLEANUPS, return’)

RETURN
END

PRELIMINARY f- 1 CONDITION MECHANISM



PRU MOV. LF. . PRU INI CRNALO

 

  

 oo MAIN = QUITS b-—cl ARITHS ~
{

: f a
|
rar SUB_A mtr 7---

      

 

 

 

-> SUB_B — QUITS
   

    
I
|

|

|

|

|

|

|

|

|

|

|
J.

|

|
[

ce SUB_C

|

{
| On-unit Information Blocks =

- —~ Stock Frames _

MAKING ON-UNITS

PRELIMINARY 7 = 14 CONDITION MECHANISM



PRIMUS REV. 19.4

“—- —Condition Frome

PRELIMINARY

 

 

   
 

 

 

 

 

   
 

 

- —S

    
 

PRIMUS INTERNALS

 

   

 

   

MAIN QUITS

ECB
>]BRKHDLR

SUB_A

SUB_B ‘QUITS

ECE

$<HDLR_B

SUB_C

SIGNL$

HDLR_B

“SIGNALING A CONDITION |

15 CANDITTAN MECHANTSM



PRINUO MEV. LF.

 

PAUUA INI CRWALO

 

 

  
 

 

 

 

 

 
 

 
 

 

  
 

 

    

 

MAIN = QuITs

SUB_A

Target
Activation- --—--—- —- SUB_B = QUuIT$

PB = Targets ----L SUB_C

PB = ADDR CPRTNJ- — SIGNL$%

Pg = ADDR CPRTINI-~—- HDLR_B

PB = ADDR (PRTNI- —aan

UNWIND_

NONLOCAL GOTO

PRELIMINARY 7 - 16

ntHOLR_6B

ECB

   

CONDITION MECHANISM



PRIMUS REV. 19.1

PRELIMINARY

 

MAIN

 

= Quits 

   
 

SUB_A

 

SUB_B

 

= QUITS 

 

  SUB_C

 

m CLEANUPS    
 

7
SIGNL$

 

PRIMUS INTERNALS

 

 

 

y HDLR_6

 

y
PL1$NL

 

UNWIND_
  CLNHDLR   

CLEANUP

ae

 

ECB
CLNHDLR

  

Ma — UNWIND. Signals CLEANUPS.

CONDITION MECHANTSM



PRIMUS REV. 19.1 | . PRIMUS INTERNALS

 

 

 

 

     

 

 

 

 

    
  

   
    
 

 

   
 

VSLLLLLLML

A LISTEN. f—=| anys
) Y
VIPSLLLehhh

MAIN S| REENTERS
ECB

[iRENHDLR

SUB_A

SIGNALS

TILLLLLLLLLA

y) LISTEN_ haa — ~ REN Command Signals

y) STITTIZIZIZLE
REENTERS Condition.

7

RENHDLR
/

   

SUBSYSTEM REENTRY

PRELIMINARY io- TR CONDTTTAN MECHANTSM



PRIMUS REV. 19.1 PRIMUS INTERNALS

CRAWLUUT

Crawlout occurs when the end of an inner ring stack has been reached

by the condition mechanism without handling the condition.

Control always orginates in an outer ring, the end of an inner ring

stack 18 threaded to an outer ring stack. The condition mechanism

continues the stack search across the connection and back down the

Quter ring stack. Crawlout is the mechanism which copies the

information describing the condition to the outer ring and resignals.

When RAISE reaches the end of the inner Ting stack; if returns to

SIGNLS with the CRAWLOUTNEEDED flag set, a pointer to the last stack

frame on the inmer ring (CRAWLFRAME) and 2 pointer to the most

recent inner ring stack frame in which the reqisters are saved.

SIGNLS calls CRAWL defining the crawlout fault interceptor module

(CRFIM}. The stack frame on the outer ring is the target frame.

CRAWL. checks the space needed in the outer Ting stack for the target

ring stack and copies the neccessary information inte the target

stack. The return information in CRAWLFRAME 15 adjusted to appear as

though 1% was called from the target frame.

UNWIND 1s called te unwind the stacks and RG locks are released.

A procedure return is then invoked to CRFIM.

CREIM calls SIGNLS to signal the condition in the outer ring and the

on-umit will invoke the first LISTEN level.

PRELIMINARY f7o- 19 CONDITION MECHANISN



PRIMOS REV. 19.1 PRIMGS INTERNALS _

SEGMENT 6002 SESMENT 6002

i Ring 9 ; CLDATA i Ring 3

i _§ i  obacks i stacks _

i oignal

a. i Condition

Procedure B signals a condition. [he stacks are searched but

a suitable on-unit cannot be found.

Bis the last inner ring stack. -

(CRAWLFRAME)

SEGMENT 4003 SEGMENT 4002
} ! | CLDATA |
IB freeeneneennnnnnnnnna1 CRFIM |
! | CRAWLOUT ' LISTEN |
! 4] | STDECP |

PRELIMINARY 7 - 20 CONDITION MECHANISM



PRIMOS REV. 19. 1 PRIMQS [MTERNALS

bection § - Fauvlt Handling

PRELIMINARY 3 - | FAULT HAMDL LAG



PRIMOS REV. 19.1 PATMGSs INTERMALS —

FAULTS ate handled in two ways:

1). Those handled in RING 0 and

2}. Those handled in the current RING (RING 3}.

1). RING Q FAULTS

The Fault Vector in the user’s PCB for RING O points to

a fault table called FAULT in Segment & The fault

table is defined in PRIMOSJKSOPABORT. FIN The Fault

Handlers are found in PRIMOS?AS?ROFALT. PMA

The following Favilt Handlers exist in segmment 4:

PROCESS FAULT

PAisE FAULT

Ull (Unimplemented Instruction)

ACCESS VIOLATION

STACK OVERFLOW

SEGMENT FAULT

POINTER FAULT
Any other Fault occurring in RING QO (e.g. SVC, restricted

instruction) will cause the system to HALT.

 

PROCESS FAULT

1, Check Abort Flags

2. Lf any Abort Flag 15 set and aborts are enabled, call PABORT,

FAULT HANDLINGR
oPRELIMINARY go



PRIMOS REV. 19. 1 7 PRIMOS INTERNALS

Prin 65 die re )

SYSTEM ABORT nass-(‘roe (Tees
vyev f

PABORT bit number Do AS vx

1 MINALM Une minute update

  

2 SMLALM  SMLC alarm po
3 NETALM Network Alarm ~ Systiu. VIER

4 LGIALM LOGIN Alarm :

2 WRMALM Warm Start

6 MSCALM SUSR Message Alarm

8-77 Not Used

USER |

1 UNE MINUTE (MINABT)

Dump any entries in LOGBUF to LOGREC

Update all disk buffers

Decrement auto-logout clocks and logout any USERS out of time.

2 SMLO (SMLCEX) Process SMLC requests

3 NETWORK Process network requests (done by NETUSR at Revision 19}

4 LOGIN ALARM (WIRSTK) Lock USER stack, notify user (LOGLCK)

9 WARM START (WRMABT)

Initialize MPC, VERSATEC, and Magnetic Tape

Initialize network and AMLCs, Output message ‘WARM START’

6 SUPERVISOR MESSAGE ALARM (T10U) Process USER 1 message butter.

PRELIMINARY 8B - 3 FAULT HANDLING



PRIMOS REV. 19.1 PRIMGS INTERNALS -

USER ABORT FLAGS

PABORT bit number

16 TSEALM Time Slice End (set by microcode)

14 TMOALM Timeout LOGOUT

13 DISALM AMLC disconnect LOGOUT or Operator LOGOUT

10 IQALM T/Q done (Magtape, MEGATEK)

9 SWIALM Software Interrupt Alarm (formerly GUTALM)

lide, di --- Not Used

FUR EACH USER

16 TIME SLICE END (SCHED)

Place process on low priority or eligibility queue

14,13 FORCED LOGOUT (LOGABT)

Output message ‘TIMEDUT’, or “FURCE LOGOUT’, Signal ‘LOGOUTS’

10 [/O ALARM Call MTDONE

9 Software Interrupt (SWEABT)

PRELIMINARY Bo- 4 FAULT HANDLING



PRIMOS REV. 19.1 PRIMOS [INTERNALS

GUPTWARE INTERRUPT HANDLING

MOTIVATION

~ [ue to increased frequency of asynch events at rey 19) more

pressure on quit mechanism,

- Ring 9 code had to explicitly inhibit process aborts.

Unexpected exit from many ring 0 Toutines before completion

produces non-reliable results.

- [Inhibiting quits would disable multiple process abort events.

IMPLEMENTATION

- BREAKS code reduced to only handle QUITS.

- 5ofthare Interrupt modules for rest of process aborts.

~ SWITYP flag word defines which event.

- New mechanism defaults to inhibiting process aborts in ring 9.

Enabling quits in ring 0 must now De explicitly performed.

PRELIMINARY 8 C
r
i

FAULT HANDL IMG



PRIMOS REV. 19.1 | PRIMOS [NTERNALS -

SOFTWARE INTERRUPT HANDLING - Routines and Variables

BREAKS - enable/disable QUITS aborts in ring 0

SWEINT - process abort interrupt enable/disable control

SETSWI ~ store event bit in PUDCOM. SWITYP ) lun ote ur
c Boyt
_

SETABT - set user’s abort rlags

SWEABT ~ fault handler for process aborts

(rmbt (tpn MononA)
SWIM - handles deferred fing 0 aborts on return to cuter ring

SWERST - called by SWIM to reset ROSWIN, ROQUIT

Variables SWITYP 1 = quit

2 = logout notification (LON)

4= peal time watchdog

10 = cpu time watchdog

‘20 = Cross Process Signalling (CPS)

40 = forced logout

ROSWIN - Ting 0 software interrupt enable counter

ROGUIT - Ting O quit enable counter

PRELIMINARY go - & FAULT HAHDL TMG



PRIMOS REV. 19.1 PRIMO INTERNALS

SOFTWARE INTERRUPT HANDLING

When process abort happens while inhibited in ring 0,

SWEABT detects need to defer process and does following:

1

r
o

Turn current frame into pseudo condition frame as indicated

by SWITYP.

Check concealed stack to see if outstanding faults.

Call CRAWLfo build SWIM. frame on outer ping stack;

but do not execute crawlout. |

Set ROSWIN (or ROGUIT) to -1 (process abort deferred),

Mark SWIM frame if concealed Stack frames outstanding.

When execution returns from ring 0, SWrlit is entered,

L, Cleanup concealed stack if needed.

Invoke SWSRST to reset ROSWIN and ROGUIT;

1f SWITYP non-zero call SETABT (multigle events)

Signal condition.

PRELIMINARY 8 - / FAULT HANTL LNG



PRIMOS REV. 19.1 PRIMGS INTERNALS —

UII FAULT

XVRY, ZMV, ZMVD, ZFIL, and ZCM are simulated in a routine

Called ROVII in segment 6. (only if operating on a P400/350)

All other UII fauvits in ring 0 HALT the machine.

 

ACCESS VIOLATION

SIGNALS called to output the message "ACCESS VIOLATION RAISED AT...”

 

STACK OVERFLOW

Call STAQVF, SIGNALS ‘STACKOVF$’, message ‘STACK-OVF$ RAISED AT..."
 

SEGMENT FAULT

GETSES called to either allocate a segment or SIGNALS called

fo output the message "ILLEGAL SEGNO$ RAISED AT........”

POINTER FAULT - Ring 0
1). Save user state

), Pick up faulting pointer

), Return if pointer is greater or equal 0

). Erase fault bit

), Error message if pointer is equal 0, or invalid

). Call SNAP$3 to get new pointer
), Snap link

8). If not found error message

POINTER FAULT outputs the message “POINTER-FAULT$ RAISED AT ....”

PRELIMINARY B- § FAULT HANDLING



PRIMGS REV. 19.1 PRIMOS INTERRALS

PAGEFAULT

Whenever a User program issues a virtual address the hardware

translates this address into physical memory using the STLB. An STLE

‘miss’ may b@ caused by failure to find the desired entry, or by a

reset valid bit for the desired entry. During full translation, the

HMAP entry will indicate if the desired page 1s not in memory.

The page map entry contains a marker bit (bit 1) indicating whether

Or not the required page 15 held in memory. If the page is in

physical memory, translation proceeds but if the page 1s not in

memory, a PAGE FAULT occurs.

This fault causes a branch in execution through the user's page

Fault vector to the fault table code. A CALF is then executed in the

page fault catcher, (All page faults are handled by this routine),

The page fault catcher will:

1). Save the user state “hd PD Kegs)

2). Check recursive page fault. [Tf so HALT

Allow warm start but process takes fatal error.

Call PAGTUR

Increment page fault counter

C
J

>

PRELIMINARY B- 4 FAULT HANDL UNG



-  PRIMOS REV. 19.1 PRIMOS INTERNALS -

SaHuwde
t

PAGTUR

The routing PAGTUR babies the page management in PRIMUS. Page-in is  _

On demand, page-out 15 based on an approximate legst-recently-used

algorithm with pre-paging. \

/

PAGTUR uses the page-maps as‘quia

\ : —

1), HMAP segment 22 \ J

i439 \ 16
 

     

1 2
virtuls| pay :

V) Valid Bit. Page in memoky (1 = yes)

Unmodified/ bit

Inhibit GACHE for this pag

page number

)

) Referenced bit | -

)

)

 

if the page is not in memory bits go define ~

OO mot in, copy on disk

10 not im, no copy on disk

Ol in transition, coming in

11 in transition, going out

PRELIMINARY 8 - 10 FAULT HANDLING



PRIMOS REV. 19.1 PRIMO TNTERMALS

2). LMAP segment 3g

 

      

Poe 3 4 Lo

Lock LFUA RECORD INDEX

BITS

le lock number (0 = unlocked)

3 «First time bit (to keep page in memory Langer)

4 Wse alternative paging disk

J-l6 Record index (Address of a track containing 9 pages)

PRELIMINARY 8 - ii FAULT HAHDLMG



PRIMOS REV. 19.1 PRIMGS INTERNALS _

3),  MMAP (seqment 14)

 

F 16|
l17 32|

If entry LT 0 page does not exist (missing memory)

If entry EG 0 page is available

If entry GT 0 page is in use (indicates the owner of the page)

MMAP ENTRIES
 

 

  
    

PAGTUR

USES reb—_——

four * *

nointers C(PR=—>

tO ™ "
 

  MMAP 0 FPTR —————p>

 

rte
    

CPIR is stepped during pagé-out

FPTIR is stepped during pagenin

CPIB pointer to first pageable page

CPTE pointer to last pageable page

PRELIMINARY 8 - ile FAULT HANDLING



PRIMOS REV. 19.1 preven
 

 

4  
Wart ter

Traneinion
   

PRIMOS

CueKS bis ~
Paging ies Al ;
 fa

VOID GI See cereAlgorithm Leen ee meat Pose]
   

foafhey frst

x Wey Mews

v

Reeet

Reterences B@

¥

«

raarn Page

Not la, in Transnion, —_

 

   
 

 

     
 

   

 

  
Caé LOCOUr

N

Y

Can THOS Can PaGseS

. 1 L

 

 

     
   

   
 

   

PRELIMINARY

  

  

8

  

Enter PAGTUR

   

PRIMOS INTERNALS

 

 

 

 

 

 

      
    

 

 
_— * SO in Honk BRS tele vice

gE Pav fdsth
Hee’

Vir M4poy

 

 
Can THOS Cau PAGSFS

    

 

in Memery, Reterenced,

Firat Time in

Modified if ne Copy 
 

Mark Page: \ J
 

  
. Notity Precesses 

 F Risin Bvt get Set
 
b
i.
 

Waiting tor

Transition    

 

Y
RETURN

—O

[Megthory >SRype
Zz IN4 Merry x LLL4

- 13 FAULT HANDLING



PRIMOS REV. 19.1 PRIMOS INTERMALE —

RING 3 FAULIS

The fault vector in the user's PCR for Ting 2

points to a fault table called ROFALT in segment 1d.

The following fault flandlers exist in segment 1a:

RESTRICTED INSTRUCTION FAULT

SVC FAULT

UIT FAULT

ILLEGAL INSTRUCTION FAULT

ARITHMETIC FAULT : ~

STACK OVERFLOW FAULT

POINTER FAULT

Any other tault occuring in ring 3 15 handled by the

ring 9 fault handlers.

RESTRICTED INSTRUCTION FAULT

Call PIRAP in Ting 9

1), Read violating instruction and analyze. _

2). [Tf illegal or HALT instruction call SIGNALS

fo output the message ‘PROGHAM HALT AT... 7

3), Simulate trapped 1/0 instructions for |

System console, CRIS

Paper tape reader/punch _

Card reader

Control panel -

PRELIMINARY Bo- 14 FAULT HANDLING



PRIMOS REV. 19.1 PRIMOS INTERNALS

SVC

Enter sVC fault handler to initiate SVC and pass arguments.

VIL FAULT ( Suc ay hrs wm)
Enter UII routing in segment 13 to software emulate the instruction.

ILLEGAL INSTRUCTION FAULT

Enter illegal instruction fault handler which signals ‘ILLEGAL-INST#’.

 

ARITHMETIC FAULT (gah, every ausg pratd nt)
Enter arithmetic fault handler which signals ARITHS condition.

STACK OVERFLOW FAULT

Call STROVF. (Automatic Ring 3 Stack Extension)

Examine stack frame prior to fault frame and determing stack root

segment,

Tf root 15 ‘6002 then STKEX is called.

Qtherwise condition ‘STACKOVF$' 15 signalled as before.

STAEX

Attempts to get a DIAR 3 dynamic segment.

If not possible calls FATALS,

Otherwise fixes up stack extension ptr to point to new segment,

and Teturns.

PRELIMINARY g - 15 FAULT HANDLING



PRIMGS REV. 19.1 PRIMOS INTERNALS -

Adéve+-4

|featat | [| SEe+ | weve#|
POINTER FAULT cee py 53

 

 

1}. Save user state

2}. Clear fault hit

3). If bad pointer - signal POINTER-FAULTS MustBeoeA 3)
4), Loop through library table {LIBIBL). Call the handler if it

Bxists, if not signal ‘LINKAGE-FAULTS’. The first entry in

the table is a pointer to the ECB for HOSS in seg 3. This

routine scans seg 9 for the Direct Entry Call. -

The second entry in the table 15 a pointer to the ECB for

SNAPS3. This routine Scans a list of ring 3 direct callable

ECB’S.

Further entries in the table are pointers to the ECBs for

the shared library fault handlers.

5). The fault handlers return the address of the ECB for tha

original call. The link is than snapped. If the handlers _

fall to tind the ECB then signal ‘LINKAGE-FAULTS’.

6). In the case of shared libraries the fault handler checks

location 4 of the stack Segment to make sure the local data

of the library package has been loaded into the users _

segment ‘6001,

+ Wana ;

PRELIMINARY 8 - 16 FAULT HANDL LNG



PRIMOS REV. 19.1 | PRIMUS INTERNALS
4

DIRECT ENTRANCE CALLS

The direct entrance call mechanism provides a form of dynamic linking
usany the standard Procedure Call (PCL) instruction (V — Mode only) and the
indirect memory address pointer. The purpose of the direct entrance call is
to aorovide an efficient mechanism that allows application programs (also
system programs) to make calls to procedures that are part of the operating
system or shared libraries without the overhead normally associated with
other methods such as the Supervisor Cali (SVC) instruction. The advantages
of the direct entrance call ares first the same procedure can be shared by
ali users on the system without the need to have a unique copy for each,
thes wasting valuable memory space, second» since the address linkage te
the procedure is not made until execute time a program that makes use of

these procedures does not have to be relinked for a different revisian af

PRIMOS where the location of the procedure may change.

Part of the implementation of this mechanism requires a special form
of spyect module be loaded into the library that is searched when doing the

program load. This obyect module is created by assembling a PMA program
that has the form SEG

DYNT procedure name

END

This obyect module triggers special action by the SEG loader when it is

resolving the address linkages for called routines. When SEG encounters
this structure it puts an indirect pointer in the link frame of the calling

procedure that has the fault bit set and points to a location in the
procedure area where SEG has put the name of the direct entrance call and
the number of characters. That is all that happens st load time.

At execute time when the call is made to the procedure the fault bit

causes the hardware to detect a pointer fault and the pointer fault handier
is entered. The pointer favlt handler attempts to resolve the address

linkage to the called procedure by searching through various lists of ECBs
or entry points to the direct entrance callable rovtines. If it finds the

one 1% wants it puts the address pointer to the procedure back in the
address pointer that originally caused the pointer fault, erases the fault

bit and reexecutes the call which now proceeds as usual. If it doesn’t find
it or finds that the pointer is bad it raises a condition and returns

PRELIMINARY 8B - t/ FAULT HANDLING



  

/ PRIMOS REV. 19.1

PRELIMINARY B - Ié FAULT HANDLING

Direct Entrance Calls

Ring O

Entry point definitions - PRIMOS>INSERTOGATES. INS. PMA

Entry points reside in - PRIMOS>KS>SEGS5. PMA

List Name - SEGS5

Memory Location - Segment 5

Search routine - HCSS (PRIMOS>KS>HCSS$. PMA) (first entry in SEGS5)

Ring 3

Entry point definitions —- PRIMOS>INSERTSRSENTS. INS. PMA

Entry points reside in — PRIMOS>DR3S>SNAPS3. PMA

List name - LIST

Memory location - Segment 13

Search routine - SNAP$3 (PRIMOS>RISSSNAPS$3. PMA)

Shared Library

Entry point definitions —- HTAB ( Each library that is to be shared
has a table called HTAB in it’s source

file UFD) >

Entry points reside in - DIRECV>RSPOFH. PMA (there will be a copy of
this procedure, each with it’s own HTAB,
for each shared library installed. )

List name - HTAB

Memory Location ~- Segment 2xxx (same segment library resides in)

Search Routine — R3POFH (DIRECV2R3POFH. PMA)

PRIMOS INTERNALS -



PRIMOS REV. 19.1 | PRIMOS INTERNALS

LIBTBL

LIBTBL is a table that contains address pointers to the search

roucines for the various direct entrance callable "packages". It is used
by the Ring 3 fault handler in attempting to resolve the direct entry link.
The fault handler does a PCL indirect through each of the entries in LIBTBL
whicn invokes each of the various search Trovtines in order until the link
is made. The order of search is Ring O DECS First, then Ring 3. then shared
liopraries. A typical LIBTBL is shown below ‘this is a Rev. 18.3 version).

In Segment 13/1434

1434/ 5 Pointer to SEGS (first ECB is HCS#)
1435/ 0
1436/ 13 Pointer to SNAPS3
1437/ 400
1440/ 62050 Pointer to R3POFH

1441/ 1170
1442/ 62014 "
1443/ 41170
1444/ 62014 "

1445/ 1170
1446/ 62021 "
1447/ 1165
1450/ 62001 "
1451/ 1170
1452/ 62057 ”
1453/ 1170
1454/ 62071 "
1455/ 1170
1456/ 62121 "
1457/7 1170
1460/ 62026 "
1461/7 0
1462/ 0 End of LIBTBL

PRELIMINARY B- 14 FAULT HANDLING



 



PRIMOS REV. 19.1 PRIMOS INTERNALS

Section 9 - Interrupt Handling

PRELIMINARY G - I INTERRUPT HANDLING



PRIMOS REV. 19.1 : PRIMOS INTERNALS

CLOCK PROCESS

The clock interrupt is treated like any other device interrupt. An

address (‘63) is presented by the controller. The hardware

interprets this location as the address of the Phantom Interrupt Code

(PIC) in Segement 4 for this device.

The PIC executes an INEC which acknowledges the interrupt, clears the

Active Interrupt flag, and does a NOTIFY to CLASEM,

The clock process will then be entered. -

1). Handle PBRHIST.

2). Reset location ‘61.

3). Display memory location selected by switches. -

4). Increment GNE-MINUTE timer.

If timer equals 0, then

A). reset timer

B). set USER 1 MINALM Abort Flag and NOTIFY ASRSEM

J). Increment timer 2 (Paper Tape Punch) (1/75 second).

If zero, reset clock and call BRPDIM (if chars in buffer).

6). Increment Timer 3 (Digital input)

If zara, pesat timer and enter DIGDIM

7). Increment timer 4 (ASR) (1/30 op 1/10 second). -

If zero, reset clock and call ASRDIM.

|

PRELIMINARY 9 - 2 INTERRUPT HANDLING



PRIMOS REV. 19.1 | PRIMOS INTERNALS

CLOCK PROCESS

8). Increment timer 5 (1/10 second).

If 1ero., doing the following:

A). Reset clock

B). Display Seqment number in lights

), Update clock ring

), Handle USER timer semaphores

). Increment Timer 9 (DISK)

If zero, preset clock and NOTIFY DSASEM

F). Increment Timer 10 (SMLC) 1/2 second, if zero

1. Reset clock

2. Set USER 1 SMLALM Abort Flag

G). Increment Timer 11 (Gross Network) 10 second, if zero

1. Reset clock

2. Set USER 1 NETALM Abort Flag

H). Increment Timer 12 (PNC) 1 second. If zero,

1. Reset clock

2, Set USER 1 NETALM Abort Flag.

I). Increment Timer 13 (Remote USER 1/0) 1/2 second

If 2ara,

1. Reset clock

2. Set USER 1 NETALM Abort Flag

J). Increment Timer 14 (4 second). [f zara,

1. Reset clock

2. Update Date and Time for TIMMOD

9). Wake up PNCDIM if PNC configured

10). Call CENDIM, CENDIM2, PTRDIM if there are chars in buffer(s).

11). WAIT CLASEM.

PRFI TMTNARY GQ = 43 TNTFRRUPT HANA! TNE



PRIMOS REV.

The AML@ wi

device addr

default con

System cons

19.1 PRIMOS INTERNALS _

THE GAMLC/ICS Driver (AMLDIM/ASYDIM)

l] configure itself to drive up to eight controllers using

esses ‘94, °9G; ‘Se, ‘G5, ‘13, ‘16, '17 and ‘32. The

figuration can be changed using the AMLC command at the

Ole or in PRIMUS, COM!

AMLC [PROTOCOL] LINE [CONFIG] [LWORD]

PROTOCOL

LINE

CONFIG

LWORD

PRELIMINARY

TTY terminal protocol (default protocol)

TRAN transparent protocol

TTYUPC upper case output protocol

TTYNQP «ignore this ling. (used for assigned lines)

The AMLC line number (octal)

See ling configuration table.

See LWORD tabla.

Yo- 4 INTERRUPT HANDLING



PRIMOS REV. 19.1 PRIMUS INTERNALS

LINE CONFIGURATION TABLE

Pe3og4396787 10 It 12 Io 14 15 16
arTRSEENS — re vr

 

      
 

Line no. Character

(hit 415 1sb) length

set to 0 09-5 bits

10-6 bits

QO 1-7 bits

Data Set 11-8 bits

controle |

1 for modems —> Type of parity, 0 = odd

loop lineé= ——) Parity disable, 0 = enable

(for testing)

Set to 0 1 ba9St0p bits
Line Speed QO=1 bit

0O00- 110 baud L=2 bits

O01- 134.5 baud

O010- 300 baud

O11- 1200 baud

100- program clock ~ default 9600 baud

101- 75 baud

110- 150 baud

111- 1800 baud

PRELIMINARY G- 49 INTERRUPT HANDLING



PRIMOS REV. 19.1 PRIMOS INTERNALS

LWORD TABLE

Peg43 67 68 97 10 11 12 13 14 15 16 7

USER NUMBER

CHECK, Enable arror detection

1 = Parity or IRB overflow

(send a NAK if parity or itb overflow sensed)

 ——) DSS hi/low, toggle for bit 9 Lamm155 enable, Check carrier, simulate XON/XOFF

 ("buffered” or "reverse channel" protocol) 
T= When XOFF or D5S enabled, flag to show XOFF 
= fio xon/xorf |

= yon/xaff - 
Q= LF echoed for CR (only if half duplex)

1 = LF not echoed for CR 
0 = Full duplex -

1 = Half duplex

PRELIMINARY G - & INTERRUPT HANDLING



PRIMOS INTERNALSPRIMOS REV. 19.1
(OIWV)

WICTWY
40

WWYOVIC
49074

 

 

 

 
 

  
  

 

 

  

 

 

  
  

 
 

  

   
 

 
 

 

 
  

 

     

|

O
M
e

y
y
e

(
4
3
8
M

Yad
T)

|
W
A
e
l
l

T
I
D
O
Y

:
|

Yasddna
a
n
a
n
o

1
7

L
o
u
r
)

A
S
U
)

|

<
|(S01 TWS)

o
u
l

c
H
—
—
—

g
s
r
p
u
e

S
C
Y
O
M

Z¢
|
.

4
3
8

"
.

Ln
of

|
a
,

(OW)
|

oT,
|

t
r

N
D
0
1
d

T
O
Y
L
N
O
D

3NgaNd

saves
viva

~YSWH

i
TON

53S

3NI7
o
w
a
~
f
{
_

|
l
d

A
L
U
M

u
d
G
V
A
|

‘Ss,CiT,0,
|

G
J
2
7
D

(801701)
Vy

\

A
NIALL”

Sh
P
o

VY
|

  
 

 
 

a
v
n

wR
A
N
!

r
a
n
g

shunn
b
a

F
a
m
e
r
e
y
y
e
y

(Y4SN
Yad

T)
uaddng

ONIY
LNdLNO

yasn
   

SCYOM
Z6T

wl6
400M]

(YaSN
U3d

T)
uadind

ONIN
LNdNI

wasn
   

STYOM
96

  



PRIMGS REV. 19.1 PRIMOS INTERNALS )

THE AMLG - Notes on the diagram

1). There can be up to 8 boards. -

2). All lines are configured into group 9.

3). The speeds of the lines are set by default as follows:

All lines except the last line on the last board

- 1200 baud, Normal TTY protocol

Last line - 110 baud, TTYNOP

4). The last line defines the rate at which all lines are scanned

foT both input and output. The default is 10 times per second.

1). There 15 no special line to determine the line scan rate.

The tate is fixed at 10 times per second.

2). The ICS boards use DMG for input instead of tumble tables.

PRELIMINARY 9 - 8 INTERRUPT HANDLING



 PRIMOS REV. 19.1 PRIMOS INTERNALS

in panne Moyes’ CONFIG DIRECTIVES oyCov

NAMLC, ntusr 7”

/)

AMLCLA baudrate Si (aes
fr

aot MM CAV fe

A [bw qf” 4

AMLTIM [ticks] [disctime] (gracetine]
, (default = 2, 3410, 9)

“ore(Data turd Rephy)
a

DTRDRP Wiley tevirjbha (oa cuf hwy D7

Otbe Laie Cog aod
DISLOG {NO} YES} 9 Ube Asow-® (dofault = NO)

~ Clute frre _ /AMLIBL Sil (default ‘40)

ICS INPGSZ [size] (default = '77)
yo

/c finty .
fier Se"

ICS JUMPER (speeda] ([speedb] ([speedc]
Sfhin bewiYip fogs.

PRELIMINARY 9 - 4 INTERRUPT HANDLING



PRIMOS REV. 19.1 PRIMOS INTERNALS

| For A

CONFIG DIRECTIVES User Buffers

| CmunmdA 3 D4ped pres

   

NAMLC =number-of-buffers (default = 0) ~

tly qTBrnpY Lek DMR brand
ti neu oulpe fThu8 Penner

. A ope ity Hang ave eke| a S ky?a

amlc-line 0 0 ing-size”
(5iv LE EO Bid koje

user~buff-no in-buff-size out-butf-size 7% 47 4:4 Pehypy-
Aheve heye;

>) . . . . , LAsthr, Bug

AMLBUF assigned-buff-no in-buff-size out-buff-size
Bifs fae

K+by,

AMLBUF amilc-line 200 (128) 300 (192) 49 (32)

default: user-no = amilc-line + 2. |

SINCE:(user-buff-no = user-no -2) Atewys frre a
THEN: amlc-line = user-buff-no (if user-no is default)

assigned-buff-no-1 = NTUSR + NRUSR - 1 (rotating pool)

  

REMBUF inmbuff-size out-buff-size (default = 200, 300)

Te iMyu buffer

crestReferFO O ncaensewipte4°

4) mcverrge pint $132

PRELIMINARY 9 - 10 INTERRUPT HANDLING -



PRIMOS REV. 19.1
Coy Hcg’ Soto the | pprwos INTERNALS

Alot Flu
WHS

om
 

\¢ hs
pgs

|

~ t hy & frm Pos pe 0)

a_ (hue nyyers
 

Find

interrup
t

co otc
ollec   
 

 

   

  
  

 

   
 
 

 

 

   
 
   

 

 

D Process \nput

() NOTIEY usec

- BUFSEMs

4
ns character @ ruse

time. interrupt a ry WAIT AMLS!

— Cert) .

Precess lapot

Nomity uv ser

. BUFSEMs

Process Output

Set CARRIE

to do
check

CARRIE: Fase curcier
InpA camer on all

detect status lines

Set LOoGaALm Drop. corner for
foc all Vsers oN fon -lo in

who have users who had [_

lost carmer cacnec last hme

PRELIMINARY 9 - ii INTERRUPT HANDLING

   

 

 
 

 

 

 

     

 

 





PRIMOS REV. 19.1 PRIMOS INTERNALS

Section 10 - Scheduling of Users

PRELIMINARY 10 - | SCHEDULING of USERS



tpne
a

vo
yal

.
A
f
r

w
y
U
o

p
a
l

w
s

s
t
e
dn
e
y
d
a
g
e
n

 
 

A
r
n
a
g
a

        

PRIMOS INTERNALS

b
d
a
p
s

SCHEDULING of USERS

 
m
e
,

.)
W
e
‘®

alst
i

C
b

m
e
d
)
o
g

“2
)

A
e
s
h
i

°
ao

xX

B
e
e

a
e

"
£
v
e

m
h
b
r
a
w
l
p
b

>
y
s
Y

s
o
t
b
y

y
e
r
g
n

4
‘

y
e

m
i

“

P
U
7

2
0

4]
VS

A
N

I
o
f
e
a
e
,

a
n
y

9
)

“
S

A
o

a
t
h

A
a
p
)

n
l
y

b
m
n

==
A
N
I
m
y
A
l

™

a
e

m
l
e
.
o
H
c
o
y
A
y
m
n
a
w
)
]

i

      

c
o
w
—

 

(
e
t
d
)

 

 
  

Que

3 & PRI Gus

PRELIMINARY

PRIMOS REV. 19.1

 

Hy Or rk, Cine

CLI Gi BILITY

2 u PRI Cod

lL PL Qua

+ CO PR

RL fet Wee



PRIMOS REV. 19.1 PRIMOS INTERNALS

 

SCHEDULING OF USERS

=

YP ues - ov

, | Lista - pep
PRIMOQS scheduling 15 based on two criteria, ° im hnte line

1). PROCESS EXCHANGE - See Aperdx @G

2). BACKSTOP PROCESS (SCHED) [Sere praGor

Cyrme 15
The process exchange mechanism is implemented in firmware and uses

the ready list/walt list philosophy described earlier.

SCHED, also known as the backstop process:

1), Responding ta requests for users to be placed on one of

three queues and allocating a time-slice.

2). Deciding the sequence of processes placed on the READY LISI.

SCHED maintains three basic queues using semaphores.

A). High priority (interactive users)

B). Eligibility

C). Low priority (compute bound users)

When 4 user process Teturns to command level, the listener is called

to a invoke a new command level and CLSGET is called to read in the

command line. CLINS is then called to read in the characters. CLINGS

Will wait on BUFSEM (there is one BUFSEM semaphore per user) and when

a character is input into the user ring buffer the AMLC driver will

notify BUFSEM. The user will continue to use CLINS to input

characters until a “CR> character is detected.

PRELIMINARY 10 - 3 SCHEDULING of USERS



PRIMOS REV. 19.1 PRIMOS INTERNALS

On detecting <CR> CLEGET calls SCHED to place the user process on the

HIGH priority queue and to allocate a full time-slice. SCHED scans

for high priority users before any others and a user in the high

priority queue will be placed on the ready list and scheduled to run ~

with a fimeslice of 3/10 sec. At the end of this period the process

Will fault and be placed on the elgibility queue. The backstop

process scans the elgibility queue arter the high priority queue and _

eventually the user will be notified and moved on to the ready list

with another timeslica of 3/10 sac.

This sequence of events continues until the full 2 second time-slice

has elapsed. The process is then placed on the low priority queue

appropriate fo its priority level. The backstop process maintains

five semaphores in the low priority queue for this purpose: -

Supervisor level (level 4)

User level 3

User level 2

User level 1 (default user level)

User level Q -

The backstop process will schedule users on the low priority queue

after both the high priority and the elgibility queves have been

exhausted according to the following flowchart.

Hrs Cava deeld)

PRELIMINARY 10 - 4 SCHEDULING of USERS



PRIMOS REV. 19.1 PRIMOS INTERNALS

 

qet LOPNFY | ecHeED

for level -4 

   
 

 

 

 

     

 

 

 

 

   

 

 

.., level LOPN FY
ornehgnae4 7'e

[ et
4 -2a

=~ t
q7et LOPN FY 0

Store NFEYCNT for next ke

lower LO PRIQ

‘NOTIFY 1 (

4 LPRIO a a Mors - hf Mgr Ton4h
gets hyp) Cy thy 7? # rue fey Sf.

to sal 0 ni, iST
~ i

SUM = . de

PAGSEM + LOCSEN| - Hi ts bi

+ DSK QCT + DSKBLK tot, F ‘] pagepac!ty:

+ UFDLOK + UTLOK,

+ RATLOK Tei fetta ust gittOw 1S teHog   

 

 

| NOTIFY

ELIGQ

 

  
   NoriFy

curcent LOPRIA  
INeremerh NFYCNT
Droys pe NET Le

bf When © ic poet Shards £f rp )

5 fount fabs Why Winty ptity hag Citlonys Cakes Hi Prenit, Geut )
pRELIMINARY 0 AG Se tdacke vienete of USERS

     



PRIMOS REV. 19.1 PRIMOS INTERNALS — |

INTERACTIVE USER

 

  

 

   

  
 

   
 

 

  

READY LIST

< ly Gack 77 > | Bat sem J
“USER PCR

LEVEL fe———> PCRNYE (BACKSTOP) _
(Full timeslice)

* . —eesONFYE (AMLDIM)
PN BUFSEM _

WAIT BUFSEM ——=> POINTER| PCR
(C1IN) , -

Wait for a

| Character | -

wait after a HIGH PRIORITY |v

Carriage Return SEMAPHORE

| > POINTER| PCR——>

. | | } fds CR,

Meret é 24Say (23456? a Pee it
, prponk Le itn iE"a PAs dee 6.Ju, [wrrrrrwry _

23456)

| 23456? =—D GPR woe - 2345
Scheduler yee too aas “RL RR Bue 67 _

ny + Onyvilen ober’
| ay d¢% ETF _

PRELIMINARY 37797 10 - 4 SCHEDULING of USERS
. 22222



PRIMOS REV. 19.1 | : PRIMOS INTERNALS

COMPUTE BOUND USER
xan Caertrfily toe SP

READY LIST eea

qits cebudictel faster Wm
InjeeAcfue USER

“USER
LEVEL>, PCB. {=NFYE (BACKSTOP)

(Full timeslice)

 

 

   

  NNN | FL I CG

| COUNT

ELIGTS cae PCB

EXHAUSTED

(3/10 SEC. )

Time remaining

 

  

 
No time remaining renenNY

LOW PRIORITY
QUEUES

> |POINTER PCB—> 

 

  MUNIN

PRELIMINARY 10 - / SCHEDULING of USERS



:
PRIMOS REV. 19.1  PRIMOS INTERNALS

PRIORITIESANDTINE-SLICE
The following operator command is available for changing user

priorities and time-siice. Clamp ter
i ya Te roy

CHAP [-USERNO/ALL] CPRIORITY] CTIME-SLICE] hast

USERNG Is in the form -nn or ALL -

PRIORITY Integer 0 to 3 (default = 1)

| TIME-SLICE Length of time-slice in tenths of seconds.

mee CoPSap Q means reset to the system default (2 sec. )
poh) Hod in Hoa Corre) f omitted the time-slice is unchanged.

If both priority and timeslice are omitted, then priority and

time-slice are set to the system default values.

STAT US Displays the priority of users not at user level 1.
a

LOGOUT Resets priority and timeslice to defaults.
a

ELIGTS Is used to modify the elgibility time-slice from the

system console. This will affect all users equally.

ELIGTS (eligibilitytimeslices] (default = 3/10 sec. )

PRELIMINARY 10 - § SCHEDULING of USERS



PRIMOS REV. 19.1 PRIMOS INTERNALS

en

| WAKSCH ay we mat
nantesmaine

Previously, MAXSCH was determined by indexing into an array of

~ Values; 0:9,1:2:3,4,4. The value of the index was the memory size

in deh units. If there was more than 256K then MAXSCH would be 4.

MAXSCH is now calculated as follows:

mr $9"
. /

~ MAXSCH = (megabytesofmemory + 3) #4 + y macs= 7
S Fy x |

~ where, x 16 1.2 if there exists an alternate device on a

_ te moaxocH IS. differant controller than the primary device,

Hymfonta otherwise it is 1. Loerih. Hor I?
ridAe [F grrctiter~ oThs 1 if CPU is a Pau0, pry. Jat for See

; poy jot otherwise it is 0. propos bs theyaded

The optimal value of MAXSCH is application dependent, hence there is

no hard and fast formula to determine its value. Therfore,ifisa

= Configurable parameter,

~ rule oF thumb:

MAKSCH = Phusical-Memoru-Size - PRIMOS-locked-memory

average~job-size

PRELIMINARY 10 - 9 SCHEDULING of USERS

mere rine meter re me et em Rim pin mein mem em a ee mmmnem





PRIMOS REV. 19.1 PRIMOS INTERNALS

Section 11 - User Profiles

PRELIMINARY ll - 1 USER PROFILES



PRIMOS REV. 19.1 PRIMOS INTERNALS |

USER PROFILES

MOTIVATION

- To provide secure user registration.

- Provide central database to store per user attributes.

- Provide mechanism to define 4 group of users with

Similar attributes.

IMPLEMENTATION

- Rey. 19 PRIMOS validates users at logini all users

must be registered BEFORE they can login.

- All profile information stored in the System Administrator
ved)

Ls
~ SAD 1s manipulated by EDITPROFILEutility,

peREEga TARETREN,

Database(SADuF). (pumpud

 

- Access to SAD controlled by ACLs.

PRELIMINARY li - 2 USER PROFILES



PRIMOS REV. 19.1 PRIMUS INTERNALS

SER AROFILES — DEFINITIONS
 

User-id -- A 32 character name uniquely identifying user.

Login Password -- A 16 character string known only to the

owning user. Supplied at login to validate user-id

Stored on the disk encrypted.

Project ~- A collection of users with similar system attributes.

‘SystemAdministrator (SA) -- The user Tesposible for

administering the profile database.

Project Administrator (PA) -- A user delegated administrative

powers over 3 particular project.

Initial Attach Point (ORIGIN) -- UFD where a user is attached
ae

after successful login. Need not be a top-level ufd.

ACLgroup ~~ A symbolic name which may be used in an ACL. The

user's profile defines group membership.

Project ‘Limits’ -- The set of parameters which the PA is allowed

to administer. Currently a 115¢ of ACL groups only.

Profile -- The set of parameters defining per user or per project

attributes. Currently a list of ACL groups and ORIGIN.

PRELIMINARY If - 3 USER PROFILES



PRIMOS REV. 17.1 PRIMOS INTERNALS

USER PROFILES - SAD FILES
mn (Cor (4-2 SAD _

Mist At REBVILI

 

SAD Cufd)

  
  

 
 

  
        

 
c€ 4 tir

ee erhoy?) Modede user ur) Project
 

           

 
 

      

            

Project Group Validation

Fi Le (MPF File CMGF) File CUVF) Directory
fo DAS jb AyTS .

SA'RW PAR $SREST! NONE ‘SA: ALL $REST: LU
aus Los in

Mast B<¢

“4 ened 0Ow.

(few Tw 54s iN

Master Project Project — Project Backup

Project Profile Validation Data ~ Dir-

Profile Pointer File File ectory

File

(MPP) (PPPF) (PVF) (PDF)

SA!RW PAR SA! ALL PA®LURW $REST? NONE SA#ALL

PA: DALURW

PRELIMINARY li - 4 USER PROFILES



PRIMOS REV. 19.1 PRIMOS INTERNALS

USER PROFILES - SAD FILES

MPF -MASTER PROJECTFILE

Contains one NOBdawn each project on system
(not ordered) (Co “rr
ACCESS: SA:RW PA:R $REST: NONE

dcl projectid char (32) based;

 

MGF - MASTER GROUP FILE

Contains 4 16 word entry for each ACL group on system

(not ordered)

ACCESS: SA:RW PA:R $REST: NONE

dcl groupname char (32) basedi

UVF - USER VALIDATION FILE

Contains a16 word header.

Contains 4 48 word entry foreachuser on system.

User entries are hashed by User I.D.
ACCESS: SA: ALL $REST: LU

RWLOCK: NONE

 

PRELIMINARY ib- 9 USER PROFILES



PRIMOS REV. 19.1 PRIMOS INTERNALS

VSER PROFILES - SAD FILES

dcl 1 vf_header based, /# Header for validation files(UVF,PYF) #/

2 freeptr fixed bin (31), /# Current length of file #/

2 ofloptr fixed bin (31), /# Location of overflow area #/

2 adminptr fixed bin (31),/# Pointer to entry of SA/PA #/

2 entrysize fixed bin,

2 tablesize fixed bin. § /# Size of prime hash table #/

2 bucketsize fixed bin, /# Size of a bucket in table #/

2 entriesused fixed bin,

2 overflows fixed bin,  /# Current number of overflows #/

2 bits,

3 gqrps bit (1), /# System supports global groups #/

3 pgrps bit (1), /# Project supports groups #/

3 projects bit (1), /* Projects exist #/

3 noacls bit (1), /# SAD is not ACL~protected #/

3 nomullpw bit (1), /# Null passwords not allowed #/

3 forcepw bit (1),/# Don’t allow password on login line #/

3 mbz bit (10),

2 version fixed bin, /* EDITPROFILE version number #/

2 preserved (3) fixed bin:

PRELIMINARY ll - 6 USER PROFILES



PRIMGS REV. 19.1 PRIMOS INTERNALS

USER PROFILES - SAD FILES

dcl 1 uvf_entry based,

2 userid char (32),

2 password char (16),

2 dftprojectptr bit (16) aligned, /# Pointer into MPF #/

2 sitersvd (4) fixed bin, /# Reserved for site use #/

2 lastlogindate, /* Date of last login #/

3 year bit (7) unal, /* Year (mod 100) +#/

3 month bit (4) unal, /% Month #/

3 day bit (9) unal, /% Day #/

2 lastlogintime fixed bin, /# Quadseconds since midnight #/

ersvd fixed bin, /% Reserved for future use #/

2 groupptr (up maxorp) bit (16) aligned; /# Pointers to MGF #/

PRELIMINARY lt - 7 USER PROFILES



PRIMOS REV. 19.1 PRIMOS INTERNALS

USER PROFILES - PROJECT FILES

HPP - MASTER PROJECT PROFILE

This file defines the project ‘limits’.

Currently valid groups for this project.

One 48 word entry.

ACCESS: SA:RW PA:R SREST: NONE 7

/* Master Project Profile (MPP) #/

dcl 1 mppentry based /* Only one of these per project #/

2 limitrsvd1 (16) fixed bin, /%# Reserved for accounting #/  —

2 limit.rsvd2 (16) fixed bins /# =" " " #/

2 groupptr (mpp maxgrp) bit (16) aligned; /# Pointers to MGF #/

PRELIMINARY ll - 8 USER PROFILES



PRIMOS REV. 19.1 PRIMOS INTERNALS

VSER PROFILES - PROJECT FILES

PVF = PROJECT VALIDATION FILE (aka. User Profile Pointer File - UPPF)

Contains a 16 word header (like UVF header).

Contains a 48 word entry for each user in the project.

All pointers point to the Project Data File (PDF).

Entries hashed by User 1. D,

ACCESS: SA: ALL PA: LURW SREST: NONE

PPPF = PROJECT PROFILE POINTER FILE

This file defines the Project Administrator,

and the “Default Project Profile’.

There 1s one 48 word entry like the PVF entry,

ACCESS: SA: ALL PA:LURW $REST: NONE

/* Project and User Prorile Pointer Files (PPPF and UPPF [PVF]) #/

dcl 1 ppf_entry based, /# One in PPPF, One per user in PVP #/

2 userid char (32),

2 Originptr bit (16) aligned, /* Pointer into PDF #/

2 processdirotr bit (16) aligned, /* Pointer into PDF +/

2 sitersvd (8) fixed bin, /* Reserved ror site use #/

eorsvd (6) fixed bin /% Reserved for future use #/

2 group ptr (up maxgrp) bit (14) aligned; /# Pointer into PDF #/

PRELIMINARY lt - 4 UBER PROFILES



PRIMGS REV. 19.1 PRIMOS INTERNALS

USER PROFILES - PROJECT FILES
 

PROJECT DATA FILE (PDF)

Used for initial attach point and project based group names.

Contains the actual data pointed to by the PPPF and PYF.

Consists or one 16 word header followed by data blocks.

There are two types of data blocks:

Name block - 16 word (qroup name or nameofonepathnamelevel).

Pathname pointer block ~ A 16 word array of 1 word pointers

to name blocks elsewhere in file. Each array describes one .

pathname. Each pointer points to name of 1 level of pathname.

Max. of 16 levels. Used for origin. Null ptr at end-of-11st. ~

ACCESS: SA: ALL PA:LURW SREST: NONE

dcl 1 pdfheader based, _

2 freeotr bit (16) aligned, /# Current length of file #/

pathnamecount fixed bin, /# Number of pathname blocks #/ ~

2 group count fixed bin, /* Number of group name blocks #/

2 limit_count fixed bin, /# Number of limit blocks #/

2 preserved (12) fixed bini

M
m
)

PT
J

BACKUP SUB-UFD ~

This subcufd is used to store copies or all project

files while project is being ‘rebuilt’

ACCESS: SA: ALL PA: DALURW $REST: NONE

PRELIMINARY lt = 19 USER PROFILES



C15Su 4) 40 Tt )SuBID SeB2 7 AW”

pss UF

a

 

UF”) re K re:

a ~~ ‘Z4tholbImn<e Ele Che

Ai} ~~ :vA a

syB 2 OO —_

DPI eT





PRIMOS REV. 19.1 PRIMOS INTERNALS

Section 12 - Login/Logout

PRELIMINARY 12 - It LOGIN/LOGOUT



PRIMGS REV. 19.1 PRIMOS INTERNALS

NEW LOGIN MECHANISM

MOTIVATION - Support userregistration

- Qld login poorly structured

- Qld login code difficult to maintain

ADVANTAGES - User registration -

- Login/Logout code separated

- DOSSUB no longer involved

- Re-coded in PLP

PRELIMINARY lg - 2 LOGIN/LOGOUT



PRIMOS REV. 19.1 . PRIMOS INTERNALS

OLD LOGIN MECHANISM

TERMINAL USERS

LISTEN (ring 0)
|

DOSSUB-
/ \

LOGIN  RLOGIN
|

INTT$3

PHANTOM USERS

UNLOAD (in TMAIN or PHMSEM)

|
LOGIN

|
INIT$3

PRELIMINARY lg - 3 LOGIN/LOGOUT



PRIMOS REV. 19.1 PRIMOS INTERNALS

NEW LOGIN MECHANISM

TERMINAL USERS —

STDSCP LISTEN (ring 9) -

login \ | normal

over LISTEN LOGOSCP (ring 3) login

login (4? /
LOGINS

(ert Loav)/ \

| RLOGIN NLOGIN

(“renote |
dain) INITSU -

|
INIT$3 ~

PHANTOM

UNLOAD (in TMAIN) ~

PHLOGIN

|

INIT$U

|

INITS3

PRELIMINARY lg - 4 LOGIN/LOGOUT



PRIMOS REV. 19.1 PRIMOS INTERNALS

NEW LOGIN MECHANISM

_NPX SLAVES

- Started up from BINIT,

- NLOGIN used to perform validation for different naming spheres.

NETNAN (Gite Liggel Onveng Utd Start repel SqSh

- Started from NETON during initialization.

PRELIMINARY lg - 9 LOGIN/LOGOUT



PRIMOS REV. 19.1 PRIMOS INTERNALS

NEW LOGIN MECHANISM

LISTEN - Ting zero listener

- collects characters to form line

LOGOSCP - logged-out command processor

“ parses command line

- calls LOGOCM to lookup commands in

LOGOCMT - the logged-out command fable

~ executes commands or types “Login please. ’

LOGOCMT  - logged-out command table

valid commands: login, delay, usrasr, ~

date, dropdtr

LOGING ~ validates login

| login over login allowed, not sysusr

calls CLSPIX to parse login command ~

calls RLOGIN if going remote

calls NLOGIN if local

PRELIMINARY 12 = & LOGIN/LOGOUT



PRIMOS REV. 19.1 PRIMOS INTERNALS

NEW LOGIN MECHANISM

NLOGIN - mainloginroutine hor Uphdition

~ makes ‘any$’ handler

* calls logout if login aver login

- allocates unit table (UTALOC)

# checks maxust

* prompts for userid, password, project, if required

- reads ‘SAD’ files

validates userid, password, project

setup upcom data

# setup utype

~ setup ACL groups

# setup initial attach point

* initialize cpu, i/o counters, etc.

* build dummy login line for external login
+

+

 

Call LOGINIT

call INITSU

- special checks for FAM I

* These steps are NOT performed for NPX slaves

LOGINIT = initialize PUDCOM variables:

limits, watchdogs, erase, kill, time-slice, priority

terminal characteristics

PRELIMINARY lg - / LOGIN/LOGOUT



PRIMOS REV. 19.1 PRIMOS INTERNALS

NEW LOGIN MECHANISM

INITSU - initialize PUDCOM variables:

date, vrtssw, asrcud, famsem, ingraceperiod

- initialize NPX databases

- setup unique i.d. for logout notification (VIDSBT) ~

- open logout notification queue

- send login message to user/console

- return all segments

- allocate segments 4000, 6002

- restore external login (EXTLOG) | ~

- call INIT$3

INIT$3 Ring0

- initialize ting 3 stack Toot —

setup CLDATA variables: _

initialize static on-units (INSOUS)

tUTN my frame into condition frame ~

crawlout

PRELIMINARY ld - 8 LOGIN/LOGOUT



PRIMOS REV.

INITS3

INITSP

PRELIMINARY

19. 1

NEW LOGIN MECHANISM

Ring
- NPX slaves call SLAVER

~ make special ‘any$’ handler

run external login

revert ‘any$’ handler

1f logging out, call FATALS(e$logo)

~ 1f CPL phantom start CPL program

Call INITSP for tty users

attach to [.A.P.

find LOGIN. (.tunm, .cpl, .comi, . save)

execute LOGIN.

lg - 9

PRIMOS INTERNALS

LOGIN/LOGOUT



PRIMOS REV. 19.1 PRIMOS INTERNALS

NEW LOGIN MECHANISM

PHLOGIN = main phantom login routine

if Slave, netman and date is set

or if login over login call boot

if top level ufd of cominput treename = FAM ~

switch lognam to FAM

reset cpu, i/o, etc.

apply suffix rules to treename (SRPHAN)

setup CPL arguments

attach home _

release phantom lock

setup utype ~

call INITSU

PRELIMINARY 12 - 10 LOGIN/LOGOUT



PRIMOS REV. 19.1 PRIMOS INTERNALS

 

Su Handet(LOGIN SECURITY VALIDATION) oa 0

The system will prompt for a password even if the user id provided 15

invalid. If either the user id or the password is invalid, the user

Will be told that one of them is incorrect, but not which one.

If the SAD 15 set to force passwords, users who provide the password

on the login command line will not be permitted to login, even if the

password supplied 15 the correct one.

The password supplied in response to the prompt is not echoed on the

terminal. It 15 stored in the PVF in encrypted form.

The SAD must be an ACL directory in order fo enable active ACL groups.

The user will be prompted for a project if either s/he 15 not

specified as having a default project, or s/he 15 not a reqistered

member in the default project that is listed for that user.

A user’s project based ACL groups will only become active if they are

in the MPP ‘limit list. '

PRELIMINARY l2 - li LOGIN/LOGOUT



PRIMOS INTERNALS — |PRIMOS REV. 19.1

©
)
 

E
O
N

  
A
S
W

N
3
d
0

 
 

 

@
U
}
B
O
7
T
T
)
 

      

G
3
a
Y
N
I
I
A
N
O
D

G
Y
O
M
S
S
V
d
J
D
O

GYuOnNSSVd
i
n

d
a
i
d
d
d
n
s

  

Y
A
C
V
3
S
H
J
A
N
A
v
a

d
d
W

NadOd

J
A
N

N
a
d
O

G
V
S

O
L

H
O
V
I
L
Y
V

 
 

 

G
I

s
a
S
V
I
d
N

 

“
a
v
a
u

*
“
L
d
W
O
u
d

 
 
 

 

d
a
l
I
d
d
N
s

G
I

 

    

4,0NVWWNOD
N
I
I
O
7

N
i

d
a
t
s
l
o
a
a
d
s

3
@

L
O
N
A
V
H

S
Q
C
Y
O
M
S
S
V
d

 
   

 
   

s
A
W
I
L

S
T
H
L

¥V
S
Y
S
S
N

O
N
I
L
L
I
W
O
V

L
O
N

W
A
L
S
A
S
,

         

 
     A

N
I
9
O
I
N

 

          

   

LOGIN/LOGOUT1212PRELIMINARY



PRIMOS INTERNALSPRIMOS REV. 19.1

 

 

 S
A
N

O
L

N
I
S
O
T

L
S
V
]

d
O

A
W
I
L
/
A
L
V
O

M
A
N
A
L
I
U
M

 
 

 S
A
A

 

      

 

GYOMSSVd
JSVSdN

‘*avau

*“LdWOUd

tox

 
N
O

J
A
N

J
H
I
L
V
W

G
Y
O
M
S
S
Y
d

G
A
L
d
A
Y
I
N
A 

 

 

  

 

 

 

 
 

 
 
 

 
  

 
 

  

       

,
O
X
O
M
S
S
V
d

Y
O

G
I

Y3aSN

G
U
I
V
A
N
L
,

 

(~@
u
l
b
o
7
U
)
 

 

  

 

O
N

O
N

3
N
O

J
A
N

,
S
G
Y
M
O
M
S
S
V
d
O
N
I
D
Y
O
I

_
O
3
1
I
d
d
N
s

S
J
H
I
L
V
Y
W
G
Y
O
M
S
S
V
d

a
h

L
O
N

O
N
Y

G
a
M
O
T
I
V

S
z
,

e
e
e

G
3
S
L
d
A
Y
I
N
A

O
Y
O
N
S
S
Y
d

T
I
N
N

M
N

T
I
A
N

A

SJ.
S
A
A

G
Y
O
M
S
S
Y
d

3
A
S
V
I
d
N

‘av2uy
=

g
3
0
I
d
d
n
s

_

‘
ON

GYOMSSYd
ON

L
d
W
O
u
d

 
 

LOGIN/LOGOUT1312PRELIMINARY



PRIMOS INTERNALSPRIMOS REV. 19.1

    

N
I
V
O
V

AYUL
A
S
V
A
T
d

Q
I

L
9
3
f
0
u
d

G
I
I
W
A
N
I
.

        

S
A
L
N
N
I
W
M
3

V
N
I

N
I
V
S
V

A
U
L

3
S
V
3
1
d

S
Y
3
a
S
N
A
N
V
W

O
O
L

 

 

Logroud
uvai9

dAd
35079

BWOH
HOVLLY

 
 
 

 

 

(
¢

u
l
b
o
7
U
)

S
H
A

O
N

L
O
s
r
a
u
d

L
1
N
V
I
A
G

O
N
I
S
N

S
A
A

O
N

 

d
3
0
3
3
9
x
3

L
I
W
T
]

y
S
N
X
V
H

O
N

S
d
A
L
N

L
3
S

A
U
L
N
A
A
I
S

s
d
d
d

dVawd

SSAA
d
d
W

‘
d
d
d
d

‘
d
O
d
N
3
d
O

a
t
r
o
u
d
“
W
O
I
d
N

L9afroud
J
W
V
N
9
O
7
°
W
O
I
d
N

L
I
S

 
 
 

N
I

S
L
S
I
X
3

a
I

ysasn

 

Y
3
0
V
a
H

4
A
d
d
V
a
y

d
A
d

N
3
d
O

d
2
n
g
n
s

 

 

 
 

L
o
a
r
o
u
d
d

O
L

H
O
V
L
L
V
Y
O
L

L
d
W
A
L
L
V

  

 

A

     

d
d
W
W
O
u
d

SWVYN
L
I
3
F
r
O
u
d

L
i
n
v
y
s
a
q
a
v
a
y

  
 

 
 

L
o
g
r
o
u
d
3
S
V
I
d
N

“avad

“LdWOud

 
 
 

S
i
S
I
X
a

1
L
9
3
r
0
u
d      

x
A
Y
L
N
A

S
A
N

N
I

   
        

      G
S
I
IddnNs

L
o
a
r
o
u
d

L
m
n
v
i
a
d

LOGIN/LOGOUT1412PRELIMINARY



PRIMOS INTERNALSPRIMOS REV. 19.1
 

JLSI7
LIWIT,

OL
-JOW

WOYS
JHYN

dnoud
avaY

 

 
 
 

        

Y
A
L
N
I
O
d

d
n
o
u
s

d
d
W

L
X
3
N

 
 

A
Y
U
L
N
A
d
d

a
v
a
d

|S
d
N
O
U
S

d
d
d
d

3
S
f

 
   

 
  

 -$arLaS
W
V

JSW
WONS

W
Y
N

d
n
o
u
s

d
v
a
d

 
  

             

  
S
d
N
O
0
u
s

d
A
d

A
S
N

 
 

S
A

   
        

“TIAN

Y
I
L
N
I
O
d

d
N
O
Y
S

A
Y
L
N
A

d
A
d

T
I
N
N

Y
A
L
N
I
O
d

d
N
o
u
d

(
d
d
d
d
)

d
A
d

L
X
3
N

           

4
1
S
L
I
W
I
T

NI
3WYN

dnou9d
SIHL

SI

 

       
    N

o

S
d
N
O
u
9
d

L
9
3
f
0
u
d

 

 
 

“
T
I
A
N

U
L

d
N
O
Y
S
D

A
Y
L
N
S
A

d
A
N

1
X
3
N

  

S3/,

  

 

   

N
O

S
d
n
0
u
g

W
3
L
S
A
S

 

        

   

 
 

    
  

    

 
S
O
I
L
S

T
V
S

 
 

 
 
 
  

  
  

N
O

S
d
n
d
u
s

L
9
3
F
0
4
G

Y
O

W
3
.
L
S
A
S

  

 
 
 
 
 

 
 

2
0
s
n
W
I
L
I
N
]

Y
N
O
A

O
L

H
O
V
I
L
Y

!
J
I
a
V
N
N
,

      

 

 

S
Y
F
L
N
I
O
d

|
dnoYySs

S
,
y
3
a
S
N

A
H
L

Y
¥
V
A
T
D

 
4

 
 

4

LOGIN/LOGOUT1512PRELIMINARY



PRIMGS REV. 19.1 PRIMOS INTERNALS »

OLD LOGOUT MECHANISM

Normal and Forced Phantom ITY Request 7

LOGOSS CLINGS

\ |
LOGIN ©

| _

INIT$3 (for external login) -

NOTE: Login over login handled internally within LOGIN (tricky!)

PRELIMINARY l2 - 16 LOGIN/LOGOUT



PRIMOS REV. 19.1 PRIMOS INTERNALS

\_NEM LOGOUT MECHANISM
 

LOGOUT aan ,
sievnwl)

( nNiYwl) y Leb¢uw

Leg iv LOGOSS varie

LOGOUT

|
LOFATAL

l ,
~ SETS UD firg F

INITSS olkes FA reheewle C5 ert

|
FATALS ~

|
LOFATAL

|
~ falrvrges ScareLOCLEAN nnMb=

PRELIMINARY l2 - I/ LOGIN/LOGOUT



PRIMOS REV. 19.1 PRIMOS INTERNALS

NEW LOGOUT MECHANISM

LOGOUT  - Ting 3 command moved from DUSSUB

- handles normal and forced logout commands

- parses command line

~ calls LOGOSS -

LOGOS - for forced logout -

~ validates and calls SETABT

- for normal logout calls LOGOUT

LOGOUT - if logged out return

- don’t allow phantom login over login

- force tty output on, comi off

- peset tty characteristics

“Nass any outstanding messages to user

- huild logout message

- 1f phantom put message in l.o.n. queue

otherwise close lon. queue

type message at user/console
Call LOFATAL _

PHTTYREGQ

(PHTTYR)

send message to console -

call LOGOUT

PRELIMINARY 12 - 18 LOGIN/LOGOUT



PRIMOS REV. 19.1 PRIMOS INTERNALS

NEW LOGOUT MECHANISM

LOFATAL make any$ handler

Close file units

unattach home, current, origin (LONATCH)

- free semaphores

~ ree dotx devices (ODUNDO)

- fee rye devices (RJUNDO)

- free assigned devices

- 17 netman call NETDWN

- if FAM I do Special cleanup

/ \
Normal, Forced, Phantom Abort Login over Login

- ‘Wait... ° for remote users - clase coma

~ return all segs | - if using FAM I tell FAM I

allocate segs 6002, 4000 - disconnect from network

restore external login (EXTLOG)

inhibit r3 quits

call INITS3 (never returns)

 

FATALS LO Key

- Call LOCLEAN

- disconnect trom network

(XCLRA)

Action determined by key passed in as argument.

PRELIMINARY ld - 19 LOGIN/LOGOUT



PRIMOS REV. 19.1 | PRIMOS INTERNALS

NEW LOGOUT MECHANISM

FATALS - unwind rQ stack

- rabuild cur frame

- unlock all tO locks (UNLKFS)

- TS quits ort

- if eSlogo key call LOFATAL - doesn’t return

- if logged out call rO LISTEN

- if phanterr key call PHTITYREG

otherwise call INIT$3 with error key

LOCLEAN <- return segs (not dynamic ones for slave)

- free attach points (LONATCH)

- switch comi and como off

- if using FAM I tell FAM 1

- send logout notification if message is built (LON$S5)

- Close l.o.n. queue (LON$C)

- close CPS down (CPS$RG, CPSSCA)

- Clear userid, project

~ set utupe = -utype

- clear groups

- peset per user parameters (LOGINIT)

- if remote user clear v.c. (X$L060)

- deallocate unit table (not Slave)

- Clear pending quits

- drop dtr if configured (DRPDTR)

PRELIMINARY l2 - 2 LOGIN/LOGOUT



PRIMOS REV. 19.1 | PRIMGQS INTERNALS

‘LOGOUT$’ CONDITION - arace period

PABORT - Takes a process abort SWIALM,

Tf SWITYP = ‘40 (forced logout) then call LOGABT

LOGABT

(cases)

1) force logout, and process 15 remote

2) force logout (either by operator or amlc disconnect)

3) cou time limit exceeded

4) inactivity time limit exceeded

J) login time limit exceeded

&) in grace period, abort not login time limit exceeded

7) in grace period, abort is login time limit exceeded

When (1) tell network to send logout message to remote end

When (6) ignore abort

When (7) log the process out immediately

Otherwise

inhibit process aborts

set login time limit to (graceperiod)

Clear pcb. abortflags, pudcom. absave login time limit abort flag

call SETSWI(LOGINT) Set sytert wiinand

enable process aborts

call SWSABT directly to process LOGINT

SWSABT - signal the condition ‘LOGOUTS$'

PRELIMINARY l2 - 2 LOGIN/LOGOUT



|
PRIMOS REV. 19.1 PRIMOS INTERNALS

‘LOGOUTS’ CONDITION - grace period y

( ptturd Cavitia, Saypf C95 yen Oe

The user could ‘make’ an on-unit for ‘LOGOUTS’ to

ensure a clean exit before the actual logout.

Otherwise DFUNITwill simply print the error message cal] LOGOUS. 7

when (loginlimit)

Call ioa$ (‘login time limit exceeded.

when (cpulimit)

Call ioa$ (‘cou time limit exceeded. -

when (timeout)

call ioaS (‘maximum inactive time limit exceeded.

otherwise -

Call ioaé (‘forced logout.

end;

call logous;

LOGOUS (LOGOUT)

call internal routine LOGMSG to

print message to system console and user terminal.

If a phantom, queue Logout Notification (LON) message to spawner. ~

PRELIMINARY l2 - de LOGIN/LOGOUT



PRIMOS REV. 19.1 PRIMOS INTERNALS

LOGOUT NOTIFICATION

~ Mechanism to pass message to spauwner when phantom logs out.

- Simple IPC mechanism.

- At login LON queue opened for user.

- When phantom logs out - message added fo spawner’s queue.

Spawner takes Software Interrupt abort (type LONINT),

- Tf LON not inhibited, then ‘PHLOGOS" 15 signalled.

- Derault on-unit prints LON message.

- At logout LON queve is closed.

- Lon database in segment 35 manipulated by area management

package,

COMMAND -~ enable/disable immediate notification

LOgoutNotification ~-UN : -QFF

PRELIMINARY lg - 23 LOGIN/LOGOUT



PRIMOS REV. 19.1 PRIMOS INTERNALS

LOGOUT NOTIFICATION

DATABASE

- 8192 words reserved in segment Jo.

- LONSSEM - semaphore used to single thread all access to database. -

- Database consists of receiver blocks and message blocks.

- LONSSTA points to start of receiver Block chain. (Null if

nobody has queue open.)

- Receiver block chain 1s doubly linked list. ~

- Message blocks are doubly linked lists starting at a receiver

block.

PRELIMINARY l2 - a4 LOG IN/LOGOUT



PRIMOS REV. 19.1 PRIMOS INTERNALS

LOGOUT NOTIFICATION - Data Structures

dcl lon$adr pointer exti

dcl 1 lon$rcevr based,

2 length fixed bin(13),

2 id:

3 uno char(é),

3 uspno fixed bin(15),

2 mextrcvr pointer,

2 lastrcvr pointer,

2 cnt fixed bin(19),

2 5176 fixed bin(15),

2 notify bit(l),

2 headmsg pointer;

PRELIMINARY lg - 29

/* address first word of lons

areat/

/# peceiver node structures/

/* length of headert/

/* unique id#/

/* Unique numbers/

/% user not/

/% next receivers/

/* last receivert/

/* Tumber of messages associated

with this pevre/

/* total size of messages for

this revr#/

/* notify flag

I-notify

O-don’t notity#/

/* head of message 1ist#/

LOGIN/LOGOUT



PRIMOS REV. 19.1 PRIMOS INTERNALS

LOGOUT NOTIFICATION - Data Structures

dcl 1 lon$msq based, /* Message nodet/

2 length fixed bin(19), /* length of this message

Including header info. #/

2 next pointer, | /* pointer to next messaqget/

2 last pointer, /* pointer to last message#/

2 info(l) fixed bin(13); /* message information#/

logmsg (1) = pudcom. cusr

(2) = time in mins since midnight

(3) = connect time mins

(4) = cpu secs

(3) = 1/0 secs

(6
 

= normal/abnormal logout flag
ee

PRELIMINARY 12 - 2 LOGIN/LOGOUT



. =
PRIMOS REV. 19.1 : PRIMOS INTERNAL:

LOGOUT NOTIFICATION

 

    
 

DATABASE

ye
(user Sy Lang) ye’
LON#STA ge Receiver Blocks

| Y
| a) scacacsemenf meme

<——— <_——— <_——

         
  

 

 

 

    Message
BLocks 

 

 
 

     
 

 

   

PRELIMINARY le - 27 LOGIN/LOGOUT



 

PRIMOS REV. 19.1 PRIMUS INTERNALS

GETTING INTO THE COMMSND LOOP —

It is not apparent how one gets into the command loop initially, thi:
writeup is an attempt to trace the path of the user process from cold stae
to login and then into the basic command loop,

All PCBs for the system processes including user 1 are initially.
defined in KS>SEG4.PMA. In additicn a PCB is defined for user 2, this PCB
is called UG2PCB, it will be used as a template for building all other us.
PCBS needed at cold start time. Initially the stored PB value for US2FCB _
(and hence all others) is set to a value calied CLDPB wnich is a pointer
to location CLDPB in the module KS>FATAL$.PMA. In addition, the pointer t
the WAIT list that the PCB is waiting on is initially set to point to a
semaphore called CLDSEM (KS>SEG4>PMA). At cold start time KS>AINIT.FIN —
makes as many copies of US2PCB as needed according to the number of users
that are configured by the CONFIG file directives, each one of these PCBs
for terminal users having it's initial stored PB pointing to CLDPB anda itu
WAIT list pointer pointing to CLDSEM.

x MARKUS 14-2
When the SETIME command is issued at the system console the CLDSEM

semaphore is NOTIFYed for the number of terminal users and edch user is
sent the 'LOGIN PLEASE' message, When each terminal user process is
notified it moves to the READY list to await execution, when it gets it's
turn it starts to run from location CLDPB. The instruction at CLDPB is a —
procedure call to FATALS with an argument value of zero.

FATAL$ initializes stack pointers via a call to UNWIND (KS>TMAIN. PHA),
quits are disabled for Ring 3 and enabled for Rings 8 and l, and finally a
call to LISTEN (KS>LISTEN.PLP) is made passing it the current user number
and an argument specifying whether that user is a phantom (bit 1 set) or i_
terminal user (all zeros). ,

LISTEN checks to see if the user is a phantom or a terminal user, if
it's a phantom LISTEN calls UNLOAD (KS>TMAIN. PMA) 7

If the user is a terminal user the 'OK' prompt is printed at the user
terminal and CLSGET (KS>CLSGET.PLP) is called to read a command from the —
terminal. CLSGET calls ClINS (KS>ClINS.PLP) to read the characters in.

C1INS uses a function called TFSANY in KS>TFLIOS$.PMA to see if there _
are any characters in the input buffer, if not it does a WAIT on the BUFSE
( ) appropriate to that user. ClINS also checks for and handle
special characters such as ERASE and KILL and che carriage return
Character, It just keeps reading in characters (moving back and forth ~
between the READY list and BUFSEM until a carriage return character is

PRELIMINARY 12 - 2 LOGIN/LOGOUT



PRIMOS REV. 19.1 PRIMOS INTERNALS

detected at which point it calls SCHED (KS>SCHED.PMA) to get that user put
on the HIPRIQ.

When the user runs, ClINS urns to CLSGET which returns to LISTEN,
LISTEN calls DOSSUB (KS>DOSSUB. ) and passes it the command line which
contains the LOGIN command. DOSSUB processes the LOGIN command and calls
LOGIN (KS>LOGIN. BRM). Loeog CP

et
a

LOGIN; attaches to the login UFD, prints the login messages on the
System console and at the user terminal, calls RTNSEG to return all
Segmants except the Ring 3 stack, calls GETSEG to allocate the Ring 3 stack
('6882) and Static Mode ('4899) Segments, disables Ring 3 Quits, attaches
to CMDNCS and executes the external LOGIN program if there is one and
returns to the login UFD in either case. Finally LOGIN calls INITS3 to get
the user from the Ring 6 to the Ring 3 environment,

. INITS3 has two phases, a Ring 9 phase and a Ring 3 phase. The Ring J
phase initializes the users Ring 3 stack and command he data (CLDATA)
Structures, makes itself into a condition frame and dummies the return PB
ring bits to be Ring 3, then calls CRAWL _ (R3S>CRAWL _ ~PLP), passing as
arguments INFIM _ , pointers to the condition frame just built and a zero
to indicate the depth of the concealed stack???

CRAWL _ ; forces Quits to be inhibited, calls MKONUS to make an
On-unit for ANY$, selects a stack segment for the target ring (Ring3),
copies the condition frame from Ring @ (which would be for INITS3), to the
target ring stack, and eventually returns which passes control to the
routine that we passed as an argument to CRAWL _ , which is INFIM _.

INFIM _ (R3S>INPIM — «PMA) is the fault interceptor module for gettin
to INITS$3 again, this time in Ring 3. It adjusts a few pointers, enables
Quits, and calls INITS3.

INITS3 is now entered to perform it's Ring 3 phase operation, it will
do nothing more than return to INFIM _ for the simple case of a terminal
user logging in. |

INFIM _ finally calls the Ring 3 listener LISTN _ (R3S>LISTEN _ .PLP)
and sit in a loop calling it forever, so that when the listener returns it
is just called again (and again and again).

PRELIMINARY 12 - 29 LOGIN/LOGOUT





PRIMOS REV. 19.1 PRIMOS INTERNALS

Section 13 - Command Processor

PRELIMINARY lgo- 1 COMMAND PROCESSOR



PRIMOS REV. 19.1 PRIMOS INTERNALS

EXTENDED FEATURES

- Command processor enhanced to support following extended features:

y vo. |
" Y Acts msds cblegts-

simple iteration -  De4<* (Gler ele 2)Ere (er te

wildcard expansion -

treewalking

fame generation

special reserved arguments -Cee7 (murads

- All above are processed by c.p. itself.

- Enabling of individual features may be selected in various ways:

CPL - defined to have c.p. do Simple iteration only

Static Programs - all features enabled unless special names:

NWS - no wildcard of equalname

NX$ - only Simple iteration

EPF - enabled features specified at BIND time and stored in file

_ Internal Commands - enabled features specified in internal command

table

PRELIMINARY Ig - 2 COMMAND PROCESSOR



PRIMOS REV. 19.1 PRIMOS INTERNALS

EXTENDED FEATURES

CP ITER §= = main Toutine which processes extended features

- makes three passes over command line to verify

syntax, expand iteration, process options

Pass | - parses command line into 2 level tree

- pach node represents a token

- 2nd level for simple iteration tokens

Pass [I - repeated while iteration in progress

convert tree into simple threaded list

expand dot products

call DCODITR to find type of token (e.g.

wildcard, wildtree, control, equalname)

Pass II] - repeated while iteration in progress
- verify only one wildcard/tree per line

- find location of wild tokens

- if wildtree call ITR_WLDT

~ if wildcard call ITR_WLDC

- 1f no wilds call LIGASE

- free all temporary storage

PRELIMINARY Ig - 3 COMMAND PROCESSOR



PRIMOS REV. 19.1 PRIMUS INTERNALS

EXTENDED FEATURES

ITR_WLDT - expands wild trees

= uses control args if supplied

- calls ITR_WLOC if wilcards, or

‘ayecuter’ to axecute each match

- Tecurses when required

TTR_WLDC - expands wild cards

- uses control args if supplied

- asks user for verification if reqd

- calls ‘executer’ to execute each match

EQUALSP - special routine for. c. p.

| - splits pathnames into dir and entry

calls EQUALS to match names

EQUALS parse generation pattern components

- process ‘commands’ in components

~ build generated name by concatenation

PRELIMINARY ig - 4 COMMAND PROCESSOR



PRIMOS REV. 19.1 PRIMUS INTERNALS

EXTENDED FEATURES

LIGASE (internal to CPITER)

- follows assembled node list concatenating

tokens ta form command line

- calls EQUALSP fo process name generation

- call ‘eyecuter’ routine to execute line

SMEXECUTER (internal to STDSCP)

- eyacutes static mode command

- calls INVASM_

CPLEXECUTER (internal to STDSCP)

- executes CPL command

- calls ICPL_

INTERNALEXECUTER

| - executes an internal command

~ calls appropriate routine directly

RUNEXECUIER (internal to STDSCP)

- eyecutes an EPF

- calls R$ALLC to allocate linkage

RSINIT to initialize linkage

RSINVA to execute EPF

PRELIMINARY lg - 9 COMMAND PROCESSOR



PRIMOS REV. 19.1 PRIMOS INTERNALS

fto&
\

INFIM_

CoM CLocer + Call CLIN {wer21

 

   

 
 

 

     
 

  NOTWFY from AMLDIM

 

 

   
  

   

uya pe
Abbreviation C A edjude
CPL |
pre precessing

-- 7 7 7) Dear

Call

STOSCcCP   

PRELIMINARY lg - 6 COMMAND PROCESSOR



PRIMOS REV. 19.1 PRIROS INTERNALS

Meke ON-AANTS ) ry &
handle Sytax Suppressor ”
handle mult, ple rommands

 

 

     
Rvaluate variables) Surchions |

femove voll SHONOGSpase: Tura off WILDCARD]

|

Call REMAP

|

[Check For NWS,NXd
If needed , CP_IMER erectCP! needed ,CPATER

ALC, RSINT,
Call Dyce Rew, RSDEL| GU INVKSM      

 

 

 

S éLEect

a (surFIK Used) 

   

 

   
 

it IS an

exterreA |
comman
Preface uith

cmpncg>’

      

PRELIMINARY Ig - 7 COMMAND PROCESSOR



PRIMOS REV. 19.1 | PRIMGS INTERNALS

(COMMAND 17)
 

 

 

MAKE ON-UNITS

HANOLE SYNTAX SUPPRESSOR

HANDLE MULTIPLE COMMANDS

EVALUATE VARIABLES, FUNCTIONS

REMOVE NULL STRINGS

PARSE INTO COMMAND AND

ARGUMENTS   
   

ASSUME IT 1S
“RESUME” =
COM_STATUS
=DOSSUB_RESUME

 

  ‘RING 3

INTERNAL ©      

 

   
 

 

    
EXPAND

VARIABLES

AND FUNCTIONS

“ABBREV~

COMMAND

  

 

DOSSUB

   
  

|
 

 

  
RESULT   

 

COMMAND

FUNCTION

 

  

 

  =F NO

INITIALIZE

STATIC ON-UNITS

 

  

 
PRELIMINARY lg - 8 COMMAND PROCESSOR



PRIMOS REV. 19.1 3 ~ PRIMOS INTERNALS

| CCOMMAND 2)
 

       STATUS = 2

(COM_STATUS

=DOSSUB_START)

COMMAND

IN COMLST

   
 

EXECUTE

COMMAND

 

STATUS = 3 |
(COM_STATUS  }+—&

=DOSSUB_CO_START)

17 1S YES

“CO ~START~

NO

       

 

STATUS = 1 ——_

   
  

 <> STATUS = 0   
 

PRELIMINARY Ig - 9 COMMAND PROCESSOR



PRIMOS INTERNALSPRIMUS REV. 19.1

 

3
1
d

N
N
Y

 

 

S
Y
O
N

J
T
I
H
M

O
G

G
N
4

 A
N
I
?

G
N
Y
W
N
O
S 
 

 

(
£

G
N
V
W
W
O
D
)
 

Jd5S01
9

 
 
 

 

c
q
3
a
s
n
-
X
1
4
i
N
S
)

1
9
4
1
7
4
5

 

      

_
CAWNSAY)

ONISSIW
LNINNOYY

G3yIno3zy,

     

 

 

 

  
 

JINVN
G
N
V
N
W
O
D

<
O
I
N
G
N
D

S
N
V
N
G
N
V
Y
W
W
O
D

 
 
 

       

  

 
O
N
I
S
S
I
W

JNVYN

O
N
V
W
W
O
D

    

 

J
W
V
N

G
N
Y
W
N
W
O
D

L139

l
  

 

A
d
N
W
S
N
A
N
I

 

3
L
N
I
A
X
A
W
S
H
A
N
I

S
W
N
S
3
Y
W
S
N
A
N
I

AdxN
W
S
N
A
N
T
 

 
 

 
 

L
u
v
i
S
”
a
n
s
s
o
g
=

S
N
L
V
L
S
W
O
D

 

 

   

W
N
S
3
Y
E
e
n
s
s
a
d
=

S
N
L
V
L
S
W
O
2     

COMMAND PROCESSOR1013PRELIMINARY



PRIMOS INTERNALSPRIMOS REV. 19.1

|

  

        
 

 

(>
G
N
V
W
W
O
D
)

|
|

|

 

|

 B
L
I
N
V
I
S
G
N
O
I
S
N
A
L
X
S

 

d
n
1
3
5
 

1
 

 

 

N
O
I
S
S
I
W
Y
a
d

1
3
5
3
u

$
X
N

“SMN
Y
O

N
D
A
H
D

ONVdxX3d
W
S

 
 

 

 

 

 

    
   I

T
V
S

T
V
D

  

g
a
s
n

O
N
Y

G
3
M
O
T
I
V

SaynLvVsasd
O3S0N3ILXK3

    

  

S
I
d
N
Y
Y
A
L
N
I

N
O

NuNnt
LAWS

*
V
L
V
O
1
D
A
L
V
a
d
n

dVYW$SY
T
I
V
O

S
L
d
N
Y
Y
A
L
N
I

A
S
O

N
Y
N
L

 
 

  
  
 

 

  

L
I
N
I
G
I

Y
v
d
T
D

 
A
S
T
M
Y
A
F
H
L
O

 

S
L
A
N
Y
Y
A
L
N
I

N
O

N
Y
N
L

I
W
S
°
*
V
L
Y
O
1
5

_
A
L
V
G
d
N

T
a
0
8
Y

T
I
V
D

SLdNYYALNI
J10

N
U
N

 
 

| 

 H
O
W

IILVIS
YOz

G3N3d0
JONIS

J
4

3so719
Ss

('

 
  Sesal

1

   

 

 y

     

g
a
s
n

O
N
Y

O
3
S
M
O
T
I
V

O
I
L
V
U
S
L
I

    
 

  

 

¥
a
L
I
~
d
d

4YO4
J
O

O
N
I
G
Y
V
I
C
T
1
I
M

N
Y
N
L

 
 

  

c
a
z
s
n

XIsasNns)

L
3
3
7
4
3
S

 
 

S
A
AT
d
o
*

N
3
H
A

-
—
—
)

COMMAND PROCESSOR1113PRELIMINARY



PRIMOS REV. 19.1 PRIMOS INTERNALS

CCOMMAND 5)
 

V

PASS |
PARSE COMMAND

LINE INTO TWO
LEVEL TREE

PASS [I]

CONVERT TREE INTO

SIMPLE THREADED LIST

EXPAND CALL DCOD_ITR

 

   
 

   

 

 
PRELIMINARY 13 - 12 COMMAND PROCESSOR



PRIMOS INTERNALSPRIMOS REV. 19.1

S
A
T
S
Y
H
N
I
A
Y
g

 

 

gsANgsNns

O
L

N
M
O
d

H
O
V
L
L
V

 
 
 

 

(9
O
N
V
W
W
O
D
)

S
1
s
y
I
d

T
W
O

1
]

  

O
N

    

N
a
n
t
a
d

A
O
N

3
1
a
v
i
n
g
a
x
a

T
A
F
]

O
L
N
I
W
A

G
3
H
I
V
3
u 
 

     

c
f

O
N\

 

 

J
O
M
Y
L
T

T
W
O

    

G
H
u
V
I
a
T
I
M

S
N
I
V
L
N
O
O
Q

  

S
S
A 

J
1aVino3aXxa

J
u
l

L
N
3
Y
u
N
I

O
N
Y

N
M
O
G

d
O
L

   

c
a
5
V
9
1
1
)

y
3
1
N
I
A
X
S

T
I
V
I

         

O
N{
1
1
M
u
l
l

COMMAND PROCESSOR

  

 
 

1313PRELIMINARY



PRIMOS INTERNALSPRIMOS REV. 19.1

 

 

 

 

 

3
0
7
1
8

L
X
A
N

1
3
5  

 

y
I
G
-
a
T
I
M

S
A
V
H

   

 
 

 

 

a
A

 
 

A
Y
O
L
I
A
Y
I
A

J
O

G
N
I

    S
W
Y
N

A
Y
L
N
A

<
Y
I
G
1
M

=
H1LVd

 
 
 

 
 

C
A
S
V
I
I
1
)

=
Y
I
L
N
I
A
X
S
A

T
W

 

 

 

O
N

 

 

 

 
4
9
0
7
1
8

a
a
y

G
3
1
S
T
Y
A
A

 
 

 

 

 
 

 

 

(
2

O
U
N
V
W
W
O
D
)
 

 

V
I
¥
a
L
I
Y
s

W
L
G

O
N
Y

a
d
A
l

O
U
V
I
G
T
I
N

d
N
l
a
s

 

 
 

4

COMMAND PROCESSOR |1413PRELIMINARY



PRIMOS INTERNALSPRIMOS REV. 19.1

  
C
A
d
A
L
°
A
G
O
N
)

4
1
3
3
7
4
5

  
 
 

 

 
J
G
O
N

L
X
3
N

1
3
9

<J

 

 

  

/
Q
Y
V
I
C
G
T
I
N

O
N
Y

Y
a
L
a
W
V
u
V
d

  

 

  

 
SNTWA-G1IM

GN3dd¥
 
 

  
 

 
 

 

S
T
d
W
I
S
™
L

N
3
H
M

 
 

yVvI
N
D
I
1

N3HM

     

 

—
j
—
—
—
—
—
-
_

 
A
N
T
V
A

3
A
G
O
N

G
a
v

 
 

V
  

Y
S
A
L
I
W
I
7
3
0

AIGON

 
a
a
y
 

 
 

 

(8
G
N
V
W
N
O
D
)

 

COMMAND PROCESSOR1513PRELIMINARY



   



PRIMOS REV. 19.1 PRIMOS INTERNALS

Saction 14 - Static On-Units

PRELIMINARY 4- 1] STATIC OGN-UNITS



PRIMOS REV. 19.1 PRIMOS INTERNALS

STATIC _ON-UNITS| :

- Static On-Units (SOU) are similar to dynamic on-units.

Handle asynchronous conditions regardless of the stack state.

- 30Us are not condition name specific. -
All SOUS are invoked for all conditions.

SOU must determine it's action by examining the condition name.

- Ring limiting feature, (Steps Pmt flee 4 vorwrprraraus} :

- SOUS must return cannot use non-local goto.

~ SOUs exist for duration of command.

- 50Us may signal conditions. -

- TfanSOUsetsthe‘crash’flag, condition ‘CRASH$’ 1ssignalled. -

~ SOU has count associated. May be ‘made’ multiple times.

Only removed when count = 0,

PRELIMINARY 14 - 2 STATIC ON-UNITS



PRIMUS REV. 19.1 PRIMOS INTERNALS

STATIC ON-UNITS -Routines

USER ROUTINES

MASONS (Souecb, code)

RVSONS (souech, code)

INTERNAL ROUTINES.

WRLS (listptr, nent)

SOURS_ (list_ptr)

SOROS

SOR3$

INSOUS (key)

PRELIMINARY

- make a SOU

- revert a SOU

return pointer to SOU list

return pointer to ring 3 SOUs

invoke Ting 0 SOUs

- invoke Ting 3 SOUs

- mark both SOU lists empty or

Clear down SOU list

4- 3 STATIC ON-UNITS



PRIMOS REV. 17. 1 PRIMOS INTERNALS

STATIC ON-UNITS - Data Structures

2 cflags /* Condition Frame CFLAGS extended #/

3 ctawlout biti),

3 continuesw bit (1), |

3 returnok bit (1), -

3 inactionok bit (1),

3 specific bit (1), -

3 ring limit bit (2), /* Stop handling condition at this ring

=Ting 1, 2 = fing 0 3 = Ping 3:

0=no limfo

3 sou_crash bit (1), /# setifsub-system unrecoverable #/
3 sou_comp findld bit (1), /# set if completely handled by SOU #/

gambz bit (7),

 

Beaconmae

PUDCOM now includes: 2 staticonunits (4), /* ting 0 SOUS #/

3 50Uech ptr, -

3 50Ustatus fixed bin(19),

CLDATA now includes: 2 Staticon_units (10), /* ping 3 S0Us #/ _

3 souech ptr,

3 50UStatus fixed bin(19), -

PRELIMINARY 144 - 4 STATIC ON-UNITS



PRIMOS REV. 19.1 PRIMOS INTERNALS

STATIC ON-UNITS - Modified Routines

DOSSUB, STDSCP - Mark SOU lists empty

7 Rig te Reg >
SIGNLS - [f crawloutneeded ring limit = 2

Invoke all ring 9 SOUs /* ping O limit #/

Tf SOUCRASH = 1 signal ‘CRASHS’

Else call CRAWL

inves '
invoke all S0Us ~~ AU ry * Ry
Tf SOUCRASH = 1 signal ‘CRASH’

Tf SOUCOMPHNDLD = 1 return

If ringlimit = 3 return /* ting 3 limit #/

otherwise handle condition

Shy tee Cn Un ls

DF_UNIT_

PRELIMINARY 4- 9 STATIC QN-UNITS



        



PRIMOS REV. 19.1 PRIMUS INTERNALS

parte Crved ~ Povnuats Dise (4“vo a

Tyues fades /0 Haves - ADA (Tom be feed

de | Used

Alem Creagh MFO

(mrp is phy étele ourvey

Section 13 - File System

PRELIMINARY lg - il FILE SYSTEM



PRIMOS REV. 19.1 PRIMOS INTERNALS
Root CRATE ( Crertes 4 Bort Trpe) —

Leen Booby pram a Pipe Bo0T SS (Se Adscon Heck)
once———

(TDISK STRUCTURES
 

A disk drive 15 divided into one or more partitions where a partition

1s one or more pairs of heads. Each partition mustcontain:

1). MED (Master file directory)
2). DSKRAT (Disk record availability table)
3), BOOT (For initial loading) -

4), UFD DOS (Initially empty - not actually required)
J). BADSPT (If badspots on the disk)

ow-Ol reCDos>* Dos bY
Each partition is divided into 1040 word records. aoeOLsacktr)

(le At Wweros)
iS-[6

The record headerVwords for storage modules devices.

 

 

The Temainder of the record holds data (1024words).
—_—

 

 

. A C yd Horde3 ple sconf ise recor -

HEADER

1040

total -

words

DATA Total oo   
PRELIMINARY lg - 2 FILE SYSTEM



PRIMOS REV. 19.1 PRIMOS INTERNALS

RECORD HEADER FORMAT - 1040 WORD

 

 

 

 

 

 

 

 

 

 

0 T

1 REKCRA RECORD ADDRESSOF THIS RECORD

2 | _
3 REKPOP RA OF DIRECTORY ENTRY OF THIS RECORD

4 REKDCT NUMBER OF IN RECORD

J REKTYP TYPE OF FILE (Only on first record)

7 REKFPT RA OF NEXT SEQUENTIAL RECORD

By _
9 REKBPT RA OF PREVIOUS RECORD

10 REALVL INDEX LEVEL FOR DAM FILES

11 |

12

13

14 Reserved

15    
PRELIMINARY lj - 3 FILE SYSTEM



PRIMOS REV. 19.1 PRIMOS INTERNALS

RECORD HEADER - Notes

1). REAPOP, The beginning record address (also known as REKBRA) of

the first record in the file points to the beginning record

address of the directory in which the file entry appears. In all

other records, REAPOP points to the first record in the file. ~

2). REKFPT contains the address of the next sequential record in the

file op, if this is the last recotd in the file REKFPT is zero.

3). REABPT contains the address of the previous record in sequence -

of, if this is the first record in the file REABPT is set to zero.

4). REATYP is valid only in the first record of a file.

Possible values are:

QO SAM file 7npn

1 DAM file
“Sol voll 4 alt Nhwes

2

SAMsegmentdirectory C50 Fes ws

4 UFD user file directory (Password)
5ACL directory -

6 Accesscategory

 

 

If the file is BOOT (Record 0) or DSKRAT bit 1 of REKTYP will be set.

PRELIMINARY 19 - 4 FILE SYSTEM



PRIMOS REV. 19.1 PRIMOS INTERNALS

 

aTFoe}
Jo Uyvie

CHANGES TD THE DSKRAT: Jose le

- CYLS: number of cylinders (tracks) on this device

~ REVNUM: revision stamp

dcl 1 diskrat based, /* Usually found in LOCATE buffer #/

2 len fixed bin, /% no. of words in DSKRAT header %#/

2 Tecsize fixed bin, /* phys. record size (48or1040)#/
2 disksize fixed bin(31), /# number of recordsin partition #/

2 heads fixed bin, /* number of heads in partition  #/ -

2 spec bits,
 

ders ars Shad clan

 

  
 

3 dummy bit14), py Lonpripesty

3 crash bit(), /*improperly shut down last time#/

3 dos bit(l), /# DOS modified or perm. broken  #/
2 cyls fixed bin, /#number of cylinders (tracks) #/
2 rev_num fixed bin, /# Rey. number #/ a

2 pat(0: 1015) bit (14) aligned;Theitself #/
(9-/018 fe cutd5

 

PRELIMINARY 19 - 9 FILE SYSTEM



PRIMOS REV. 19.1 PRIMOS INTERNALS

OLD BADSPOT FILE FORMAT penjte Pr, poke ov fixed OxS¢

- Save memory image. Can be ReSTored, then modified with VPSD.

~ N entries in the file. One for each badspot.

- Each entry consists of: track number and head number.

NEW BADSPOT FILE FORMAT - MOTIVATION -

- Single record badspots, instead of mapping out a whole track.

- Allows remapping of bad records (COPYDISK, PHYRST).

IMPLEMENTATION

~ Created by MAKE, or FIX_DISK with ~CONVERT_17.

- COPYDISK and PHYRST do not understand file system structures. .

Create an ‘equivalence’ black to a goodspot.

~ FIXDISK and MAKEunderstand file system structures.

Adjust the DSARAT to include remapped badspot entries.
 

~ PRIMUS does not create badspotentries, nor remap badspots.
nn

- Primos preloader will use new BADSPT file to avoid badspots on

the paging surface.

PRELIMINARY 19 - 6 FILE SYSTEM



PRIMOS REV. 19.1 PRIMOS INTERNALS

NEW BADSPOT FILE FORMAT - Data Structures

- BADSPT file header:

dcl 1 badsptfileheader,

2 bad blkoff fixed bin, /# offset of the ist badspt blk #/

2 MBZ fixed bin, /* must be zero #/

2 filesize fixed bin, /* 5178 of the badspt file #/

2 peservel5) fixed bini

| - Badspot entry:|
_

del 1 badsptblkheader,
e bcw /% block control word 4/

3 type 61044), /* Block type (badspt blk type = 0) #/

3 length bit(i2), /# length of this block #/

2 badsptblk((badsptblkheader. Dew length-1)/2)

6S track fixed bin, /# tracknumber” 4/

3 sector bit(8),  /# sectornumber+l, 0 for whole track#/

3 head bit(B);  /# head number #/
a

PRELIMINARY 9 - / FILE SYSTEM



|
PRIMOS REV. 19.1 PRIMOS INTERNALS

NEW BADSPOT FILE FORMAT

 

(=Renapped badspot entry.) ”

dc] 1 eqvblkheader,
neneee

 

2 bc, /* block control word #/ -

J type bite4), /* type of this block

(egy Blk type = 1) #/

3 length bit(l2), /* length of this block 4/

2 egyDlk((eqvblkheader. bew. length-1)/2)

3 badtrack fixed bin, /# bad track number #/ -

3 badsector b1it(@), /* bad sector numberti #/

3 badhead 610(8), /* bad head number +/

J eqvtrack fixed bin, /# equivlant track number #/

3 eqysector bit(8),  /# equivlant sector numbertl +#/

3 eqvhead b1t(8); /* equivlant head number #/

PRELIMINARY 15 - 8 FILE SYSTEM



=
rn

PRIMOS REV. 19.1 PRIMOS INTERNALS

DIRECTORY STRUCTURE

 

-A directory is a header followed by a bunch of entries.
a omae meaoa - pect eneetONA

 

Directory Header

 

4
2
\
\
§

S|
{oS

File Entry > fh fo [ale

 

ACL

 

hole

 

Directory Entry   
-Note: ACLs are embedded in the directory itself.

PRELIMINARY 9 - 9 FILE SYSTEM



PRIMOS REV. 19.1

dcl 1 dirhar based,

2 ecw like ecw,

PRIMOS INTERNALS

DIRECTORY STRUCTURE

2 ownerpassword char(6),

2 nonownerpassword char(é),

2 sparel fixed bin

2 maxquota fixed bin (3),

2 dir_used fixed bin (gl),

2 treeused fixed bin (31),

2 rec timeprod fixed bin (31),

2 proddtm like fsdate,

2 spared(3) fixed bini

del 1 ecw based,

2 type bitte),

2 len b1t(8);

replace dirhdrecut

vacantecwt

fileecut

acccatecwt

aclecut

PRELIMINARY

by
by
by
by
DY

01 "D4;

02 ‘D4,

03°D4,

04°D4,

09 'D4;

13

/* dip header entry structure #/

/* Quner password | #/

/* Nonowner password #/

/% Max Quota #/

/* Quota used in this dir #/

/* Quota used in whale subtree#/

/* Record/time product #/

/* DIM of record/time product #/

(rotuat Tyee eney|
/* Entry control word #/

/* Type of entry #/

/* Length of entry #/

/* ECW types: directory headert/

/% vacant entry 4#/

/% file entry #/

/% access category #/

/% ACL itself #/

10 FILE SYSTEM



PRIMOS REV. 19.1 PRIMOS INTERNALS

DIRECTORY STRUCTURE - Entry Types

~ Directory Header

- Vacant Entry: Unused entry (hole) in the directory.

~ fileent. fileinfo. type

| - Normal Entry: Describes a file: SAM 0

- DAM 1

SEGSAM 2

SEGDAM 3

or a directory: Password 4

~ ACL d

~ ACL Entry: Set of access pairs.

- Access Category: Named ACL. Always points to an ACL entry.

PRELIMINARY 15 - il FILE SYSTEM



PRIMOS REV. 19.1

SEGMENT DIRECTORY FORMAT ( Fon ov ogying fete)

 

BRA 0

 

BRA 1

 

c
n
a

GC
)

M
Q
&

C
S

 

 

en

antl
 BRA n   

PRELIMINARY

Beginning record address

PRIMOS INTERNALS

of the first file in the directory

Beginning record address

of second file in directory

Null entry

Beginning record address

of the last file in the directory

13 12 FILE SYSTEM



PRIMOS REV. 19.1 PRIMOS INTERNALS

Ly | cliyh

SAN FILE — Gd vp 7? redSequeTo
h

Lins four x AAdaopd pre 7

( Specrfrean Smfob)
 

ENTRY TT
r 0

 

First recor

UFD  

 

  

   

 
 

  
       
 

Last record
 

 

 

 

   

PRELIMINARY 15 - 13 FILE SYSTEM



pms wey
: PRIMOS INTERNALS |

Lina ted ty S12 Etms
_

JA col ertvel rtudia -
DAM FILE (single level) fav Won Sequetueh ; |

[ ywdervensg cud)

 

 

 

 

 

 

 

 

 

  

 

  

je ty Wet rec RECORD 0 DATA

Ky Yue recar redng
RECORD 1

T hi rs wm Address of

UrD
Address of

Record 2

Entry

Address of

Record 3 DATA

RECORD 2

DATA

RECORD 3   
 

PRELIMINARY 15 - 14 FILE SYSTEM



PRIMOS REV. 19.1 . PRIMOS INTERNALS

DAM FILE (MULTILEVEL)
 

 

 

 
 

 

 

 

   
         

  
 

 

 

 

  
  
 

  

 Levet 1. DATA LEVEL
LEVEL 2 RECORD l RECORD 1

| : -
7; ADDRESS_ OF ADDRESS_OF |-—~'

RECORD l A RECORD l

UFD ADDRESS _OF ADDRESS_OF
| RECORD 2 RECORD

ENTRY | po
ETC

DATA LEVEL
, : : RECORD 2

.
(

: i

oh rl 404 Lipt

. ! ;
‘pAANA

SI

'

Z LEVEL l v

Fler Yer ptr _ RECORD 2 DATA LEVEL
a 7 RECORD

| | ADDRESS OF
YA sueg't fm fre RECORD N  [——~3

| ADDRESS OF
RECORD N tl

ad

RECORD N tl

t

y

[eer

t

1

|

Vv

PRELIMINARY 15 - 15 FILE SYSTEM



PRIMOS REV. 19.1 PRIMOS INTERNALS

DIRECTORY STRUCTURE  .
Normal Entry
 

-ACL_POS —

Position in the directory of the ACL protecting this object.

if specific protection then pointer is to an ACL.

if category protection then pointer is to access category.

if default protection then pointer is zero.

 

 

 

 

 

 

 

 
 

Nour Ww

aco qe Directory ,Header ~

Ha Sol Accle aq.file _

ce notes.ufd :

eV

pr ivate.acat -

ety ACL

ACL oe an
 

 

    b. file = 0 OEbe

-Notes the ACL protecting this directory Lives in the

directory along with the entry describing this directory. ~

PRELIMINARY 15 - 16 FILE SYSTEM



PRIMOS REV. 19.1 , PRIMOS INTERNALS

 

DIRECTORY STRUCTURE - Normal Entry Sea ene

~ Normal entry for a file or directory:

dcl i fileent based, /* Structure of file entry #/
2 ecw like ecu,

2 bra fixed bin (31), /% bra of file 4/

2 sparel(3) fixed bin,

2 protec bit (16), /* Protection keys — #/
2 aclpos fixed bin. § /# Position of ACL, assumes

dir <= 44k #/

2 dtm like fsdate,

2 fileinfo,

J long _rat:hdr bit (1), /* ‘B000'b4: file is a long RAT #/
. 3 dumped bit (1), /* ‘4000'b4: has been backed up #/

3 dosmod bit (1), /* '2000'b4: modified under DOS #/
3 special bit (1), /# ‘1000'b4: Special file #/
<3 twlock bit (2), /% Bits 9-6: Concurrency lock  #/

3 spare bit (2), /* Bits 7-8: Unused */

3 type bit (8), /* Bits 9-16: File type #/

2 scw fixed bin, /% Length of name subentry #/

2 fame char (32); /* Name of object #/

PRELIMINARY 15 - 17 ~ FILE SYSTEM



PRIMOS REV. 19.1

DIRECTORY STRUCTURE - ACL Entry

FORMAT OF AN ACL:

- An ACL consists of three parts:

A userid section

— AN ACL groups section

A $rast section.

 
 

~ Each section 1s a set of access pairs.
seeEE

~ An ACL may be up to 29) words in length.

- Each access pair specifies ACL rights for:

Ring1 (not implemented)
Ring 3

PRELIMINARY 19 - 18

PRIMUS INTERNALS —

FILE SYSTEM



PRIMOS REV. 19.1 PRIMUS INTERNALS

DIRECTORY STRUCTURE - ACL Entry

- Directory entry for an ACL:

dcl 1 acl_ent based, # Dir entry for an ACL #/

2 ecw like acy, (Ewrry cortd word Jy See above #/

2 usercount fixed bin, | /* Number of user entries #/

2 groupcount fixed bin, ij /* Number of group entries #/

2 version fixed bin, /* Version number of structure +#/

2 sparel fixed bin,

2 group offset fixed bin, /* Relative position of first

( qroup entry #/

2 restaccesses like accesses, /# Rights for $REST #/

2 ownerpos fixed bin, /* Position of owner in dir #/

2 dtm like fsdata, /* Date/time last modified #/

2 spared fixed bin,

2 entry like codedaccess; /* See below #/

PRELIMINARY 19 - 19 FILE SYSTEM



PRIMOS REV. 19.1

DIRECTORY STRUCTURE - ACL Entry

|
PRIMOS INTERNALS

- Format of a Single access pair:

del 1

del i

del 1

codedaccess based,

2 scw fixed bin,

2 access like accesses,

2 spare(2) fixed bin,

2 id char(32) vari

accesses hased,

2 Tingl like acc bits,

2 Tings like accbits:

accbits based,

2 protect bittl),

2 delete bit(1),

2 add bit(l),

2 list bith),

2 use hittl),

2 execute biti),

2 write bittl),

2 Tead bittl)i

PRELIMINARY

/* Entry in an ACL */

/* Length only #/

/% <access? 4/

/% <id? #/

/* A 16-bit access word #/

ee6
/* Access bit definition ‘2
/* Directory accesses -- Protect #/ 4

/# Delete #/ 0

Add =4/ |
/e List #/ '*

/% Use HP 9 =

/* File accesses -- Execute #/ as

/t Write #/ 0
/# Read ¥#/ (6

19 - 2 FILE SYSTEM



PRIMOS REV. 19.1 PRIMOS INTERNALS

DIRECTORY STRUCTURE - Access Category Entry

~ An access ¢ 1s famed ACL

~ [t 15 a pointer to an ACL entry.

~ Each file system object protected by the category points to the

access category entry, not the ACL itself.

~ The name field of an access category iS always padded to 32

Characters in order to reduce directory fragmentation.

dcl 1 acccatent based, /* access Category directory entry #/

2 ecw like ecw,

2 sparel(6) fixed bin

2 aclpos fixed bin, /* Position of ACL itself #/

2 dtm like fsdate, /% Date/time last modified #/

2 filetype fixed bin, /# For compatibility with normal entry #/

2 scu fixed bin, /* Length of name subentry #/

2 fame char (32); /* Name of object, (padded to d2 chars)#/

PRELIMINARY i5 - di FILE SYSTEM



     



PRIMOS REV. 19.1 PRIMGS INTERNALS

Section 16 - Unit Tables

PRELIMINARY 16 - | UNIT TABLES



PRIMOS REV. 19.1 . PRIMOS INTERNALS

UNIT TABLES (le uatts)

OLD METHOD

~ Unit tables statically allocated at cold start (AINIT).

- 2048 file units per system.

NEW METHOD

- Per-User unit tables allocated/deallocated dynamically.

- Constrains working set of unit table databases to what is

actually being used.

~ Vital statistics:

3247 file units available per system

16 guaranteed per user (default)

1 system unit per user (unit #0)

3 attach points (home, current, Initial) per user

127 maximum ‘usable’ file units per user

PRELIMINARY th - 2 UNIT TABLES



PRIMOS REV. 19.1 PRIMOS INTERNALS

UNIT TABLES - Definitions

~ A unit table (ut) 15 a list of pointers to unit table entries.

~ A hash table is a set of pointers to linked lists of unit

table entries.

- A unit table entry (ute) desribes a file system object that is

currently in use via the file system.

~ A file system object 1s a data file, directory or access category.

These objects may reside on a local or a remote system.

- UTBIMP is the unit table bit map, 128 bits (8 words).

~ UTBITS 15 the unit table entries bit map, 3247 bits (203 words)

Each ut or ute has one bit corresponding to it:

= in use

=] available

The first available ut or ute is always allocated.

PRELIMINARY 16 - 3 UNIT TABLES



PRIMOS REV. 19.1 PRIMOS INTERNALS

TABLES

The following steps are performed in order to use a file system object:

- Allocate a unit tabla:

For system user at cold start (BINIT) -

for terminal users during login (NLOGIN)

for phantom users by spawner (PHNTM$) :

for slaves when they are awoken (NPXPRC)

- Allocate a unit table entry when a file system object is ‘opened’. _

- Accass the ute:

by the file system via the hash table.

by a user program via the unit table.

~ Deallocate the ute when the object is ‘closed’.

- Deallocate the unit table:

for terminal/phantom users during logout (LOCLEAN)

for slaves when they go to sleep (NPXPRC)

PRELIMINARY 16 - 4 UNIT TABLES



PRIMOS REV. 19.1

(File_OW (75
Da te Structures
 

pudcom. Lusr indexed_by unit

 

 

 

 

 

    

    
 

 

    

 
 

USRCM$
: —1

Unit Table Cut) ute
Ut

TT
OF system unit | —1 ——

usable file units Ut

127:
128% current attach point

129:

home

attach

point

uth | __f
130% {nitiel attach point

KON
| .

\ 1 ae

|

UTBTMP ut |

QO

|

1007777771111111 -

Po) 29777777777717711 3247

2-6\ |

7 f19990999999191119

PRELIMINARY 1 - 9

 

PRIMOS INTERNALS

UNIT TABLES (igo ere se

UTCOMS
 

 

 

 

 

 

   
 

   

UNIT TABLES



PRIMOS REV. 19.1 | PRIMOS INTERNALS

UNIT TABLES :
Data Structures
 

 

 

 

 

 

 
   

  
 

 

   
 

   
 

Idev/bra -UTHASH UTCOM$

1 FS>UTESEG —

—— ute| Segment 40

acerca -

|

20 WORDS -
|
iY Lug _

257 —

I

l\i \ -
l
| .

UTBITS | 3247
   

 

QO

|

1010101111111711

7

3

11172721717711711111

2-202 |

POR?

|

1117117111111111
 

PRELIMINARY 16 - 6 UNIT TABLES



PRIMOS REV. 19.1 PRIMOS INTERNALS

  

IUIT TABLES -Types of UTES)
 

 

eneeenneeneneeneennenere

[nN Menevy

Files: SAM, DAM, SEGSAM, SECDAM

Directories: Password protected

ACL protected

Attach Points: Password protected

ACL protected

Access Categories

Remote Units (of any type)

New Elements of a File/Directory UTE

ACCESS ACL access allowed for this user on this file/dir.

(Owner/Non-owner access 15 mapped to ACL access)

QUOTABLAPTR Pointer to the quota block chain for this file/

directory to maintain quota information.

DIRBLAPIR Pointer to the directory block for the parent of this

file/directory to maintain record usage information.

PRELIMINARY 16 - / UNIT TABLES



PRIMOS REV. 19.1), ry corr ptluch to Avetores PRIMOS INTERNALS

UNIT TABLES - Data Structures

- Files and directories (not opened as attach points):

Del 1 utcme based,

2 vstat like statusbits,

2 ita fixed bin (31),

2 ldevno fixed bin

2 curta fixed bin (31),

2 Telwordno fixed bin,

2 relrecno fixed bin (31),

2 Twlock 6148),

2 access like accessbits,

2 parentbra fixed bin (31),

2 posinparent fixed bin,

2 hash thread fixed bin,

2 quotablkptr fixed bin,

2 dirblkptr fixed bin,

/* File/Directory Unit Table Entry #/

/*# See below #/

/* BRA of fila */

/# logical device number #/

/* current t.4a. in file +/

/* position within current record#/

/* ordinal record no. in file  4#/

/# Read/write concurrency lock  #/

/#alloved #/
/*BRA of parent directory “oe“#/
 

/* position in parent rule #/

/* hash thread */

/# Quota block pointer #/

/* Directory block pointer #/

2 damidxra fixed bin (31), /# current r.a. in DAM index */

2 spare(2) fixed bini

PRELIMINARY 16 - 8 UNIT TABLES



PRIMOS REV. 19.1 PRIMOS INTERNALS

UNIT TABLES - Data Structures

del 1 dir_utcme based, /* attach point Unit Table Entry #/

2 vStat like statusbits,  /# See definition below t/

2 bra fixed bint), /# BRA #/

2 ldevno fixed bin, /* Logical device number #/

2 curta fixed bin{3l), /* current T.4. in file */

2 Telwordno fixed bin, /* position within current record#/

2 rel recno fixed bin(31), /# ordinal record no. in file 4#/

2 access, /# Access rights #/

3 Ting! like accessbits, /# in ting 1 #/

3 Tings like accessbits, /* and ring 3 #/

2 parentbra fixed bin (31), /# BRA of parent directory #/

2 posinparent fixed bin. /# position in parent #/

2 hashthread fixed bin, /*# hash thread | #/

2 quotablkptr fixed bin, /# Quota block pointer #/

2 dirblkptr fixed bin, /# Quota directory block pointer #/

2 aclbra fixed bin (31), /# BRA of directory containing ACL +/

2 aclpos fixed bin, /* Position of ACL in dit #/

2 spare fixed bini

PRELIMINARY 16 - 9 UNIT TABLES



PRIMOS REV. 19.1 PRIMOS INTERNALS

New Elements of an Attach Point UTE

ACCESS. RING] ACL access available under ting 1. (not implemented)

ACCESS. RINGS ACL access available under ring 3. -

(Access trom Ting 0 is ALL),

QUOTABLKPIR Pointer to the quota block chain for this directory. ~

DIRBLAPIR Pointer to the directory block for this directory

(not the parent).

ACLBRA BRA and word offset pointing to the ACL protecting ~

and ACLPOS this directory.

Remote Units

- Remote units are a ‘pointer’ to a remote ute.

Del 1 rem_ute based, /# UTCOMS entry for remote units #/

2 vstat like statusbits,

2 mastertoslave fixed bin. /# NPX Master-Slave Mapping #/

2 Tealldevno fixed bin, /# Ldev (normally in ldevno) #/

2 negativenode fixed bin. /# ~(node no. of Temote system) #/ -

2 packname chat (32); /* NPX Packname #/

PRELIMINARY 16 - 10 UNIT TABLES



PRIMOS REV. 19.1 PRIMOS INTERNALS

UNIT TABLES - Data Structures

dcl 1 statusbits based,

2 modified bit (1),

2 sysuse bit (1),

2 shtbit bit (1)

2 noclose bit {

2 spare bit (1),

2 filetype bit (a),

2 openmode bit (8);

L),

filetype:

Sam_ftype by 9,

damftype by 1,

samsegftupe by 2,

damseqftype by 3

«dirftype by 4,

acl dirftype by 3,

acc catftupe by 4:

PRELIMINARY

/* VSTAT definition #/

/# modified— #/

‘/#openforsystemuse #/
/# device shut down x/
/* special file, not closed byC -ALL #/
 

/* Defined below 4/

/* Accesses which file is opened with #/

/* File types: SAM file #/

/* DAM File #/

/% SAM segment directory #/

/* DAM segment directory #/

/# Directory #/

/# ACL directory */

/* Access category #/

i6 - il UNIT TABLES



   



PRIMOS REV. 19.1 PRIMOS INTERNALS

Section 17 - Locate Mechanism

PRELIMINARY lj - 1 LOCATE MECHANISM



PRIMOS REV. 19.1. PRIMOS INTERNALS

BUFFER CONTROL BLOCK (BCB)
 

 

 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

0 HASH THREAD BUFLNK 4 Vo 8 :
1 [Logical dev | Record | Burra 2
2 ADDRESS cole buffers
3 | BRA of file record is in _|  BUFBRA | -
4 |
5 Process no. | Hash inder BUFUSR IN hina Ve

6 User count_| Flag bits BUFLAG vowsSFTgains] —
L | REKCRA\ ictnn |

ae | REKPOP
10 -
11 REKDCT -
12 REKTYP disk
13 Z _|— REKFPT record ~

14 header

bp o£ | REKBPT -
16 |
17 REKLVL
19 ADDRESS OF PTW FOR BUFFER BUFPMP -
19 LRU THREAD FOR | BUFTHD
20 UNUSED BUFFERS
2} length of BCR BFCLEN   

FLAG BITS 14 = BUFFER MODIFIED ~

15 = BUFFER IN TRANSITION

14 = UPDATE MISSED

PRELIMINARY lj - 2 LOCATE MECHANISM



PRIMOS REV. 19.1

 

   

PRIMOS INTERNALS

 

Q = BUFNEW
DECREMENT
USAGE COUNT    

    

UNWIRE THE

Y BUFFER PACE  
  

THREAD
= 8CB ONTO 

 

UNUSED LIST    
 

 

 
  

 

IN HAS
 

 

 

  

 

  

FORM RADEV

BUFNEW
=O

?

N

I Mts
BCB CBUFRA)ad FIND 1st BCB

=RADEV ON UNUSED LIST
? & UNTHREAD IT

y

PRIN UNHASH FROM
| HASH TABLE

7), Syme
WIRE PAGE

SET WINDOW
CLEAR STBLn
UPDATE USAGE
CNT SET SUPNEW
 

  
WRITE OUT
OLD RECORD
lf NECESSARY
 

  

READ IN
NEW RECORD
 

  

‘HASH IN BCB 
PRELIMINARY

  
lj -

     

   
   

 

TABLE AT HASH
ADDRESS

 

Y

 

UNUSED LIST
 

  

WIRE PAGE

 

el   
  

SET WINDOW
CLEAR STBLn
UPDATE USAGE

CNT SET BUFNEWr    

“To Faund)
Un USENGCE

3 LOCATE MECHANISM



PRIMOS REY. 19.1 PRIMOS INTERNALS -

ASSUCTIATIVE BUFFERS - CONFIG DIRECTIVE

Previously- there were always 64 associative buffers which resided

in segment 1.

Now there can be any where from8to206associative bufrers.

Mew CONFIG directive: NLBUF n

here n = the octal number of LOCATE buffers to use.

The buffers will reside in segments 90 ~ Ju.

The #21 word Buffer Control Block (BCB) 18 wired at cold start.

The LOCATE buffer is only wired when if 15 in use.

The optimal number of associative buffers depends on the system.

If the LOCATE miss rate 15 greater than 10 percent,

NLBUF should be increased until

However, if PF/S is greater than 19, do not increase MLBUF,

PRELIMINARY 17 - 4 LOCATE MECHANISM



PRIMGS REV. 19.1 PRIMOS INTERNALS

Section 18 - Disk Quotas

PRELIMINARY ig - | DISK GUUTAS



PRIMOS REV. 19.1 PRIMOS INTERNALS

DISK QUOTAS

MOTIVATION

- Provides administrative control over disk usage.

- Quota limits the number of records a single directory or

directory sub-tree can use.

IMPLEMENTATION

- Specifed on a per-ufd basis. -

~ Units are physical disk records (2kb).

~ Quota of zero means unlimited record usage is allowed.

- Quota may not be set on an MPD.

- Requires rev 19 disk format.

Note: No temporary file allowance, nor login/out quota. ~

PRELIMINARY lg - @ DISK QUOTAS



PRIMOS REV. 19.1 . PRIMOS INTERNALS

DISK QUOTAS
Example
 

toe Set PAK bee

SET_QUOTA ufd_a -MAX 1000MFD
 

 

 

UFD_A
meet,

mm,

a“ ms,

hn ] O }one   
   

 

SQ ufd_a>ufd_e -MAX 500

   

 

UFD_B UFD_C

: aN
(q=700) { g=500 )     

 

  

  

FILE_A
   

The quota set on UFD_B is 700 records.
The quota set on UFD_C is 500 records.
The parent directory UFD_A has a quota of 1000 records.

The total records that can be used by
the entire sub-tree CUFD_A, UFD_B, UFD_C)
is 1000.

PRELIMINARY 18 - 3 DISK QUOTAS



PRIMOS REV. 19.1 | PRIMOS INTERNALS

QUOTAS

- Quota and non-quota directories may be intermixed in the same

subtree.

- A quota directory can be subordinate to a non-quota directory, -

and vice versa.

- Two counters are maintained:

DIRUSED: number of records used by this directory.

QUOTALEFT: number of records still available to this subtree.

- Each time the DIRUSED count changes for any directory, ”

the quota for that directory must be updated (if there 15 one). -

- Each time the QUOTALEFT count changes for a quota directory,

any superior quota directories must have their quotas updated.

PRELIMINARY 18 - 4 DISK QUOTAS



PRIMOS REV. 19.1 | PRIMOS INTERNALS

DISK QUOTAS - Data Structures

DIRECTORY BLOCKS (DB)

~ Qne directory block 15 maintained for each open attach point on

the system. : |

- The dirblock contains:

USECOUNT: number of open attach points using this block.

DIRUSED: number of records used by this directory.

NOTMODIFIED: flag indicating if DIRUSED has changed

(and info must be written back to disk).

PRELIMINARY IG - 9 DISK QUOTAS



PRIMOS REV. 19.1 PRIMUS INTERNALS

DISK QUOTAS - Data Structures

Slut (wk le iad ot He lauref 44

Mood At -— Werv om “Fa level

QUOTA BLOCKS (QB)

- A quote block is maintained for each open attach point which

has 2 quota.

- A quota block 15 maintained for each superior directory of an

attach point which has a quota.

= These quota blocks are chained together.

- If two open attach points are constrained by the same quota

directory(s), then they will share the quota block chain.

- The quotablock contains:

USECOUNT: number of open attach points using this block.

QUOTALEFT: the number of records still available under the

quota at this directory level.

PARENTPTR: pointer to any superior quota directory

(zero if none).

PRELIMINARY 18 - 4 DISK QUOTAS



PRIMOS REV. 19.1 PRIMOS INTERNALS

DISK QUOTAS - Data Structures

dcl 1 quotablock based,

2 usecount fixed bin, /# Use count #/

2 ldevno fixed bin, /* Ldey of directory */

2 bra fixed bin (31), /# BRA of directory #/

2 hashthread fixed bin, /* Hash thread link to next block#/

2 parentotr fixed bin, /* Pointer to superior block #/

2 quotalett fixed bin (31); /# Amount left in tree #/

dcl 1 dirblock based,

2 usecount fixed bin, /* Use count #/

2 ldevno fixed bin, /* Ldey 4/

2 firstra fixed bin (31), /# BRA | */

2 hashthread fixed bin /* Link to next block #/

2 dtype,

2 type bit (15), /* Type of block +/

3 not_modified bit (1), /* Quota not modified if on #/

2 dir_used fixed bin (31);  /# Amount used in this dir #/

The type of the block is maintained in the DTYPE (PARENTPTR) field.

The value is -1 for dirblocks (-2 if modified).

All other values indicate quotablocks.

PRELIMINARY ig - / DISK GUOTAS



|
PRIMOS REV. 19.1 PRIMOS INTERNALS

QUOTAS

MAINTAINING DIRECTORY/QUOTA BLOCKS: -

- Since directory and quota blocks are the same size, they are

stored in a common area (GBCOM$). _

- Directory/quota blocks are allocated/deallocated in a manner

similar to unit table antries.

The hash table is GBHASH. _

The bit map is QBBITS.

- Quotablocks are Chained (threaded) together according to

directory level (PARENTPTR).

- GHCOMS (QBHASH, GBAENT and QBBITS) are protected by the UTLOK.

- Up to 2048 quota/directory blocks may be in use at any one time.

~ The hash table (QBHASH) has 257 entries which point (up) to 2048 _

quota/dirblocks. Therefore both quote and directory blocks are

independently threaded together in hash chains (HASHTHREAD). -

PRELIMINARY 18 - & DISK QUOTAS



PRIMUS REV. 19.1 : PRIMOS INTERNALS |

DISK QUOTAS

Q6COM$ - fs>seg10.pma -Segment 10

Idev/bra
V

QBHASH
 

 

QIBKENT Quota_bLlock

(parent_ptr)

Chash_ thread)

 

 

 

 

 oo

Dir_bLlock
   

 \ Chash_ thread)
ncagree

  
Quota_bLlock [fF
(parent_ptr)

(hesh_ thread)

207 Dir_bLoék

 

 

     

   
QBBITS “| Dinblock
 

7 00000111111111711

2 171771779717711911 Q
\3-127, ! ‘ | »

\ : \*

   
 

Dir_bLlock

128] 727771717127711111711    Chosh_ thread)
 

  2048

PRELIMINARY 16 - 9 DISK QUOTAS



PRIMOS REV. 19.1 : PRIMOS INTERNALS |

DISK QUOTAS

Examp Le

ATTACH to top-Level UFD_A -ATSABS calls AT_CLEAN:

if UFD_A = quote_dir ~
- then allocate QB

allocate DB

MFD

 

 

 

DB. —=——UFD_A r= OB

     g=1000  

   

PRELIMINARY ig - 10 DISK GUOTAS



PRIMOS REV. 19.1 - PRIMOS INTERNALS |

DISK QUOTAS

Example

ATTACH to subufd UFD_C -AT$REL calls AT_CLEAN:

if UFD_C=quota_dir

then allocate Q6

if UFD_C=new attach point
then deallocate old DB

allocate DB |
(QB for UFD_A is still in use by our new attach point)

MFD

|
UFD_A ->——= OB

  

   g=1000

   
 

 

    

DB UFD_C Q6

g=300 :

   
PRELIMINARY 18 - il DISK QUOTAS



PRIMOS REV. 19.1 : PRIMOS INTERNALS |

DISK QUOTAS
Example
 

Here is what QBCOM$ Looks Like after the two attaches: — _

  

  

 

 

QBHASH QBKENT 1 ~
1

Idev/bra | QB — UFD_A _

(UFD_A)D | (perent_ptr)

Chash_ thread) _

oe

DB - UFD_C
   
  

{

\ ! \ Chash_ thread)

QO
| \ QB - UFD_C

(parent_ptr) —

Idev/bra___| | Chash_ thread)

(UFD_C) 257 T ~
|

NG \
|

    
 
     
    2048

PRELIMINARY 18 - ie DISK QUOTAS —



PRIMOS REV. 19.1 : PRIMOS INTERNALS

DISK QUOTAS
Example

OPEN FILE_A -SRCH$$

qllocate unit table entry

set UTE.DIR_BLK_PTR to

parent CUFD_C)

set UTE.QUOTA_BLK_PTR to

First quota parent CUFD_C)

inerement USE_COUNT

for DB CUFD_C)

increment USE_COUNT

for QB chain CUFD_C, UFD_A)

C(USE_COUNT is now 2;

1 for attach + 1 for open)

 

 

     

 

 

 

 

      

 

 

 

       

MFD
b

UFD_A

g=1000 “| QB

UFD_C |
pB Of ~~ -—* OB
i g=500

Y

FILE_A UTE

  
PRELIMINARY 18 - id DISK GUOTAS



PRIMOS REV. 19.1 PRIMOS INTERNALS |

DISK GUOTAS - Example -

WRITE TO FILE_A - PRWFS$ calls GETREC: -

DIR_USED = DIR_VSED + 1

reset NOTMODIFIED bit ;

if UFD_C = quotadir then QUOTALEFT = QUOTALEFT - 1

TRUNCATE FILEA - PRWFS$ calls TRUNCS calls RINREC:

DIR_USED = DIR_USED ~ 1 -

reset NOTMODIFIED bit

if UFD_C = quotadir then QUOTALEFT = QUOTALEFT + 1

CLOSE FILE_A - SRCH$$ calls CLOSE: : ~

if ditblock. NOTMODIFIED = false

then update DIRUSED on disk (UFD_C)

update QUOTALEFT on disk (UFDC) -

do while parentptr <> 0

update QUOTALEFT on disk (UFD_A) ~

decrement USECOUNT for DB (UFD()

decrement USE_COUNT for @B (UFDC)

if USECOUNT = 0 then deallocate dir/quota block _

(The USECOUNT = 1 because we ate still attached to UFDC)

PRELIMINARY ig - 14 DISK QUOTAS —



PRIMOS REV. 19.1 : PRIMOS INTERNALS

DISK QUOTAS
Example

ATTACH TO UFD_A -AT# calls AT_CLEAN:

if UFD_A = guota_dir then

increment USE_COUNT for Q6 CUFD_A)

if UFD_B = new attach point then

decrement USE_COUNT for old DB CUFD_C)

if USE_COUNT = O then

deaLLlocate old DB CUFD_C)

decrement USE_COUNT for QB CUFD_AD

(this USE_COUNT is still 17

because we are attached to UFD_A)

aLLocate DB CUFD_A)

MFD
y

UFD_A

DB g=1000

 

 

 

 

     

    
  

UFD_C

g=500

 

  

FILE_A    
PRELIMINARY 1B - Ls DISK QUOTAS



       



PRIMOS REV. 19.1 PRIMOS INTERNALS

Section 19 - Attach

PRELIMINARY 9 - | ATTACH



PRIMOS REV. 19.1 PRIMOS INTERNALS ~

ATTACH

~ Functionality has changed due to ability to completely exclude a

user from an MPD with ACLs.

~ Duplicate packnames no longer allowed. -

- Passwords no longer converted to upper case by attach routines.

~ Attach routines allow ring 0 callers to override access priviledges.

~ New routines:

TAS —> ATCHSS /
ATSABS

ATS
ATSANY

AT_CLEAN

ATSHOM

ATSREL

ATSOR

PRELIMINARY 19 - 2 ATTACH



PRIMOS REV. 19.1 PRIMOS INTERNALS

ATTACH - ATSANY attach scan

Do (for each local partition) While (not found)

("open” MPD of this partition)

lf (have rights to this MFD)

Then (search for entry with given name)

Tf (directory found)

Then If (have access to directory)

Then (set new currant)

If (requested to set home)

Then (set new home)

Else (insufficient access rights)

| Else (go on to next partition)

End /# Do While

If (not found locally) ~
Then Do (for each disk in the disk list) While (not found)

[f (disk 18 remote)

Then (start ramote search list)

Do While (next disk iS on same node)

(next disk in list)

(add next disk to list)

(search remote system with ATLIST through RSCALL)

lf (found)

Then (set up remoteness by Atadrem)

End /# Do While

PRELIMINARY 9 - 9 ATTACH



PRIMOS REV. 19.1

ATCLEAN - Common clean up for ATS routines.

- Validates new attach point.

ATTACH

- Releases current attach point.

PRIMOS INTERNALS

- Sets up new current (and possibly home) attach point(s)

~ Allocates new unit table entry.

- Allocates dirblock to maintain records used info.

~ If a quota dit, allocates quotablock to maintain quota info.

- Sets up pointers to the ACL protecting this directory.

PRELIMINARY ATTACH



PRIMOS REV. 19.1 PRIMOS INTERNALS

CALCULATING ACCESS

WHO 1S THIS USER?

- A user is identified via:

a Unique userid

a set of ACL groups the userid 15 a member of

User Id:

 

- Stored in the process’ UPCOM.

ACL Groups:

~ Stored in the Active Group Table (AGT).

- A user may be a member of up to 32 ACL groups.

- All active ACL group names are stored in the AGT.

- For each user, there is a d2 word index table.

- The index table points to the names of the ACL groups that

process 1$ a member of.

PRELIMINARY Qo - 3 ATTACH



PRIMOS REV. 19.1 | PRIMOS INTERNALS

ACCESS CONTROL LISTS.
Data Structures -
 

-ACL Database, Segment 37: —

  

 

 

  

 

    
       
 

  
   

AGTIDX-Active Group Table Index AGT-Active Group Teble > _

name/ Length -

user_] 32 words ol _

oo _

user_2

T _
i _LA hor
| | _
l |
l
l | ~
l l

\ i \ 1
l l ~

| en

user_128
1000 -   

PRELIMINARY 19 - & ATTACH



PRIMOS REV. 19.1 PRIMOS INTERNALS

PRIORITY ACLS - Data Structures

- One priority ACL per ldey.

- Table of pointers to the ACL, PAPIR.

- ACL is stored in PA_AREA.

- Space 1s dynamically allocated/deallocated by area manager.

dcl 1 pacl based, /* Priority ACL (PACL) #/

2 ecw like ecu,

2 usercount fixed bin, /‘* Number of user entries #/

2 groupcount fixed bin, /* Number of group entries #/

2 version fixed bin, | /# Version no. of structure  #/

2 usecount fixed bin, /* Number of LDEVs using this

| PACL (not implemented) */

2 groupoffset fixed bin, /* Relative position of first

qroup entry #/

2 Testaccesses like accesses, /# Rights for $REST #/

2 restaccvalid bit (1) aligned, /# SET if $REST rights valid #/

2 dtm like fsdata, /* Date/time created /

2 spared fixed bin

2 entry like coded access; /# like ACLS (ringl/ring3) #/

PRELIMINARY 9 - / ATTACH



PRIMOS REV. 19.1 PRIMOS INTERNALS

PRIORITY ACLS
Data Structures -
 

-ACL Database, Segment 37; ~

 

 

 

 

 

 

  

 

 

 

     
  

  

      

PA_PTR PA_AREA ~

Idev O _

grea_ptrs

Idev 1 7

———mor ior i ty_acl 7

1 { _
| |Og \ \ | \
| | _

| |
| |
| \ | \ —

l

\ ot A -
mpriority_acl

Idev 6&1 _

150000 7

PRELIMINARY 19 - 8 ATTACH —



PRIMOS REV. 19.1 PRIMOS INTERNALS

CALCULATING ACCESS

WHEN’?

- During an attach operation (AT$ABS, AT$ANY, ATCLEAN).

- During a file open operation (SRCH$$).

 

HOW?

- Password owner/non-owner access Tights are mapped to ACL rights

Ouner: PDALU .

Non-ouner: Ww

Read: R ~ ty pybled Bils; 7 tu Jt
rite: pS ab Aco P
Delete: D

Priority Access: if priorityacl then

if userinpacl then

get access from pacl

User Id: else if useridinacl then

get access from acl

ACL Groups: else if usermemberofgroup(s) then

get access for each membergroup

logical-or these accesses together

$Rest: else if $rest then

get access from $rest pair

else no access

 

PRELIMINARY 9 - 9 ATTACH





PRIMOS REV. 19.1 PRIMOS INTERNALS

Section 20 - Miscellaneous

FileSystemLocks—

PRIMOS Segment Usage

PRIMOS Locked Memory Requirements

19.1 1/0 Enhancements

System Limits

Area Management

PRELIMINARY a0 - | MISCELLANEQUS



PRIMOS REV. 19.1 PRIMOS INTERNALS

erent

FILE SYSTEM Locks

The following locks are used by the FILING system and allow a certain

amount of concurrent access fo the FILE system (in priority order):

 

_FSLOK Global file system locks
UFDLOK. =_UFD lock
UTLOK Unit tables lock
ll

TRNLOK Transaction lock
we

-RATLOK Record availability lock

 

 

 

Each lock consists of the following data structure:

 

 

 

 

 

 

COUNTER

POINTER READER'S Semaphore

COUNTER

POINTER WRITER'S Semaphore

USAGE Counter |

a Dcypantt Uvart te

4 Vv

PRIORITY pow je’ame Jue
—sui

PRELIMINARY a0 - 2 MISCELLANEOUS



PRIMOS REV. 19.1  -PRIMOS INTERNALS

FILE SYSTEM LOCKS

Locks will allow N readers or 1 writer.

A writer will wait on the writers semaphore if there are any active

readers oF an active writer.

A reader will wait on the readers semaphore if there is an active

writer or lf a writer is waiting.

When the USAGE counter is equal to

Q the lock is free (available)

+N there are N active readers

~1 there is one active writer

Priority is used to force an order to avoid deadly embrace situations.

In general locks are not recursively lockable and an attempt to

re-lock one already locked by the calling process 15 disallowed.

FSLOK is, however, an exception and may be recursively locked for

reading only. The system maintains for each process a bitmap of the

locks owned by that process. The depth of recursion for FSLOK is

Maintained. This information is held in PUDCOM (LOKOWN and QWNFS).

PRELIMINARY a - 3 MISCELLANEOUS



PRIMOS REV. 19.1

LOCKS

PRIMOS INTERNALS

LOCKS (following on from file system locks in priorty order).

DEVLCK

SPILCK

SP2LCK

SPaLCK

NETLCK

SLCLCK

MOVLCK

SEGLCK

PAGLCK

DSALCK

PRELIMINARY

DEVICE table in PREDIOS

Spare locks

Network data

Smic dtiver data

MOVUTU usage

Segment tables

Page tables and data bases

Disk driver

MISCELLANEGUS



PRIMOS REV. 19.1 PRIMOS INTERNALS

“W
S

O
&
O

c
o
n

CF
O
M
S

©
G
a
n

p
e
e
e
e

Q
e

1d

21

dd

a3

24

2d

26

 

PPRINOS SEGMENTS ~DIA} prod—_—

ee (h

fav.

[ |W Rum Rov 5 WAp ft

 

clock, i/o windows, DMx control blocks CASSECO. PMA]

(GENSBUF)

movutu

movutu

PIC, PCBs, fault handlers, checks, SEMCOM, vpsd CAS?SEG4PMA]

Ting 0 gate segment (GATSG$) CASPSEC9. PMA)

kernel code and linkage

TFLIOB buffers (TFLSN1)

per-user unit tables, directory/quota blocks, usrcom C[SEG1O. PMA]

file system code and linkage (LOSEG$)

network system code and linkage (NETSO$)

command loop and CPL code and linkage [R3S)

PAGCOM, HDRBUF, config, RSAV, FIGCOM, MMAP, tape-dump,

watm/cold start code

additional kernel code and linkage

DMG buffers (DMGBUF)

HMAPS

SMLC map segment

SMLC map segment

SMLC map segment —

SMLC map segment

PRELIMINARY 2 - 39 MISCELLANEDUS



PRIMOS REV. 19.1 : PRIMOS INTERNALS

PRIMOS SEGMENTS - DTAR 0 continued -

2] network buffers (NETBFS) ~

30 network queues (NETBHS)

ai network (not used)

J2 additional command loop and CPL code and linkage [R35]
33 LMAPs

34 famed semaphores data area

3) Logout notification queues, CPS

36 additional TFLIOB buffers — (TFLSN2) -

j/ attive group table, per-user group list, priority acl table -
49 unit table entries (UTBSEG)

JO associative buffers (BUFSEG)

gl associative buffers

52 associative buffers

Jo associative buffers

6/ =©RVE code and linkage

70 RYE code and linkage

71

RJE buffers

100 -

PRELIMINARY 2- 6 MISCELLANEOUS



PRIMOS REV. 19.1 SO PRIMOS INTERNALS

101

140

14]

142

143

200

201

400

401

47]

PRIMOS SEGMENTS - DIAR 0 continued

32 network mapped segments

DPTX code and linkage

additional DPTX code and linkage

(DPTCOM)

DPTX buffers

(PUDCMS)

mapped per-process ting 0 stacks

dynamically allocated by GETSNS$

PRELIMINARY 20 - 7 MISCELLANEOUS



PRIMOS REV. 19.1

PRIMOS SEGMENTS - DIAR 1

2000

Shared code

2030

8 user seqments

2040

shared code

2170

G user segments

2200

shared code

2300

dynamically allocated by GETSNS

237]

PRELIMINARY a) - 8

PRIMOS INTERNALS

MISCELLANEOUS



PRIMOS REV. 19.1 PRIMOS INTERNALS

PRIMUS SEGMENTS

DTAR 2

4360

dynamically allocated by GETSNS

4377

DIAR3

6000 user profile stuff, UPCOM, page fault (wired ring 0) stack,

SDTs for DIARS 2 and 3, mapped LOCATE buffer ('17400)

6001 abbrevs, shared library linkage

6002 CLDATA, ting 3 stack (PUSTAR}

6003  unwited ring 0 stack

6004 CPL work area

6005 global variables

6006 additional shared library linkage
6007 (DYSNBG)

; dynamically allocated by CETSNS

6010 : (DYSNED)

PRELIMINARY a- MISCELLANEOUS



PRIMOS REV. 19.1

SEN

14

ad

3d

6000

PLUS: SEG 4

SEG /

SEG 12

SEG 14

PRELIMINARY

PRIMOS INTERNALS

PRIMOS LOCKED MEMORY REQUIREMENTS

LOCKED
KW
4
1

m
H

A
I
R
O

(2 IF NETWORKS)

100 WORDS FOR EACH CONFIGURED USER

(PCB‘S AND CONCEALED STACKS)

TERMINAL 1/0 BUFFERS FOR EACH CONFIGURED USER

(DEFAULT 96 AND 192 WORDS RESPECTIVELY).

PAPER TAPE, CENTRONICS BUFFERS AS REQUESTED (1KW)

GA WORDS FOR MDLC

18K WORDS FOR PNC

2dk WORDS FOR MDLC PNC

SEGMENT DESCRIPTOR TABLES (DTAR’S Q and 1 only)

MMAP 2K WORDS FOR EACH 2MB OF PHYSICAL MEMORY

20 - 10 MISCELLANEOUS



PRIMOS REV. 19.1 PRIMOS INTERNALS

PRIMOS LOCKED MEMORY REQUIREMENTS

SEG 21 @ DATA BLOCKS FOR EACH CONFIGURED LINE

(DEFAULT 32 WORDS/LINE)

SEG 22 HARDWARE PAGE MAPS, 64 WORDS FOR EACH

USER SEGMENT IN USE ABOVE ‘1777

SEG 33 LOGICAL PAGE MAPS, 64 WORDS FOR EACH

USER SEGMENT IN USE ABOVE ‘1777

SEG 6000 PAGE FAULT STACK, 14 WORDS FOR EACH LOGGED IN USER.

PRELIMINARY 20 - il MISCELLANEOUS



PRIMOS REV. 19.1

19,1 1/0 ENHANCEMENTS

- New LOCATE Mechanism, NLBUF

PRIMOGS INTERNALS —

- Balancing Primary and Alternate Paging Devices, PRATIO

~ Default Value of MAASCH, MAXSCH = (m+3) # x + y

- Reduce Active Users Working Set

(CPLIM, LOGLIM from UPCOM to PUDCOM)

- Using Z-move Instructions

-~ Gate Access MOVGLP,

~ More Disk Queue Control Blocks (1/7 instead of 7)

(MOVEWS ).

- Hashed Transaction Locks (1 TRNLOK -to 47 LOCARH, LOCKAWH)

- No Page-in on pagewaligned page-Sized reads

- SEG Enhancements

~ FORCEN Changes

PRELIMINARY MISCELLANEOUS



PRIMOS REV. 19.1 | PRIMOS INTERNALS

197.1 1/0 ENHANCEMENTS - UsingZ-move Instructions

MOVG2ZP moves N words of data from sourc® to destination.

Previously, if the length specified is greater than 8 words then

MOV32P would loop on: double floating loads stores, double loads

stores, and single loads stores, depending on the length.

Now, for those CPUs on which the Z-mave instructions are more

efficient (a P750 ot a P850) the ZMVD instruction is used.

MOVG2P has been made available to the user from Ring 3 by adding 4

Gate to Seg 9. The name has been changed to MOVEWS, move words.

The calling sequence:

CALL MOVEWS (ADDR (SOURCE), ADDR( DESTINATION), LENGTH)

where LENGTH is the number of words to be moved.

PRELIMINARY a0 - 13 MISCELLANEQUS



PRIMOS REV. 19.1 PRIMOS INTERNALS —

SYSTEM LIMIT EXTENSIONS

New INITIAL ATTACH POINT per user. ~

16 Remoteids per user,

16 character login passwords.

Maximum number of user_ids in a system or project 15 7916. _

- Number of DYNAMIC SEGMENTS is 148.

SEGMENTS

- Maximum value for NUSEG is now 240, due to 16 NVMFS segments.

- Number of shared segments (DTARI) 1s now 192 (’2000 - ‘2277)

- Number of shared user segments is now 164,

('2030 - ‘2037, ‘2170 = 2177) | -

- Effective increase in maximum number of segments,

paging space now allocated in 164KB blocks (1/8th segment)

instead of 12Z8KR (entire segment).

FILE SYSTEM _

- Number of file units is now 3147

- Utilities do not convert lowercase passwords fo uppercase.

- Maximum number of LOCATE buffers 15 256, minimum 15 8.

PRELIMINARY oO - 14 MISCELLANEOUS



PRIMOS REV. 19.1 PRIMGS INTERNALS

AREA MANAGEMENT
 

MOTIVATION

- Provide a single mechanism for allocating/freeing data blocks

Of Varying $1765.

- Afea manager automatically relocates blocks (if needed).

- Used for:

CPL Variables

CPL String Management

Phantom Logout Notification Queues

Priority ACLs

PRELIMINARY 20 - 15 MISCELLANEOUS



PRIMOS REV. 19.1 PRIMOS INTERNALS

AREA MANAGEMENT

IMPLEMENTATION -

= Uses Knuth’s Boundary Tag Algorithm.

- Define an area of virtual memory to contain the data blocks.

~ ARSIN to initialze the area.

ARSALC to allocate a block of a given $178.

ARSFRE to free a given block in an area. _

- Condition ‘AREA’ 16 raised if: ~

the atea being initialized is too small/large

the block being allocated is too small/large

the atea does not begin on an even word boundary -

an allocate or free request iS made in an unitialized area

the area 15 defective 7

PRELIMINARY 20 - 16 MISCELLANEOUS



PRIMOS REV. 19.1 PRIMOS INTERNALS

Appendix A

Programmed Input/Output (PIO)

Device Drivers

MPC-4

PRELIMINARY A - | APPENDIX A



PRIMOS REV. 19.1 PRIMOS INTERNALS |

PROGRAMMED INPUT/QUIPUT (PIO)

 

 

 

t2g3 6 /7 10 il 16 -

l 11 I 1100 | FUNCTION L_ device addr | _
PIO What is to

be done —

; Ll -
OCP 0 0
Ks «f0 1 ;
INA 1 0 -
OTA fi oi     

The purpose of the PIO instruction is to provide one-word

Input/Output to or from a device,

1). QUTPUT CONTROL PULSE (OCP)

The OCP instruction normally performs a control function within -

the selected device control unit. These control functions are

mandatory for such purposes as:

A). Starting a clock

B). Forcing an Input-only mode

C). Initializing a device (Device Master Clear) -

PRELIMINARY A - 2 APPENDIX A



PRIMOS REV. 19.1 PRIMOS INTERNALS

PROGRAMMED INPUT/QUTPUT (PID)

2). SKIP ON CONDITION SATISFIED (SKS)

The SAS instruction tests a condition on the selected device and

if the condition 1s TRUE, skips the next instruction.

e.g. Skip if ready to input/output a character

3). INPUT TO REGISTER A (INA)

The INA instruction will input one word into Register A from the

specified device (if the device is ready). If the operation is

successful, the next instruction is Skipped. The word may

contain only one byte of valid data. In these cases the INA will

input the byte into the least significant eight bits of Register

A and leave the more significant byte of Register A unaltered.

4), QUIPUT FROM REGISTER A (OTA)

The QTA instruction will output the contents of registr A to the

selected device if that device 15 ready to accept the data If

the output operatin is successful, the next instruction is skipped.

The A register may contain only one byte of valid data.

PRELIMINARY A - 3 APPENDIX A



PRIMOS REV. 19. 1 PRIMOS INTERNALS

PROGRAMMED INPUT/QUIPUT (PIO)

The FUNCTION CODE further defines the purpose of a PIO instruction.

OCP Function Code indicates control operation.

SAS Function Code indicates that a condition is to be tested.

OTA Function Code selects destination for word from Register A.

INA Function Code selects source of data word into Register A. -

DEVICE -
The 6 b1if device number selects one of the 64 possible devices.

The PIQ instruction 15 recognized by the device with the selected

address. Normally each control unit has a unique address but _

some respond to as many as four device addresses.

NOTE: The OCP, SKS, OTA, and INA instructions are restricted and

are avallable only in R and 5 modes.

The EIQ instruction (used in V mode) replaces the PIO instructions.

The effective address of the EIO is executed as one of the PIO

instructions. EIQ is a restricted instruction and sets the

condition codes to indicate the success or failure of the

specified operation. The EIQ should be followed by a BONE #-2

instruction. The EIQ instruction 15 always two words long and -

never skips. |

PRELIMINARY A- 4 APPENDIX A



PRIMOS REV. 19.1

DEVICE DRIVERS

PRINCIPLES INVOLVED IN WRITING DRIVERS

1). ASSIGN/UNASSIGN Logic

A). Add device name to DEVCOM

B). Fix table sizes and indices

2). INITIALIZATION ROUTINE (Cold Start?)

A}. Lock driver and buffers

B). Tutn on the device

3). USER INTERFACE

A). Add SVC front end

B). Fix SVC class tables

C). Add direct entrance call (seq 9)

4). VALIDITY CHECKS

A). Assigned

B). Authorized user

C). Initialization of device

PRELIMINARY A- 5

PRIMOS INTERNALS

APPENDIX A



PRIMOS REV. 19.1 PRIMOS INTERNALS

DEVICE DRIVERS

0). [/0 CONSIDERATIONS -

A). DMA, DMC, DMG, DMT

B). DMX channel assignment

C), Buffer allocation - Mapped or not -

D). Interrupt Phantom in seq 4 - Communication with driver

6). STRUCTURE

A). Separate process - synchronous or asynchronous with user

BXOCUTION. _

B). Need for butfering.

7}. WARM START REQUIREMENTS.

A). Initialization

B). PABORT logic _

8). I/O COMPLETION -

A). Unmap 1/0

B). Release locks

C). Release user

PRELIMINARY A -~ & APPENDIX A



PRIMOS REV. 19.1 PRIMOS INTERNALS

EXAMPLE DRIVER (MTDIM)

(called by user and runs as part of the user’s process)

Validate unit number

Validated user, if not same as present wait on semaphore

Lock controller if serial reusable

Set up information for phantom interrupt code.

Initialize controller if not already done.

Validate arguments.

set up DMA/DMC channels

Call MAPIO

start up operation

). Return to user.5
,
2
e
r
e
v
r
o
e

e
o
s

p
o
w

INTERRUPT PHANTOM

1). Reset mask

2), Set MIDONE abort flag

3). Notify other users if waiting on controller lock semaphore.

MIDONE
}). Called from PABURT

). Get controller status |
3). Return information to user

). Call UMAPIO

), Notify same user if waiting on MAG TAPE semaphore

). Return to PABORT

PRELIMINARY A - 7 APPENDIX A



PRIMOS REV. 19.1 | PRIMOS INTERNALS

SUPPORT

MOTIVATION

- Provides a standard PIO/DMy interfacing mechanism.

- Device independent driver in Primos (ring 0), TSGPPI/GPIDIM.

- Device dependent code in ring 3, Primos rey independent.

IMPLEMENTATION

~ MPC4 is a hardware implementation of the GPPI concept.

- User microcodable controller:

Microcode maintained in ROM, or

Downloaded to RAM from disk at system coldstart.

- Primos support ror two MPC4 controllers, addresses ‘79 and ‘76.

- Each controller can support up to four devices.

PRELIMINARY A - 8 APPENDIX A



PRIMOS REV. 19.1 PRIMOS INTERNALS

MPC4 - General Purpose Parallel Interface

FUNCT TONS

1 - Read block

2 - Write block

3 ~ Read word

A - Write word

J ~ Wait/poll for interrupt

6- Load interrupt mask Tegister

7 - Load communication region address register

8 - Execute device-dependent OTA

9 = Raset device

10 - Load device timeout register

11 - Release communication region

‘100001 - Execute OCP.

' 100002 = Execute SKS.

‘100003 - Execute INA.

'100004 - Execute OTA.

PRELIMINARY A -

(Restricted)

(Restricted)

(Restricted)

(Restricted)

APPENDIX A



PRIMOS REV. 19.1 PRIMOS INTERNALS

MPC4 - General Purpose Parallel Interface

USER CODE

- Assign/Unassign logic. (GPIONF)

Assign device Pn, n= 0../7

Wires GPIDIM.

Initializes controller status.

- Subroutine interface to DIM, T$GPPI.

Builds a unit data block (UDB).

Notifies OPIDIM to process it.

PRELIMINARY A - 10 APPENDIX A



PRIMOS REV. 19.1 PRIMOS INTERNALS

MPC4 - General Purpose Parallel Interface

PRIMOS CODE

- Initialization code. (GPIINI)

Check for controller and verity 1t.

Loads microcade.

Sets up controller data block (CDB).

Allocate segment 0 1/0 windows.

- Device Interrupt Manager. (GPIDIM)

Notified by TSOPPI and PIC.

Performs tasks specified by UDBs.

- Warm Start Code. (GPiPBW)

Rewinitializes controller status.

Cleans up any DMA transfers in progress.

Fixes up UDB servicing.

PRELIMINARY A - il APPENDIX A



         



PRIMOS REV. 19.1 PRIMOS INTERNALS

Appendix B - Process Exchange

PRELIMINARY f - | APPENDIX





DATE:

TO:

FROM:

March 29, 1976 . PE-T-232

Programming and Engineering Staff |

M. LL. Grubin

SUBJECT: P=-400 PROCESS EXCHANGE AND NEW PROTOCOLS

rt.

ITf.

IV.

Process Exchange

A. Data Bases

1. Ready List
2. WAIT Lists
J. Process Contrel Block (PCB)

B. Instruction Primitives

1. WAIT

2. NOTIFY

Cc. Dispatcher and Register File Management
1. Ready List Maintenance
2. Register Set Assignment
3. Fetch Cycle Trap

Traps, Interrupts, Faults, Checks

A External Interrupts
1. Operation
a. Special Instructions (IRTN, INOTIFY)

B. Faults

1. Data Bases

2. CALF

3. Fault Handler

Cc. Checks

Register Files

Control Panel

CP Timer



Page 2 | PE-T-232

I. PROCESS EXCHANGE

The Process Exchange mechanism is composed of three data
bases and two basic instruction primitives. The data bases
are the ready list, wait lists, and Process Control Blocks
(PCB). The basic instruction primitives are WAIT and NOTIFY.
In addition, there is an independent mechanism for
controlling the usage of two register sets which is related
to, but not part of, the ready list data base.

A. Data Bases

1. Ready List
 

The ready list is a two-dimensional list structure usad for
priority scheduling and dispatching of processes. The entire
ready list data base (excluding live registers) and all PCB’s
are contained in a single segment. The segment number of
this segment is contained in a 16-bit register called OWNERH.
Within the segment, all pointers and addresses (except fault
vectors and wait list pointers) are 14—bit word number
quantities.

The two-dimensionality of the ready list is achieved with a
linear array of list headers for each priority level composed
of a Beginning of List (BOL) pointer and an End of List (EQL)
pointer.

Each pointer is the 16-bit word number address of a PCB (in
the same segment as the ready list). The PCB’s on each
priority level list are forward-threaded through a 16-bit
link word, and as many PCB’s as desired can be threaded
together on each priority level to form the ready list. A
process’ priority level is both determined by and encoded as
the address of a BOL pointer in the ready list. Priority
erder is determined by arithmetic comparison, i.e., smaller
numbers (addresses) are higher priorities. As a result,
priority level list headers must be allocated in contiguous
memary at system startup time.

The end of the ready list is determined by a BOL containing a
1 (PCB addresses must be even). An empty level is indicated
by a@ BOL containing OO. Figure 1 is a picture of the ready
list structure. The 32-bit registers PPA (Pointer to Process
A) and PPS (Pointer to Process B) are a speed-up mechanism
for locating the next process to dispatch. PPA always
contains both the level (BOL pointer) and PCB address
(designated level A and PCBA) of the currently active
process. PPB points to the NEXT process to be run when
process A ‘goes away’. PPA not only points to the currently
active process, but, by definition, level A is the highest
level in the sustem. It is possible for PPB and PPA to be
‘invalid’. This candition is indicated by a PCB address of



 

 

 

Raady L o
~
~
e

 

 

  
    

Ss -t

 

 

All oointars ace !6=ait word numoer pointers within The FCS
segrenr. The s@cmen? numder is contained in the high porvicn
or rhe CWNER pointer within each register sar.

All ®C3 start addresses must be even (bir 16 2 9). The end
ot The raady [ist is marked with a EOL entry = [.



Pag e 3 PE~T-232

QO. Tt is important NOT to disturb the level portions,
especially level A since, even if invalid, level A indicates
the highest level that WAS in the system and therefore
determines where in the ready list to begin a scan, if
necessary (PPB invalid), for the next process tao run. Ina
completely idle system, both PPA and PPB will be invalid and,
upon completion of the ready list scan, the u-code will goa
into a ‘wait for interrupt’ loop.

It is important to notice that there is no word number
pointer to the first priority level in the ready list. The
ready list allocator, which starts the process exchange
mechanism, knows where the list hegins and, during executian,
level A (in PPA) will always point to either the highest
level currently in the system or the last known highest level
and, hence, acts as an effective ready list begin pointer.
In addition, level 8 will always be higher than the second
level to run. That is. a PCB can never be on a level higher
than level B unless it is the only PCB higher than level B
(i. @., level A).

Two ‘queuing’ algorithms will be implemented far the ready
list, either FIFO or LIFO queuing.

2. WAIT Lists

Every PCB in the system will always be somewhere. If it is
not on the ready list. then, by definition, it will be on a
wait List. A wait list is defined by a 32-bit semaphore
consisting of a 16—bit counter (C) and a 16-bit word number
BOL pointer. Since the ready list and all PCB’s reside in
one segment (OWNERH), and only PCB’s go onto wait lists, a
segment number is not needed in the semaphore. However,
semaphores themselves can be anywhere and, in general, are
NOT in the PCB segment. The structure of a wait list is
shown in Figure 2. Notice that the last block on the wait
list contains a OQ link word. Notice also that the semaphore
contains only a BOL. pointer.

The ‘queuing’ algorithm for wait lists is process priority
queuing. That is, the priority level of a PCB will determine
where on the wait list the PCB will be queued. For PCB’s af
equal priority, the algorithm becomes FIFO.

2. Process Control Block (PCB)
 

The contents of the PCB are shown in Figure 3. The PCB can
be broken into the following logical sections which are
ordered as shown:



 

a
N

 

 

WAIT LIST STRUCTURE

 

  
 

 

 

‘level
 

 

 

 

 

Semachore

Csuntvar(=2)| |

BOL Pp———————} leva!
. link

( WLSN
l . WIN

FCS  

 

WLSN

WLWN
 

 
  

Pes  



Prscess Contrei Sleek (FC3)

 

 

2 i ~ 1 ag

2 wLSi d=cn reacy 1.st 2

3 et 3
g Reserved 2

7.
g Elaosad Timer 19

tf _OTA Z
[¢ OTARS 4
is iararvear timer 6
4 = 'act a

17 < “y
13 Gad 20 ANT
Z° GR! - Z

z2 GFZ §
Ze GR3 36

33 ore
28 4a3 5
3b 7 order tixed, locations
3 GR7 4g flexible dapending ugen
34 save mé@sK
334 Fra
3
33
ag Fr].

4} 3

4g $3
46
a7 6
48 x3$3 _—FYS

FY]

Resarved

3 7
-—— camaep ce « —_—-—P © 2. —<—,.

oe Beme

Nw nt $8 { ‘ Pts {

eCnaraa: qmwae Ki

asic { ae ims 

Q
Q
n
a
a
y
Q
A
A
L
A
A

C
a
n
t
a
l

U
I
h
d
—
C
1
0
0
0
I
O
U
R
C
A

Csnesaied Fayls Stack

(6 words/antry) |

n
e
e
e
N
O
W
R
U
I
N
—
O
H
D
U
P
L
I
N
—
O
N
D
U
R
W
I
N
S
R
U
I
N
—

w
v

«
a Cc “7 (0 a e



Page 4 PE-T-232

Contral
O - level (pointer to BOL in ready list)
1 —- link (pointer to next PCB or Q)

a,3 —- SN/WN of Wait List this block is currently on
(SN®O0 indicates on ready list)

4- abort flags used to generate Process Fault
when PCB is dispatched.

Current bit assignments 1-13: MBZ
16: pracess i

nterval
timer ove
rflow

3.7 - reserved

Process State

8.9 —- Process elapsed timers (must be maintained
by software that resets the interval timer)

10,13 ~- DTAR2Z and DTARS (never saved, always
restored)

14 —- Process Interval Timer with 1.024 msec

resolution

15 - Reserved
16 —- Save mask - used to avoid saving and

restoring registers = 0
Bits 1- 8: GRO-GR7 (2 words each)

9-12: FPO-FP1 (4 registers, 2
words each)

| 13-16: Base
Registers(PB, SB,LB, XB).

17 ~—- Keys
18,33 ~- GRO-GR7
34,41 - FRO-FPI1
42,49 - Base Registers (PS. SB,LB, XB?

Note that although all the registers are assigned
locations within the PCB. oanly non-zero registers
will actually be saved which results in a compacted
list which can anly be determined by the bits in the
save mask. In general, the saved registers (those
not equal ta 0) will be between words 18 and 49.
The order of the registers, however, is fixed as
above.

Fault (See section on Faults for a description of
the use af this portian of the PCB)

30,59 - Fault Vectors: SN/WN pointers to fault
tables for Ring OQ. Ring Ll,
Page Fault and Ring 3 fault
handlers

60,462 ~ Concealed Fault Stack Header

63... = Concealed Stack ~- 6 word entrias. (This

stack need not start at word 63).



Page 5 PE-T-232

B. Instruction Primitives

There are two basic instruction primitives for the process
exchange mechanism: NOTIFY and WAIT. In addition, NOTIFY
has two variants. These instructions, similar to Dyikstra’s
P and V operators, are essentially ‘interlock’ mechanisms.
These instructions are three-word (48-bit) ‘instructions’ as
follows:

Instruction (16-bit universal generic)
Ge-bit pointer to semaphore address

As suggested by the names, WAIT is used to wait for an event
(CP, time, unit record device available, whatever) and NOTIFY
is usad to signal that an event has occurred. In particular,
a WAIT is used to wait for a NOTIFY and a NOTIFY is used to
alert a process which is waiting.

Coordination is achieved by means of a semaphore containing a
counter and a BOL pcinter. The semaphore and the PCB’s
waiting for the event of that semaphore constitute a wait
list. The caunter, if greater than 0,.indicates the number
of PCB’s on the wait list. If negative, it indicates the
number of processes that can obtain the resource. Semaphores
fall into two categories: public and private. A public
semaphore is used to coordinate several processes together or
control a system resource. Private semaphores are used by a
single process ta coordinate its own activities. For
exampla, if a disk request is made, a process will wait on a
private semaphore for the disk operatian to complete. The
disk process will then notify the semaphore upon completion.
The distinguishing characteristics of a private semaphore is
that only 1 PCB can ever be on that wait list. A public
semaphore can have many different PCB‘s on its wait list.

1. WAIT

The operation of wait is as follows: the semaphore counter
is incremented and, if greater than 0, (resource not
available/event has not occurred), the PCB is removed from
the ready list and added to the specified wait list. If the
counter is less than or equal to 0, the process continues.
If the PCB is put on the wait list, the general registers are
NOT saved and the register sat is made available. Therefore,
a process can NEVER depend on the general registers being
intact after a WAIT. In fact, from the paint of view of an
executing process, a WAIT appears as a NOP which destroys the
registers. In addition. WAIT will turn off the process
timer. Figure 4 is a detailed flow chart of the WAIT
instruction.



“Sa invry, «1s:

Saved in register
Zile

AAT

 

 esunt=esund +}
  

 

 

  
Semaphore ‘

 Address

 

 
 

   

 

  
 

C(r1))=FC3
(+ )=(POS+!)
(PCS+{ )=(t2)

 (BOL=(4) 5, RL suceessor to RL

_ locate position fc
new PCS in Wait Li
using Pricrity

y Queuing Algorithm
where, fer equal
priorities, queuis
is FIFO  

v

  
(Tp =(r2)
  

FCS te WL predecesssr
RL successor

WL sucecesser t5 FCS

Remove from Ready
Lis? (RL) and add
to Wait List (WL)

  
 =
 

 

WLSN and WLIYN

te FCS
turn off CP +[mer  

 

 

 
leve| Aslevel &! yes POP FSS into FPA
 

L:   
  

 

a
s

Figu

  
 

re 4.



Page 6 PE-T-232

2. NOTIFY

The NOTIFY instruction has two flavors:

NFYE: use FIFO queuing op code Bit 16 = O
NFYB: use LIFO queuing op code Bit 16 = 1

The instructions differ ONLY in the ready list queuing
algorithm used. The aperation of NOTIFY is as follows: the
semaphore counter is decremented and the notifying process
continues. If the counter is less than 0, no action is
taken, but if greater than or equal to 0, a PCB is removed
from the top of the wait list and added to the ready list.
No explicit action is ever taken on the notifying process,
only the notified semaphore. Tf a notified process is of
higher priority than the notifying process, the latter will
be effectively ‘interrupted ’, but will remain on the ready
list. Figure 3 is a detailed flow chart of the NOTIFY
instruction.

C. Dispatcher and Register File Management

The dispatcher is the root of the process exchange mechanism
and is responsible for determining the next process to run
(be dispatched), and assigning that process a register set.
There is considerable overlap with NOTIFY and WAIT in
functionality related to maintaining the ready list. For
example, both NOTIFY and WAIT update PPA and PPB as
appropriate, but the dispatcher scans the ready list if PPA
is invalid. Register file management, including any
necessary saves and restores, are the sole province of the
dispatcher. Figures 6 and 7 are detailed flow charts of the
dispatcher.

1. Ready List Maintenance
 

Upon entry, the dispatcher first asks if PPA is valid. Tf it
is, the process is assigned a register set and dispatched.
If PPA is not valid, a scan of the ready list is initiated.
If a PCB is found, PPA is adjusted and the process
dispatched. Tf the ready list is empty, the dispatcher
idles. Whenevar a process is dispatched the process timer is
turned oan.

2. Ragister Set Assignment
 

In each register set, a register, designated GWNER, contains
apointer to the PCB of the process which owns the set.
OWNER is a full Ga-bit pointer and OWNERH is used throughout
the system to determine the segment number of the ready List
and PCS’s. Obviously, OWNERH must be the same in both



Cn Entry, &P is saved
_ in register fila

 

NOTIFY CP esde Bit 16 = 8 end
| begianin:

count=count=|

 

   

 

 

 a
(SOL)=((80L)) | Remove frem Wait List
 

   

  
*For NOTIFY to Secinning, the

 

Pusan
PSS=P=A
PEAznew 
   "a" in the level check becomes

edu

  

 
 

 
favel 8=new

      
 

 

 

 

 

   
 

 

 
   

 

  

   

Ao

‘ no 7
- SA#9 )

| PCSE=new
‘N

Ae \

level
no es — :empty? _ | (EOC) sPC3

30L)=9

yes : Ad¢ +9

> Ready
Li

E =PCS‘sstyeeee , ___| (PC3+#1=¢80L)
(PCB+1 )=¢ CCU) =PCS )    
 



” - -—- .
we i saAtey.

"pagisTers are
RP and.live keys are

f

Tavaiie

rs 2Ns 27S

valid and

Nota: All interrup?
‘aks result in a return

. the Tsp of

parsner

the dis-

O1SP

  
ENS

interrupts
   

 

 (F)2(leval A)
 
 

    

 

 

  

  

 

(Cr) )23 2

emory

   
 

allow interrupt break
Cimsure RP and live keys “are valid)
(set IO(CRS)-in dispatcher t#lag-=!)

 

 

  

 

 

(T)=($)+2
 
 

 

 
(level A)=(t)   

  

 

     

 
WNER (CRS )=
PCSA?

yes

  

 

 
  

  

  

 
 

  

  

 

 

D( CRS) 317
other avail-

able

 

[ Turn off

CP timer ~
 

  
 

  

   

 

 

   
  

SO(CRS)=1 2
ee

  

 

    

 

SAVE

under mask

(full)

 

  

 

 

   
 

| (PCSA)=PC3-

J

u-code
wait for
interrup?
idle locos

SO(CRS )=9 Swi TCH
IN(e=s isa CRS2CRS

f

Setup keys and| Z
Pregram couates
Turn on CP timer

JWNER (CRS) =PCSA
  

Figure §.

é

 

  
> | .

Restore OTARZ,
OTARS, TIMER,
and xEY $

J Rest
fetch save mask » Stat

 
 

  
 

 

 

“

Restore Ga's,

PR's and ER's

 
 

    under mask
 



 

  
  
   

SAVE

under mask

_.*The registers vo be
saved ars a caramater

- passed as a starficg RF
address in (1TR@,L)  

 

Save timer
and Keys   

 

  

  

 

 

SO(CRS ) 3]
AW   

   
RTN

 

shit? save
rrmnelk | at   

 

 

~ set dit In
Save mask

_ ) |

Store regisrer
ints PCS

     
  
 

Figure 7.



Page 7 PE-T-232

register sets. In addition, the low order bit of tha keys
register (KEYSH) is used to indicate whether the register set
is available. The bit is called the Save Done bit and, if
set, indicates that the register set and its copy in the
owner’s PCB are identical (a save has been done). This bit
is set by the save routine (called from WAIT or the
dispatcher) and reset when a process is dispatched. Whether
a register set is available (SD=1) or not, it is always
owned. Therefore, if a process goes away (either as a result
af a WAIT or the notification of a higher level process) and
comes back again immediately and, if that process still owns
the register set, a restore operation is not necessary. Tf a
register set switch is necessary, the process timer is turned
off. The details of selecting which register set to assign
to a process being dispatched is shown on the Tight of Figure
&. The dispatcher is the only code which switches register
sets.

3. Fetch Cycle Trap
 

At various points in the dispatcher (indicated by I oan the
flow chart) a check for interrupt pending (fetch cycle trap)
is made. As a result, interrupts can occur either in the
fetch cycle or in the dispatcher. The possible Fetch Cycle
traps are:

External Interrupt (See Part II-A)
CP—-timer increment and possible overflow (See Part
Vv)

Power Failure (See Part II-Cc)

Halt switch on control panel (See Part IV)
End-of—Instruction Trapo

p
Q

N
e

The end-of-instruction trap occurs either from an ECC
corrected error oar from a missing memory module, memory
parity. or machine check during I/O. In all cases, if the
check handling software returns (via LPSW instruction), the
possible destinations are either the fetch cycle or thea
dispatcher (PB in PSW not a real program counter). In order
to guarantee the proper destination, bit 15 of the keys
(KAEYSH) is used to indicate if the trap was detected by the
dispatcher (bit 151). .This bit is set by the dispatcher
upan detecting a trap and is reset when a process is actually
dispatched (return to fetch cycle).

II. TRAPS, INTERRUPTS, FAULTS, CHECKS

Four words used frequently are ‘trap’, ‘interrupt ‘ Cor
‘external interrupt’), ‘fault’, and ‘check’. The meanings of
these terms are carefully distinguished for the P—400/500.
Software breaks in execution are divided into three main
categories referred to as ‘interrupts’, ‘faults’, and
‘checks’. The word ‘trap’, on the other hand, refers to a



Page 98 PE-T~232

break in execution flow on the u-caode level.

Traps can occur for many reasons, not all of which cause
software visible action, and are always processed on the
u~code level. Some traps may directly or indirectly cause
breaks in software execution, but nat all software breaks are
the result of a trap.

Qn the PRIME 300. interrupts, faults, and checks used the
same protocol to get to their respective software handlers,
namely they caused a vector through a dedicated sector 0
location (JST*# vector). On the P-400/500, when process
exchange made is enabled, the three categories use different
protocols both fram the P=300 and each other. Roughly, the.
three terms are used to describe:

1. Interrupt ~- a signal has been received from a device
in the external world (including clocks)
indicating that the device either needs
to be serviced oar has completed an
operation. In general, an interrupt is
net the result of an aperation initiated
by the currently executing software and
will not be processed by that software
(though, of course, it may).

2 Fault -a condition has been detected that
requires software intervention as a
direct result of the currently executing
software. In general, faults can be
handled by the current software, though
in many cases common supervisor code
within the current process handles the
fault. Also, in general, an external
device in the real world is not directly
involved in either the cause or cure of
a fault condition. Often, however,
external devices are involved indirectly
as, for example, in performing a page
turn operation as a result of a page
fault.

3. Check ~ an internal CP consistency problem has
been detected which requires software
intervention. The condition could be
@ither an integrity violation, reference
to a memory module which does not exist,
or a power failure. By contrast, a
reference to a page which is not
resident or an arithmetic operation
which causes an exception is a FAULT
condition.

A. External Interrupts



1. Qperatioan

External Interrupts operate in either of two modes depending
upon whether process exchange is turned on. If process
exchange is off, all interrupts are treated as P=300
interrupts. In all cases, except memory increment, the
address presented by the controller (or ‘63 if in standard
interrupt mode) is used as the address in segment O of a
16-bit vector. This vector, in turn, points to interrupt
response code (IRC), also in segment ©, which is entered via
@ simulated JST# through the vector. Thus, the current
P-counter (RPL) is stored in (vector) and execution begins at
location (vector) +1 with interrupts inhibited, but with no
other keys or modals changed. If in vectored interrupt mode,
it is the responsibility of the saftware ta do a CAI. In
either mode, the full RP is saved in the register PSWPB.

If process exchange mode is on, an entirely different
mechanism operates. In all cases, except memory increment,
the address presented by the controller is used as a 16—bit
word number offset into the interrupt segment (#4). This
segment is guaranteed to be in memory, but STLB misses may
occur. The current PB (actually RP) and KEYS (keys and
modals) are saved in the u-code scratch registers PSWPB and
PSWKEYS. The machine is then inhibited and the IRC begins
execution in 64V mode. It is the responsibility of the IRC
to issue a CAT. It is important to note that the IRC in the
interrupt segment does not belong to any process. PPA points
to the PCB of the interrupted process and, in fact, no PCB
exists for the IRC. Also, except for PB and KEYS, no
registers are saved. In fact, even PSWPB and PSWAKEYS are in
the register file and not in memory. As a result, the IRC
cannot do an enable and must return to the process exchange
mechanism C(i.@., the dispatcher) as soon as possible.
Because of all these restrictions on what the immediate IRC
can da, as well as the fact that it does not belong to any
process, it is referred to as phantom interrupt code. Unless
the job of servicing an interrupt is very simple, phantom
interrupt code can do little more than turn off the
controller’s interrupt mask, issue a CAI, and NOTIFY the real
IRC.

A memory increment interrupt is handled the same regardless
of the state of process exchange. The address presented by
the controller is used as the 14—bit ward number in segment 0
(1/0 segment) of a 16-bit memory cell to be incremented. If
the counter does not averflow (-1->0), the u-code simply
returns. With process exchange off, the return is always to
the fetch cycle. With process exchange on, the return is
either to the fetch cycle or the dispatcher, depending upon
where the interrupt was detected. When detecting an
interrupt, the dispatcher always insures that RP=P8 and that



Page 10 PE-T-292

all live keys=KEYS. If memory increment returns, it does so
to the top of the dispatcher without having touched PB ar
KEYS. In this way, memory increment is guaranteed not to
destroy any vital information needed by the dispatcher. Tf
the memory cell counter does overflow,

=

an End~of—Range
interrupt is generated and then memory increment returns.
The subsequent EOR interrupt will then be treated like any
other external interrupt. Figure @ is a detailed flow chart
of the external interrupt handler.

2. Special Instructions (IRTN, INOTIFY)
 

Phantom interrupt code has two options for the actions it can
take. If the servicing required by the interrupt is very
Simple, phantom code can completely process the interrupt and
return to the dispatcher. If the servicing required is more
complex, the phantom code must turn off the controller’s
interrupt mask and NOTIFY the remainder of the IRC. In the
first case, PB and KEYS must be restored from PSWPB and
PSWKEYS and then the dispatcher must be entered directly.
Since PB cannot be restored in phantom code (the P-counter
will point to the instruction in phantom code) and the
dispatcher cannot be entered directly (no such instruction
exists), the special instruction, IRTN, a 16-bit generic, is
executed to perform these functions. After entering the
dispatcher via an IRTN. the dispatcher does not know that an
interrupt occurred.

In order to NOTIFY a process. phantom cade must insure that
PB and KEYS are restored before issuing the NOTIFY. The
special instruction, INOTIFY, performs the restore and then
dees the NOTIFY. As NOTIFY. INOTIFY is a three-word generic
with two flavors, INOTIFYB and INOTIFYE where the beginning
of list option has bit 1621 and the end of list option has
bit 1620 in the opcode.

Phantom Interrupt cade can issue a CAI in one of two ways.
Either an explicit CAI instruction may be issued or the
IRTN/INOTIFY instructions can issue it. Bit 15 of the
IRTN/INOTIFY instructions is interpreted as follows:

Bit 15 = 0 do not issue CAI

1 issue CAI



   

External

Interruot
  

  

 N/
Input

Keys

 wd y
 

(406 
1ENS

ns)   

 

(laterrup? Enable)

 

 

Generate
Additiona!

Delay   

  

 

 
Input Address

 

 

    

 

   

  

  

  
 

  
  

   

sPSHKEYS=KEYS
i

 

  

 

   

   

  

  

 

   

  
 

 

 
   

    
   

 
 

  
 

 
 

   
 

  

 

~ ‘Qe (address= _.PSwWPe=
s RP (addrass)+!

generate &oR

erocess

exchange vy
‘fede b 1CPN (Clear ~-

address2'63 Pri-net)
(F400) CAI

- wl

—

RP=4| addrass 3
64V ICPN (Clear Pri-net)

Rine 8
_

yw Vv d

1CAN (Clear =aRP u~cSceSri-net) (Caddress)) W RTN _

REeH=g _
RPL=(address) =!

INH -   

Figure 8.



Page 11 PE-T-232

In all, there are four INOTIFY instructions as follows:

Name Bit 15 16 Function

INEC 1 0 End + CAI
INEN Qo 0 End + na CAI
INBC 1 1 Beginning + CAI
INBN 0 1 Beginning + no CAI

Figure 9 is a detailed flow chart of the IRTN and INOTIFY
instructions.

RB. Faults

Faults are CPU events which are synchronous with and, in a
loose sense,

been defined for the P—400.
caused by software.

Several
further subdivided inta distinct types.
are completely new for the P-400 and,

Eleven fault classes have
of these classes are

Of the eleven, three

of the other eight,
three have expanded meaning when in P-400 made. The eleven
fault classes and their meanings are:

Fault

RXM

Process

Page

SVC

UIT

TLL

Access

tian

Arithmetic

Stack

S~-Reg)

Segment

Pointer

The fault

set of

handler.

handling

the CALF instruction.

‘front~ends ’

P-400

Restrict mode violation
Abort flags word .NE. O

in PCB on dispatch
Page Fault (Page not in.

memory }
NLA,

Unimplemented instruction
Tilegal instruction
Violatian of sagment

access rights
All FLEX + IEX (Integer

Exception)
Stack overflow/underflow

1: Segment # too big
a: Missing segment (SBW

fault bit set)
Fault bit in pointer set

P-300

same

Supervisor Call
same
same
Page write viola

FLEX

Procedure Stack (

Underflow
N. A.
N. A.

N. A.

mechanism consists of two data bases and

The u-code is in turn divided into a

for each fault class and a common fault



| Co:Code Sit 1624 end
IRTN INOTIFY | beginn' ¢

laten=y laters!
 

 

     

 

   
Cp.Cade eit [S=3 ne CA!

CHI | | issue C !

  

oO* Tames a6 D 23 -
PS=PSwes a 275

> KEYS-PSUKEYS“ AZ    
   

 

+ ser :larch fy Count=count={
  [NOT\ir
 

 

Fisure 3.



Page 12  PE-T-232

1. Data Bases

  

The fault data bases consist of the fault vectors and
concealed stack in the PCB and the fault tables pointed to by
the PCB vectors. Figure 10 shows these data bases as well as
the mapping of P=-300 faults to P=400 faults. Also shown in
this figure is the differential action taken according to
Fault class (e.g., what ring to process the fault in) and the
set up the u-code ‘front end’ must do before going to the
common fault handler.

The underlying philosophy of the four fault vectors is that
while some faults may need to be processed by Ting O code,
others may be adequately handled in the current Ting of the
faulting process. The vectors are in the PCB to allow
different processes to have different fault handlers. For
example, process A may wish to use a system fault routine to
handle pointer faults (dynamic linker) while process 8 may
wish to define its own algorithms for resolving pointer
faults. Notica that it is always possible for a ‘current
Ting’ fault handler to calla Ting O procedure if the need
arises. Note also that page fault has its own vector despite
the fact that ring O is entered. For the Special case of
page fault, only a single, system-wide processor will be used
and all PCB page fault vectors will point to the same place.

The concealed stack, also in the PCB, is used to allow fault
on fault conditions. For example, it is quite possible to
get a segment fault while processing a segment fault. The
only fault which cannot cause another fault of any type is
page fault. Each frame of the concealed stack contains the
PB and keys (KEYSH) of the faulting procedure as well as a
Fault code (to distinguish different types within each class)
and a fault address, if appropriate. The stack itself is
circular and must have allocated sufficient frames to handle
the longest possible sequence of fault on fault that can
agccur in ring 0. Such a sequence might be: Pointer (link)
fault -> Segment fault -> Stack fault <-> Segment fault ->
Page fault. Note that this particular sequence occurs before
any software fault handler is entered. Also, the first
segment fault enters ring 0, so at least a five-level stack
is necessary if the original link fault is to be processed
correctly.

The second data base consists of four distinct fault tables,
@ach pointed to by a PCB fault vector. Each entry in the
table consists of four words of which the first three must be
a CALF instruction. Gnly the page fault table must be locked
ta memory and only the ring 0 table must be in a pre-defined
(SDW exists) segment (otherwise, segment fault might recurse
infinitely). Naturally, the ring 0 table, as well as the
PCB, is carefully audited by ring O procedures.



 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 

 

 

     

 

 

 

 

  
 

V/
_h Vi

_. Fault Tablegs va 1 YLRing 0 Fault Vector . CALS _5 J 32-017 AP52 oy ji Ring | Faul? Vector . Faul+ #253 ' J  "  faufe
_34 #4 CALF53 eeeSAMYa “| . S2—bi+ AP

36 FY3" «_ Ring 3 VaultVector Fault #1! _57 a — —

Ss | sey Pegs Fault Vecter (Ring 9)i

a

a 2
— FIRST

| - ;
fe NEXT [ae
62 CAST : |

\ \

__ Neves: Fault Vectors cen+ain 2Oprspriata ring numbersCeneenened Pak P3008 Vector address = Faul+ # +'§2PSL
KEYSH

Faults
FOSOSEHCI |).

—FACCSH Fault ££ offset vector FCOCES(11) FACCR(12) Rina Saved. FACCRL(I2) RMU 9 "62. = = curren? bacPSH Preesss | ‘4 "63 abort? #lags - g CurtPSL Pace - 2 "1a "64 - ew address g backsKEYSa svc 3 "14 "65. - « - curren? cur 7COCSSCIE): Url! 4 '2g "65 curran? RPL address currant’ sac <FAQCRS Lh * PG tag "72 currant RPL address

9

curran~ bacxeSADORL( 12) |. Access ‘If '44 ‘73 eode address: G9 backhe eaeeee Arith. "12 8ag '74 eede address currant cur =X. -) ~! Stack ‘13 'S4 “'75 esde address g bacxsavai lage, » f ’ ?N frame Ss segment Id "6g 76 cade address g SacksPointer "15 '64 'T77 eade address current bac 

 
las+ ‘==nrae

  
  

Of pointer

Esery to commen handler (FAULT)

RS =

FPCCOEH(! 1)

FAOOR(!2)

FCODEL
LATCHES

LATCH?

“
i

proper RP to save (backed u
fault esde (it needed)
address (i# needad)
fault £*42P49g faul+ “able of<¢sar
9 #aul+
| page fault? (LATCHT must=9)
2 so +o ring @
| use curren? ring

p if necessary)



Page 13 PE-T-232

2. CALF

The CALF instruction has two mayor functions. First, ta
avoid holding off interrupts for too long. the CALF
instruction defines a restart point in fault handling since
it has a PB (i.e., it is a@ macro-machine instruction). As a
result, it is quite possible ta suspend a process in the
middle of getting to a software fault handler. Second, it
allows a straightforward mechanism to simulate a procedure
call from the faulting procedure (at the instruction causing
the fault) to the fault handler.

The instruction itself is a three-word generic in which the
second and third words are a 32-bit pointer to the fault
handler. To simulate the procedure call; the PB and KEYS
from the concealed stack are placed in the fault handlers
stack frame along with the other base registers (only the PB
and KEYS have been changed to point to the CALF and to enter
G4V addressing mode) to be used by the standard procedure
return (PRIN) instruction. In addition, the fault code and
address are placed in the fault handler’s stack as if they
were arguments passed by a standard procedure call (PCL)
instruction. After the information is moved from the
concealed stack it is popped. In all other respects, CALF is
identical to PCL.

3. Fault Handler
 

The fault handler is a u-code routine that is entered from
the various fault class ‘front ends’ and, based on process
exchange mode, either simulates a P-300 type fault (JST
through segment O fault vectors) or performs the P—400 #ault
protocol which includes setting up a concealed stack frame,
switching to 64V mode, and determining, on the basis of
information provided by the ’front end’, which fault vector
to use amd setting PB to point to the proper CALF in the
fault table. Figure 11 is a detailed flow chart of the fault
handler and Figure 10 contains a table of the necessary setup
performed by each fault class ‘front end’. §§$§Note that for
P—-300 faults, the full RP is also saved in the u-code scratch
register PSWPG and the machine is inhibited for one
instruction if in Ring O.

Cc. Checks

Checks, unlike faults, are CPU events which are asynchronous
with, and are not caused by. normal instruction execution.
Rather, they are events which are either invisible (e.g., an
ECC corrected error) or fatal (e.g., missing memory module)
to the currently executing procedure and perhaps the CPU
entirely (@.g.., machine check). Checks essentially represent



: Enery:

 

 

   

  

     
  

   

  

 

RP = orsger AF -o save
SOCEH(I 1) = fault cede. FAULT

FOCTEL = faulrs*s
. “SACCH 2 address (SN)

‘Ow .€12) = address (WN)
whet 2 % fault vy

| page feul> -
LATCHT = 3 sa ring 2 INPUT

L us@ curren? ring KEYS

| ot? Prceess
[NHI 7 Exchancea (240d)

- Made

vector = (t1)=(CAST)
'62-faul +z (+3) = (NEXT)

     

 

  - v 

 
kK (vector) )=RFL

 

 SAVE P&H, PSL
 

sO | KEYS, FCCDE and
| - FADOR tn con~
 

 

egaled stack

(SS JSTNEXTI +S  PSHFg -=RE  

  

|
 

 
RPLS (veorsr) +]

RFR=g   

  

 

 

   
 

 
7 (NEXT)=(43)

tO]
  

 
 

    

 

  
  

  

  

   
 

  

       
 

  
  

 

(3,95) ATCHS , LHTCHT } (1,3)

(Ring @) ,f not pessible-(race Fay} 4)
(Ring 9)

(5,1)
bo | (current ring) ab

(735) =FY0 (73) SFY (ring?) (735) =FFV

L JL
J

pes((r3) sfaulteee ly | Keysssav | .
   

Ficura Il.

 

 



Page 14 PE-T-232

processor faults as opposed to process or procedure faults.
Four check classes have been defined as follows:

Check P-400 P
-300 .

Power Fail Power Failure sam
e
Memory Parity ECC corrected

. ECC uncorrected Mem
ory Parity
Machine Check Fatal CPU error sam
e
Missing Memory Module Memory module does not exist sam
e

Unlike faults which can be stacked and interrupts which cause
a process to be suspended, each check class has a single save
area (check block) consisting of eight words in the interrupt
segment (#4) in which PB and KEYS (high and low) are saved in
the first four locations (check header) and the remaining
four locations contain software code (probably a JUMP}.
Figure 12 is a picture of the check data base as well as a
description of the necessary u-code setup required before
going to the common check handler. In addition to the memory
data base, three S2-bit registers are used as a diagnostic
status word (DSW) to help a software check handler sart out
what happened. Figure 13 shows the format of the DSW.

Check reporting (traps) is controlled by the two low order
bits in the modals (KEYSL). The possible modes are:

MCM = 0 no reporting

1 report memory parity (uncorrected) only
2 report unrecovered errars only
3 report all errors

The check trap can result in two possible actions depending
upon the type of check that occurred and the type of u-code
which was trapped. If the trapped code was either DMX, PIQ,
or external interrupt processing (unless the error was a
machine check for RCM parity), or if the check was for an ECC
corrected (ECCC) error, the end-of—instruction flag is set,
REOTV is set to the proper offsaet/vector, MCM is set to 0
(except ECCC which sets it ta 2), and a u-code RTN to the
trapped step is executed. In this way, the [0 bus is always
left in a clean state. In all other cases, the check ta
software occurs immediately. Figure 14 is a detailed flow
chart showing the operation of the check trap handlers.

The common check handler is entered from various check ‘front



Check Banclinag (Sata Ease) . |

—Sotmware check catchers reside in +he intarrugt s@gment (4) and are 3 words each.the first 4 werds are used as 3 FSW save ar2a as:

| The check offsats and Csrresse: ij:

 

 

 

 

 

 

 

 

 

 

 

 

 

Invermust Seomen?t (4) P300 vectcrs are: / —

I , ote Powerrail “T2530 TE< | Memory Far. "279. "673

[7

MOOALS Machine Chk. "300 1
4 : Missing Mem. "31g 55 code . -
6
7

== =

'273 VL rer | Memory Parity . -
I FL In ali-cases, +he saved FS is + 2
2 LL Nero curren? FS when the check cecur_3c
3 MCCALS
a

- § =

6. esde entry To commen handler (CHE0x} —
7

‘S20 | PSH Cs Machine Check REJIV = FéCO offset
I *_ PSL | P300 vectors(oftset='250)
2h Keys _|
3 |MCDALS LATCHS = 9 RP is preper RP to sz 'e
4 = | proper RF is in PSSA‘
3 (Neva: FSESAVE=9 impties ir& esde . . dispatcher)
7 _1519 P&H __| Missing Memory Module

PSL ,
|. KEYS _ _MORALS

csde _

   
Figura 12.



oo

Oiagnestic Sratus word (O8wW)

8B bits, Registers '34,'353'35 (named OSWRMA, CSWSTAT, and DSwrs)
Sits J ,32: CSwrMA

33,48: OSWSTATH Valid on all checks exceas Fewer Fai |
49,54: CSWSTATL - as fol lows:
63,89: OSwes

 

     

 
  

|
1} 2 3 415 6 7].8] 9. to} iz; ts}ra ts Te

P33] 34) 35] 36] 37} 38] 39] 40] 41) 42] 434 ae] 45] 464 47] 48 OSWSTATH

Rci| | «| M

|

Machine RA

|

£1] € l6up| ae eackup

|

0

|

10
Ft] C1 BI M

|

Check Code} C1 C} ¢ Hinv| Count M Sus; Mic} c¢ xX
uc |

Pye 3 4) 5 6 7) 8 9 tO} tt 12 13) te 1s te]
7) 8 19 20) 21 22 235) 24) 25 26127 28] 25/30 31 32
63

|

50 | 51 | 52

|

55 | 54 | 55

|

56

|

57] $8

|

59] 60] 61

|

62] 63 | 64 OSWSTATL

PMARes=t scot syncwsme Mod Resarved u-Varify tast #
mr 3

Inved |    
ClaCheck Immediate
MC=Mackhine Check
MPsitemory Farity (ECC)
MM=4issing Memery

: Machine Cneck Cada
=Feripheral Oara (870) Outsut
l="eripheral Ad¢rass (2PA) Input
Z=Memory Carta (E40) Cutput
32Caenre Data (ACO)
4=Perisheral Address (3°48) Output
S#ROX-2F9 Input
6=Memory Address (S4A)
7=Register File

40: Nor RCParity (Resat for ROM Parity errer - xC$ only)
4): El0CUsEl> Uncorrectabla Error
42: ECCCSELS Correetad Errer
43: Sue Inv2eF sackup csunt (44-48) I[avalid

44,45: RP Gackug Count-amount RPL (OSWPS) was incremented in current instruction
47: G4X, set if check cecurred during CMxX
48: 10 Sus, sar if check cceurred during CMX, PIO or Intarrusty u-code
6S: FMA InvaCSwRMA invalid (Pessible frem ECSU and MM caly)

"$Q: Reserved " ,

a
O
S

BC
T

©
b
e

0
8

e
s

b
e

31,55: ECCS Syndreme=5 syndrome bitson a corrected errsr
35: Med: low order address bit of memory medula Causing the arrsr

57,58: Reserved
33,82: u-Vari¢y tase # sav on failure during Master Clear or YIRY jastructricn

Yalidivy:

Always 21-33,43,47-48, 59-39
; f? Sit 34 sar 337-49

35 244-42,55 If bie 42 ser:S1-58
x5 56

[$ Sim 45 rasat: 44-45

Iv is tne cresscasizilicy of tne check handiiag software vo claar the OSw after a check
has Seen seseesseac.

eles. weenee.. a... . a Fisura 1%.



   

 

    

   
«Missing
“Memory

od
{save RO

RED! V3'319

ANVCT

CHKDIN™
oMx

(

 

 
 

  

 

  
 
 

  
 

 

Machine
( Cneck

  
save RO

REOIV='30¢

   
wv

lot N

de,RCA,
CMX

 

 

  
  
 

 
 

 

   

 

save RO
REO|V='279

   
 

o

F

—_

CHKDIN
   
  

 
 

 
 

 

   

 

   

  

ectu, OM

read memory
read memory

module # module #

| 4
sat OSW

set OSW . sat OSW

status bits status bits status bits

reset ves

. ser no (ECCS)

N
al,

read ECCC
syndrome

no

yes
(DMX or PIO or Interrupt).

CHKDIN
MCM=9

< MC3=2 
 

esun? and save

oreper RP/PSSATE

r2ad asorsori-

ave data bits

reac RP seve

 
 

 

   
 

RIN

 

 a
 

set’ EO! flag
restore RO

  
 

“Figure 14.

  
 

RIN



Page 15 PE-T-292

ends’ and, based on process exchange made, either simulates a
P-300 type check (JST# through segment O check vectors) or
performs the P-400 check protocol which includes setting up
the check header, inhibiting the machine, and switching to
44V addressing mode. In either mode, MCM is set to O before
going to software. Figure 15 is a detailed flow chart of the
check handler and Figure 12 contains a table of the necessary
setup performed by each check class ‘front end’.

Ill. REGISTER FILES

The PRIME 400/500 contains four distinct register files.
Each file is further divided into halves, each 32 locations
(registers) long, and each 16 bits wide. One half is
referred to as the high half and the other as the low hal®.
Since both halves are addressed together, each register file
contains 32, Ge-bit register or 64 16-bit registers. The
register files, numbered from 0, are used as follows:

RFO - u-code scratch and system registers
RF1 — 32 DMA channels
RF2 - User register set
RF3 ~- User ragister set

This layout of register files allows easy expansion to eight
register files, thus adding four new user register sets. All
user register sets have the same internal format and the DMA
register file simply consists of 32 channel registers.
Channel register ‘20 within RFi1 is equivalent to the P-300
DMA registers ‘20 and ‘21. Channel register ‘22 is mapped toa
‘22 and ’23. In this way, the mapping proceeds for each even
register in RF1 to channel register ‘36, mapped to ‘'36 and
‘37. All other RF1 registers represent additional DMA
channels over the P-300. Figure 16 shaws the internal
structure (usage) of RFO and the user register sets (RF2,
RF3). Note that all user register sets contain the segment
number of the Ready List/PCB segment (OQWNERH) and a cell for
the modals (KEYSL). It is necessary, before entering process
exchange mode. to set OWNERH in ALL register sets to the
proper value and to NEVER alter it thereafter. Although all
register sets contain a cell for the modals, only the current
register set (CRS) contains the valid modals. Tt is
therefore necessary, whenever register sets are switched, to
copy the modals into the new register set. Currently, only
the Dispatcher switches register sets. CRS is defined and
specified by the three bit field labeled ‘CRS’ in the modals.
Since this field can span up to eight register files, but two
are used for u-cade scratch and DMA, user register sets are
Numbered from 2 —- 7. Of course, only 2 and 3 are currently
implemented. Thus, for the P=400/3500, the CRS field must
@lways have bit FY aff, bit 10 on, and bit 11 selects the
Tegister set (as if O and 1 were the numbers). In fact, the
u~code will only Llaok at bit 11.



Estry: &Ftarscer RF ro

 

 

 

     

 

  

 
 

   

 

save
REJIY 22499 of<sar
Machine Cneck Meda sat

4 RP=PSSAVE

. f x

oft Aaa0
swe) cxchange -a00)

. Mode |

% u

FCOCEL= SAVE PSH, FEL,
REVIV/2<-'1 1g KEYS, and MCOALS
3(CFrser-'227)44 . (before INH) in

: CHESK header 
     

  
Keys=64¥, {NH

RE=4) (CFFSET+4}.

   

 

  
 

*Tne actual c2lezfatien ef Fzd¢d

eneck vecrsr is as follows:  
lan CHECK: FOCCEL = CFFSET/2Z=!' 112:

(CFFSET="225)/2
(FOSCELS'319)/¢
PRCOEL/4+? 62

( (OFFSST=! 229 )/2)/4"' 62
(CFFSET=! 2239) /3+' 62
(OFFSET! 239—'29)/8+' 62
(CFFSET—' 299) /8-2+' 62
(OFPSET='229) /8=' eg

fn FAULT: FCCCEeL

 

h
u
y
p
w
u
e
u
d
k

TAiS Cireziteus calculation i¢ usad +o

‘Sid dividing a negative numter on a
swer tail cneck.

Sova: '259 (Fower fail oftsar)-'225 = -'2g,

Figure 1S



umade ser2ten CMA Curren? Registar Sar (CRS)

 
 

 
 

           

 
 

 

 

 

 
 

   

= 2 RF | CRS RFZ REZ

car | Bich | Lew | Call] Hign | Lew | Ader Cal! | Hien Low | Ader | Adar

¢ (io - 0 40 0 GRO - 100 149
TRI - | 4 | GR! - {Q! 141

zZ{[™ - 2 42 2 GR2C1,A,LHN -(2,8,LL) 102 142
3 TRS - 3 43 3. GR3CEH) =(ZL) 103 143
& TR4 - 4 44 4 GRré 7 oe 104 144
s |TR | 5 45 5 {|GR5(3,5,Y) | = fos {145

—§ TR6 7 - 6 46 & GR6 zo 106 148
7 |TR7 4 - 7 47 7 |GA7(3,X) JF - 107 147
Q |RoMKI 2] = 10 50 10 FPROCIS) - 110 150

_| ROMXZ ¢ - i 51 tI - - Tit 1S]

fo of RATMPL {2 52 12 FRIC4) -(5) Ht2 132
‘3 RS6TI - t3 5 ~ {3 -¢(6) - {1s 133
< j,RSGT2 - 14 54 14 FS - 114 [84

“TS RECS! - 15 55 IS) [Ssct4) -(15) 115 155
'§ RECS - 16 5 1é L8¢1s) -(17} t1é 156
T REOTY 17 57 17 {X8 - 117 157

ad Z=n€ CONE 22 (29) (2!) 60 20 fOTARS(ID) - 120 160

2) PSSAve - 2! 6 2! OTARZ - [21 16!
2 22 (22) (23) | 62 Zz jOTARI - 122 162
= 25 63 23 OTARS - 123 163

“2s 24 (24) (23) 64 24 {KEYS (medals) 124 1164
7s 25 65 25 |CWNER - 12s 1§3
'§ 26 (28) (27) &6 26 jFCSOSSIL) - 12s 166

~al 7 &7 27 {FAOOR ~-(€!2) 127 167

2 |SSe=s - 3 (23) (31) 70 30 =iTIMER - 120 179

¢ |PSHKEYS| -| 31 ~|. 71 3 - HTS TTL
_ PF&:SUA]FCSA 32 (32) (33) 72 °32 132. {172

3s [FPS:FL3)Fcs2 33 . 73 “33 [. . 1335 4173
32 (CSWRMA - 36 (34) (35) 74 34 134 [174

'S |CSWSTAT] = 35 75 35 135 175

“$& [OSes - 36 (36) (37) 7 36 . " 136 175
7 37 77 37 . 137 ling

KEYSd KEYSL (Medals)

— | la stal sretclerendi total etet| { letstelstets sistdali taistel

Ci C} Lj Ade | qc (1s ei Vv CRS [MIP s| Mc
Biri 1] Mode 2c,C O10 Nt | HX} &

~ i} |N |x| L&I atm of mic |
TK x! I Tigl

— Aer. Meda FLEX=3 allews PLEX Faults ENS: Satzenable farerrupts

9g 165 ViM: Ser=Veetorad interrupt mode

t 32 CRS: Curren? Register Ser \
2 64a MIO: Ser=mapped 1/0 :

8 322 ,  BXM: SetsPrecess Exchange Mede

é 3Z! $é3: Set=Seqmenration Mode
3 _ MGM: Machine Creck Mode.

IO: In Cissatener

U: Save Cone Figure 16.



Page 16 PE~T-232

Direct register file addressing (not using CRS) is
accomplished either with the LDLR/STLR instructions or via
the control panel. The Register Files are ordered
sequentially with an absolute address of O addressing
RFO-register O (u-code scratch/system file), “40 addressing
RFi-register 0 (DMA file), ‘100 addressing RF2-register CO
(user set 2), and ‘140 addressing RFS-register GO (user set
3).

Beside each register name, where appropriate, is the
PRIME-300mode mapping from address traps to registers (a@.g.,
the X register is the high half of GR7).

IV. CONTROL PANEL

The control panel for the P=-400/5S00 is the same physical
panel used for the P=-100/200/300. It’s functionality was
enhanced by improving the u-code in the CP. All switches and
selectors operate exactly as for the P-300 with the exception
of the sense switches in the up position. Figure 17 is a
diagram of the functionality of the switches. Notice that
with all switches dawn, any FETCH/STORE operations are
to/from memory-mapped. As lang as segmentation mode is not
turned on, mapped and absolute are the same, thus preserving
compatibility. If SS4 down were absolute, address traps
could not occur and would thus be incompatible. Notice also
that SS5-16 in the up position changes meaning depending upon
SS4. When mapped, all 12 switches are read as a ta—bit
segment number. When absolute, SS11-16 are used as the 6
high order bits of the 22-bit physical address. To address
any P-G0O registers, all sense switches should be placed in
the down position and addresses between O and ‘37 specified.

P-400/3500 registers are accessed by raising S$S1. Then, if
SS2 is down, the low order 5 bits of the address are used to
access Je-bit registers O0-'37 within CRS. If SS2 is raised,
the full 7 bit address is used to access any register in any
register file. The addresses, as shown in Figure 16, are
O-‘S37s3u-cade scratch/system, “480—'°772DMA, '100—'137=User set
2, and ’140-'177=User set 3. SS4 is used to access either
the high half (Cup>} or the low half (down) of the selectad
register. For all register accesses, the Y+i functions will
advance the register address before the access, exactly as
for memory accesses. Wrap around will occur on the
appropriate number of bits, since any bits of higher order
are ignored for the access.

The control panel data register is TR2H and the address
register is TRS. Upon entering the control panel routine; RP
is saved in TRS and (RP) is saved in TR2H. In addition, the
keys (KEYSH) are updated to reflect accurately the live keys.
Thereafter, TRSH is not altered by the control panel itself
sa RPH is always remembered. However, on exit, PBH is used
to update RPH and KEYS is used to update all the keys. As a



 

  

 

 
 

  

  

$$i _ $82 SS3 $$4 / .

up adsoluta High half
register < SSI1=16 ©

dowry CRS low half oe /

- up bbsolute Physical Addrass 95-99
memory 2

7 down mapped Segment #      
Noves: Wirth all switches down, control panel works exactly as for the P-320

follewing eitner a Master Clearor a HALT if not running in seamented
mode. IT is necessary to make mapped memory accesses if address +raps
are te be generated. If running segmented, memory accesses wil! be
mapoed to secment 9 unless an explicit seomen? number is entered in
SS5-16.

Registers: Register address is in address register (switches down)
For CRS, only low order 5 bits ara used; for absolute,
oniy lew order 8 bits are used Y+l (STORE/FETCH) operates
exactly as for memory with the address being pre-incremenvad.

Null Vector: In F=-300 mode, if an external interrupy, fault, or check attempts
TO vectsr Through a memary location containing a 9, the following
action is taken: . “¢

- -. BALT .

deta andaddress lights cleared °
: RP 2 address trapped ° . ‘

- PSH = RPH
. TR2L = address of vector

o
n

8
b
e

Figure |7.

-
a
e



Page 17 PE-T-2232

result, single stepping can change segments as well as kays
and modals. Figure 18 is a detailed flow chart of the
control panel routine.

The only exception to the control panel entry protocol is
that if a Fault. Check, or external Interrupt attempts to
vector through a vector containing © in P=-300 mode, the
following registers will contain:

RP: address of ‘trapped’ instruction
PSH: SN of ‘’trapped’ instruction

KEYSH: proper keys
TR2H: (data) oO
TR3: (address) Q:0

TR2L: address, in segment 0, of the ‘vector’ ca

ntaining O

V. CP TIMER

Resolution = 1024 usec

Turned on by DISPATCHER before dispatch.

Turned aff by:
WAIT after/during save
DISP before changing CRS

On tick, u~code increments the interval timer (TIMER) in

RF (CRS). When that overflows, bit 16 in the PCB abort

flags (memory) is set to cause a process fault.

It is the responsibility of software that resets the
interval timer to maintain the elapsed timer.



 
 

 
 

 

 

     

    

 
 

  

 

 

  

 

 

 

   

   

  

  

 

 

   

 
 

 

 
 

 

  

 
 
 

  
 

 

  

 
 

 
 

  
 

cot zvecTcR |
e : Zeno ~ (ewe)- sl VECTOR wb -

. Ord SarTreeg

TRZH=9 TR2Ha (RP )
- C TR2L2vecter addr TR3=RP

TR3=9 | KEYSslive kevs

_— CPANEL3S 3
’ Read Function ~ =

- CINA 11529) / 2

0CO , col | O10 On f 100 101 440 Pratt
Step/Stes + AL Feteh Y | Y+I Store Y Load Clear Address Bata

~ N ~N w

live keys*KE7S TR3L2TRIL+| 16S "or” addy For" data|
PY=rSs [NH w switenes iw switche

— | + displa: + display
¥ to light to lights

SST=> =| 24 J . ;
_ | REAKG I read panel lcecs ,

| G- '52 into mes
y locs 6- 'S7 ~

_ yes LATCH7=3 ns LATCH7=!
: | + CPANEL

, RPEY=9

Xoarn

map logical
register file addrjd
adéress to — —_—_—
physical

adéress = =
TR35=9 TR2ZH=Y

and and
display display
ro lights To Licht

2s
TRZH=RFFi RFS =TRZE

| and

display +b

“| Tights

 
 

 

   

  

   
  

   
  

  
 

  

   

  
 

  

 

 

  
 

  

   

  

 

 

  

   
   

 

 

 

 

  

   
 

 
 

 

   
a.

 

    

  
 

Figure 18.
  



  



PRIMOS REV. 19.1 PRIMOS INTERNALS

Appendix C - Procedure Call Mechanism

PRELIMINARY ne APPENDIX C



Girod’ CHL)SUBROUTINE CALLS Calelity Ling F

(1) CALLING PROGRAM

CALL
- CALLS A SUBROUTINE
- GENERATES PCL (procedure call) EN7iey Cufrof Block

(Ct4)

PCL Lo
- ADDRESSES AN ECB THROUGH A LINK
- CALCULATES THE RING NUMBER oypeFast of)
- ALLOCATES THE STACK FRAME ( Gis
- INITIALIZES THE STATE OF THE CALLED PROCEDURE
- TRANSFERS THE ARGUMENT POINTERS

AP

- GENERATES THE ARGUMENT POINTERS FOR THE PCL

= FOLLOWS THE PCL INSTRUCTION

- FORMAT

AP ARG, TAG

where TAG modifier can be:

-3 vatiable 1$ an argument

- SL variable 15 the last argumnet

- #5 the argument is an indirect address

- 45L the argument is an indirect and the last



EXAMPLE:

;
CALL —= SUBI

AP ARGI,5

AP ARG2, SL

LINK

ARG1 DATA 0

ARG DATA 0



(2) THE SUBROUTINE

ARGT

- DOES Tre LAST STEP OF THE PCL INSTRUCTION

~ EXECUTED ONLY IF A FAULT OCCURS DURING THE CALL

ARGUMENT TRANSFER

- MUST Be PRESENT IF THE SUBROUTINE REQUIRES

ARGUMENTS

ECB ) :

- GENERATES AN ENTRY CONTROL BLOCK (ECB)

TO DEFINE A PROCEDURE ENTRY

- GOES INTO & LINK FRAME

- FORMAT

LABEL ECB PFIRST, s ARGDISP, NARGS, SFSIZE, KEYS

WHERE: |

PFIRST = pointer to the first executable statement

ARGDISP - displacement in the stack frame of the

| argument list (default is ‘le2)

NARGS = number of arguments to be passed

SFSIZE - stack frame size, the default is given

by the DYMN

KEYS = keys, the default is 64V



(3) ARGUMENT TEMPLATE

 

      
 

   

4 4546789 10 11 16

B |1lO|basall |§ 0 ----------- 0
Ted

i

8 = BIT NUMBER
T= INDIRECT BIT |

L = LAST BIT, LAST TEMPLATE FOR THIS PCL

S = STORE BIT, LAST TEMPLATE FOR THIS ARGUMENT



0
G
C

“
™

O
@

c
n
—

C
I
A
J

A

(4) eNTRY CONTROL BLOCK
 

POINTER TQ THE FIAST

EXECUTABLE STATEMENT

GF THE CALLED PROGRAM
 

SIZE OF STACK FRAME
 

STACK ROOT SEGMENT NO.
 

ARGUMENT DISPLACEMENT
 

NUMBER QF ARGUMENTS
 

LINKAGE BASE ADDRESS OF

THE CALLED PROGRAM
 

KEYS FOR THE CALLED PROGRAM
 

Cc
¢ RESERVED

MUST BE ZERO £
¢
a
e  



2
AD

J
e

C
a

0
C
O

“
™

G
O

c
n

&
—

G
I

MI
A

-
*

C
S

a C
c

(5) STACK FRAME Cag uelPyily Sgyncte )

 

POINTER TO THE NEXT

FREE FRAME
 

POINTER 10 THE

EXTENSION SEGMENT    
e

@

@

 

FLAGS
 

STACK ROOT SEGMENT NO.
 

RETURN POINTER

 

CALLER ‘S STACA BASE

 

CALLER’S LINK BASE

 

CALLER'S KEYS
 

WORD NUMBER AFTER PCL
 

 
POINTERS 10 THE ARGUMENTS

( 3 WORD INDIRECT ADDRESSES }

AND

DYNAMIC

VAR TABLES   



PRocodrrrk

CALLING

 

Cit) Mebnniser

 

 

 

 

 

 

 

 

 

 

 

     
 

 

 

 

 

       
 

  

CALLING CALLED CALLED

PROCEDURE LINK LTMK PROCEDURE

PRARE FRAME FRAME FRAME

Linlk

Hs Ofse ie SNi LPB) OARGT
WN

ee Tat See
AP ARG. DISP
AP NO. ARGS.

(— LINK BASE
KEYS

STACK FRAME

FREE
POINTER

 
EXTENSION SEG

  

 
 

 

 

 

 

FLAGS <~ SB
STACK ROOT SEG. NO|

[ RETURN POINTER HEADER

STACK
CALLER ‘S SB SEGMENT

STACK
CALLER ‘S LB FRAME

 

CALLER’S KEYS
 

WORD AFTER PCL
 

3 WORD INDIRECT
ADDRESS ’S &
DYNAMIC

VARISBLES 

af
¢.

 

NEAT STACK FRAME

»
d  



PRIMGS REV. 19.1 | PRIMOS INTERNALS

Appendix D - Revision 19.0 Routine List

PRELIMINARY QD - I APPENDIX D



imdex of
a
- files in PRIMNOSZKS - Primos kernel cade.

Index of #iles in PRIMQS>KS ~— Primos kernel code.

7 Sp 7

oad

R
o
W
k
e

ke
d
O

me
x

a yt

a83SSW3. PLP
ACCOMS. PLP
aADDISK. FTN
AINIT. FTN
AMINIT. PMA
AMLCS. FTN
AMLDIM. PMA
4&SNDES. FTN
ASNLNS. PLP
ASNMTS. PLP
ASRDIM. PMA
ASSURS. PLP
BADDSK. FTN
BADIXS. FTN
ECKUPS. PLP
GFGETR. PMA
BSINIT. FTN
SREAKS. PMA
BRPOIM. FTN
CLINS. PLP
CLIN. PLP
CHGSPW. PLP
CHGSSA. PLP
CINIT. FTN
CMREAS. FTN
CNEGQV. PMA
CNFLCT. FTN
CPSs.PLP
CPSSCA. PLP
CPSSCN. PEP
CPSSCU. PLP
CPSSDF. PLP
CPSSIN.
CPSSNA.
CPSERC.
cCPSERG.
CPSSSN.
cFSssT.
TRDOIM.
Aer ay S
‘wm RS .

PLP
PLP
PLP
PLP
PLP
PLP
PMA
PLP

» DATES. PLP

- LYNEGS
im -

- ENCRYPTS

TELAY. PMA
DEVCRK. FTI

PMA
FTN
_ FTN

_. PLP
PLP

DCSKCHN. PM4
DSKEGV. FTN
DUPLXS. FTN

PMA

am tt fe

SSuL TS. FTNRr +

RPRRTN. FTN

XTLCG. FLPEK
W

. PLP

Routine to read ABBRSW
Access cominput information in pudcom for ring 3 procedures

in column 1 indicates file did not exist at Rev. 18

in FIGCOM for tring 3.

ADDS DISKS TO THE SYSTEM DISK TABLE
COLD START INITIALIZATION (PART 1)
INITIALIZES AMLC CONTROLLER (S)
PROCESS INTERNAL COMMAND AMLC
PROCESSES AMLC INPUT AND OUTPUT
ASSIGN DISK AND OTHER PERIPHERAL DEVICES EXCEPT MAGTAPE.

ASSIGN AND UNASSIGN AMLC LINES
Assign magnetic tape drive units.

CLOCK DRIVEN ASR DRIVER (OPTION-A)

Ensures a user has specified amount of cpu time left

CHECK FOR LEGAL PRIMOS DISK NUMBER .
MAP OUT BAD PAGING DEVICE RECORDS.
Back Up Return PB For Ring 3 QUIT FIM.
BUFFERING PACKAGE USED BY MPCDIM, VERDIM
COLD START INITIALIZATION (PART 2). .
Manage Quit Inhibit Counters for all rings.
PAPER TAPE PUNCH DIM
Single Character Command Input
User Version Of CLINGS
Change the user’s lagin password.
Change System Administrator.
COLD START CONFIGURATION
OLD STYLE COMMAND LINE PARSER
NAMEQV-COMEGVCOMPARE ASCII NAMES

FOR CONFLICTING PRIMOS PARTITIONSCHECK

Cross

Cross

Cross

Cross

Cross

Cross

Cross

Crass

Cross

Cross

Cross

Process

Process

Process

Process

Process

Process

Process

Process

Process

Process

Process

Signalling
Signalling
Signalling

Signalling

Signalling

Signalling

Signalling

Signalling
Signalling

Signalling
Signalling

C4RD READER DRIVER
Manipulate/examine the calling process’ concealed stack.

Return the standard (FS)

Send Signal Routine

Clear A User From All: ACLs

Control Routine

Clear A User’s USL.

Defer Signal Routine

Initialization Routine

Name Routine

Signal Received Routine
Registration Routine

Who Signalled Routine

Status Routine

format data and time.

SET SLOPE OF DELAY CURVE FOR TERMINAL

CHECK EXTERNAL DEVICE ASSIGNMENT.

DISK I/0 FOR Primos.

SET-UP DMG CONTROL BLOCKS AND BUFFERS.

COMMAND LINE PROCESSOR FCR PRMOS4.

Invoke the DROPDTR command from rings

Drop the amic line dtr for a desired user

DISK CONTROLLER CHANNEL PROGRAMS.

CHECK FOR SAME PARTITION OR OVERLAPPING PARTITIONS

SET/RETURN TERMINAL CONFIGURATION WORD

DYNAMIC SEGMENT ALLOCATION DATA BASE

Encrypt 3s user’s login password.

SET ERASE AND KILL CHARACTERS FOR USER

ERROR RETURN HANDLER FOR PRMOS4.

Restore the external login/logout pragram.

Page. l



a
n

‘
w
R

Xo
Me
O
M

XK
x“

w
o
R
e

¥
2

te
g
M

filas

FSTALS. PMA
FILPAG. PMA
FIND_SEG. PLP
GATINI. FTN
GCHAR. PMA
SETSEG. FTN
GETSNS. PLP
GET_SANAME.
GMETRS. PLP
SPGREC. FTN
GPIDIM. PMA
GTWNDO. PMA
HCSs. PMA
HMAPS. PMA
INITSU. PLP
INSONS. PLP
IDASSY. PMA
TOWIRE. PMA
LOWNDW. PMA
JOBSO. PLP
LGINIS. PLP
LIMITS. FTN
LISTEN. PLP
LMAPS. PMA
LOCKPG. FTN
LOGABT. PLP
LOGEV1. PMA
LOGEV2. FTN
LOGINS. PLP
LOGOSS. FTN
LOGOSCP. PLP
LOGOCMT_. PMA
LOGOCM_. PLP
LGGOUT. PLP
LOG_INIT. PLP
LONSC. PLP
LONSCN. PLP
LONSO. PLP
LONER. PLP
LONSS. PLP
LOVSSW. PLP
C_CLEAN. PLP

- LO_FATAL. PLP
~S_NATCH. PLP

7BIO. PMA
“AaPNDX. PMA

MAPSEG. FTN
“ZETA FTN
° ) a Set te 8} .

“MSSETS. FTN

MINABT. FTN

“COVES. PM&

MOVUTU. FTN

MPEDIM. PMA

MPCDOIM. FMS

MSG. FTN

“SGSST. FTN

mSGCOM. FMA

MOSSOUT. PLP

MTOIM. FMS

oe fo,me Ob ED see

in PRIMOSZKS - Primos kernel code.

PLP

Page

FATAL PROCESS ERROR
FILL PAGE WITH ZEROES
Return a vector of free segment numbers

RING O GATE SEGMENT INITIALIZATION.
GET CHAR FROM ARRAY, STEP CHAR PTR
ADD & SEGMENT TO A USER
Return a vector of allocated segment numbers

Read SA name from SAD intsa SUPCOM.
Get metering data of various. sorts and flavours.
Allocate a paging device index.
INTERRUPT PROCESS FOR TSGPPI INTERFACE
ROUTINE TO ALLOCATE SEG-O WINDOWS FOR MAPPED I/O.
FIND GATE ENTRY POINT FOR POINTER FAULT HANDLER.
SEGMENT 22 MODULE
Initialize a fnew user.

INSONS initializes static on unit lists
IoaS call for system consale.

Wire/unwire pages for performing I/O.
Open mapped I/O windows.

Accesses on Batch queve control file.

Turn on and off OS and network logging.
SET/READ CPU AND LOGIN TIME LIMITS.
Ring Zero (logged out) Listener.
SEGMENT 33 MODULE
WIRE AN AREA OF THE VIRTUAL MEMORY.
Handle Logout Process Aborts (forced and timeouts).

FIRST-LEVEL EVENT LOGGING.
SECOND-LEVEL EVENT LOGGER
Ring zero LOGIN command processor.

SUBROUTINE TO LOG OUT A USER OR USERS
Logged out command processor
Logged out command table.
Decide whether command is a valid logged out command.

Logout interface (r3 to rO) and message sender.
Reset parameters after logout or before login.

Closes a user’s logout notification message queue.

Legout Notification Instant Notify Control Routine.

Logout Notification Receiver Message Queue Opener

Logout Notification Message Receive Madule

Logout Notification Phantom Message Send Module

Routine to read LOGOVR in FIGCOM fer ring 3

Clean up after external logout or login error.

Main logout processor, called by LOGOUT and FATALS.
Unhach and close all attach points during lLagovt.

LOCK AND MAP (AND UNLOCK) USER BUFFERS INTO SEGMENT ©

ROUTINES TO FIND SDW AND PAGE MAP.
MAPS A SEGMENT ALREADY DEFINED IN OTAR O TO
HAMDLE MESSAGE COMMAND.

SETS MSG RCV STATE FOR USER
HAéNDLE 1 MINUTE PROCESS ABORT.
DATA MOVEMENT SUBROUTINES.
MOVE WORDS FROM CNE USER’S VIR. 4DDR SPACE TO ANOTHER USER’

DRIVES LINE-PRINTER, CARD-READER, CARD=—PUNCH VIA MPC#e.

DRIVES LINE-PRINTER, CARD-READER,: CARD—-PUNCH VIA MPC.

Send a message to a user on an arbitrary node.

RETURN MSG STATUS TO CALLER
MESSAGE COMMON
messagefacility ~~ output message

CSIVES MAG-TAPE VIA MPC.
Lodi cINGROUTINES FOR PRIMOS

to user.

tee fee PN

~~

SNOTHER SEGMENT '



=

4

%

af

NMLKCOM.

MLOGIN.

CERRTIN.

PMA
PLP
FTN

CRGO. PMA
FAaSORT.
PACES.

PAGINI.

FAGTUR.

PEDIOS.

PSHSON.

PBTABL.

PCEINI.

_. PLP

PGFSTH.

PCRPTR

FTN
PLP
PIN
FTN
PMA
PLP
PMA
FTN

PMA

PHLOGIN. PLP
PRHNTMS.
FHTTYREQ. PLP

FTN

PMSGS. FTN
PRERR. FTN
ERNSST. FTN
PTRAP. FTN
PTRDIM.
QUTABT.
QUTRST.
ROBASE.
ROFALT.

FTN
PLP
PLP
PMA
PMA

ROUTI. PMA
RSCALL.
REMLIS.

REPLYS.

RMSGDS.
RTIMES.

RTNSEG.

RTNSG1.

SANAMS.

PMA

FTN

FTN

FTN

PMA

PMA

FTN

PLP

SCHAR. PMA

SCHED. PMA

S=c0. FMA

SE614. PMA

SEG4. PMA

7

.
y
O

iW
ou
a

I
p

E
i
n

o
s ia 7
~

y
d
d
e
n
i
o
t

w
o

j

~
%

o
d

m
m
m

a
“
z
g

:

< Pp) }
>

m
g
)
U
s

e
e

ad
P
a DB 3 >

Z
O
a
n
d
n
g
a
:

W
a
c
e
p

ws . FTN
. PLP

. PLP

. PLS

Pele

. PLP
ly) PLA

wae ~

. PLE

. PLP
=i

“PLP
.PL®
ri =bee 5

. PLP
om ord
CO ae

io

S. PLS
fr

. 28

ee rTt
cw: .

im PRIM
337

=“KS - Primos kernel code.

NON-WIRED COMMON

Main login routine for Normal users.

OLD-STYLE ERROR HANDLING

SETS LOADER WONO TO ZERO

HAMDLE PROCESS ABORT CONDITIONS (NEE SCHED)

Page (to)/from the file system (1040wd-record devices).

PRIMOS PAGING MECHANISM COLD START INITIALIZATION.

TURN PAGE(S) IN RESPONSE TO A PAGE FAULT.

PAPER TAPE READER, PUNCH, PRINTER I/O RELATED ROUTINES

PB Histogram Facility Startup/Access entries.
Data area for PB Histogram.

PCB INITIALIZATION FOR COLD START.

Return ptr to a specified user’s PCB. ’

PUDCOM AND PAGE FAULT STACK FOR USER 1.

Log in & phantom user.

START UP PHANTOM USER (SVC AND DOSSUS COMMAND)

Force a phantom to log out after an tilegal TTY request.

PRINT INTER USER MESSAGE.

PRINT NAME AND/OR MESSAGEFROM USER’S ERRVEC

PRINT SYSTEM STATUS ON USER TERMINAL.

RESTRICTED MODE TRAP HANDLER

PAPER TAPE READER DIM
HandIe QUIT Process aborts for the current process.

Reset Ring O QUIT Enable Mechanism.
GET A POINTER TO THE FIRST. FRAME ON THE RING O STACK.

RING O FAULT HANDLERS, RING O UTILITY SUSRS.

SPECIAL (GUICK, SMALL STACK FRAME) UII F.I.M. FOR RING O.

CALLS FROM RING O TO RING 3 ENVIRONMENT.

Process the REMLIN cammand.

Operator/user communication facility.

RETURNS CONTENTS OF PER USER MSG BUFFER TO CALLER.

Return real-time as 48 bit value in PIC counts

INTERLUDE TO RTNSG1. ,

Returns one segment or all segments in a unser’s process.

Return the name of the System Administrator

STGCRE CHAR INTO ARRAY, STEP CHAR PTR

PRIMOS 4 SCHEDULING ROUTINES

SEGMENT O MODULE

Seqment 14 module

SEGMENT 4 MODULE .

SEGMENT 5S -— SUPERVISOR DYNAMIC LINK TABLE (GATE SEGMENT)

SUBROUTINE TO SET SEGMENT ACCESS

Nemed semaphore - close all semaphores at LOGOUT time.

Named maphore ~ close an apen semaphore.

Named maphore - drain a semaphore.

Named Maphore — natify a semaphore.

Named maphore =~ epen &

famed semephore - csen and initialize a semaohore.

tv
y
o
a
n
n

ow
5

0
“
4

au

iWemed semaphere —- report status of semaphores.

Nemed semaphore - set a timer for a semaphore.

Named semaphore — test value of a semaphore.

Named semaphore - wait on a semaphore and timer.

Named semaphore —- to wait on a semaphore.

Nemed semashore ~ utility routines.

tamed semaphore - add a process to a virtual sém queue.

Nemed semaphore -— remove & random process from a2 sem VQ.

iMamed semaphore -. remove top process from virtual sem que.

Lochs UNLOCK PROCESS TO MASTER CPU.

SHUTDM DISK LOCALLY AND REMOTELY.

TMSTSILL SHARED LIBRARY (RESTRICTED TO USER <SUSR>)

semaphore associated with filename.



e

c
<

ger of file

SRUTON. FTN
SIDESGT. PLP
SMSGS. FTN
SOROS. PLF

* SPAWNS. PLP

SRPHAN. PLP
SRWREC. FTN

> STKINI. FTN
STNOU. PMA

SUPSTK. PMA

SVCALS. PMA

TSAMLC. PLP

TSCMPC. FTN

TSGPPI. PLP

TEGS. PMA

TSLMPC. FTN

TSMG. PMA

TSPMPC. FTN
TSTM. PMA
TSVG. FTN
TAS. FTN
TDUMPC. PMA
TFLADJ. PLP
TFLIOS. PMA
TISMSG. PLP
TIMDAT. PMA
TMAIN. PMA
TPSCON. PLP
‘TPSDIS. PLP
TPIOS. FTN
TTYSIN. PLP
TTYSRS. FTN
TTYPER. PMA
TUTILS. PMA
UIDSBT. PLP
VIDSCH. PLP
ULOKPG. FTN ©
UNOSGT. PLP

USERS. FTN

USNMTS. PLP

USRASS. FTN

WTILS. PMA

TYPES. PLP

VERDIM. PMA

welTinN. FM-e

7 WaRMST. PMA

PRINOS?KS — Primos kernel code. Page

SHUTDOWN COMMAND PROCESSING FOR PRIMOS IV.

Set Spauwner’s Id

Send @ message to a user on an arbitrary node.

INVOKES LIST OF RING ZERO STATIC ON-UNITS

Spawn a new process(some attributes specified by spawner).

Apply suffix search conventions for phantom logins

SVC HANDLER FOR RREC.,WREC SVC.

INITIGLIZATION OF RING O STACK SEGMENTS.

SYVC=-PCL INTERLUDES TO TNOU, TNOQUA

UNWIRED RING O STACK FOR USER 1.

MISCELLANEOUS SUPERVISOR ENTRIES.

Raw data mover for amlc lines.
I/Q TO CARD READER/PUNCH VIA MPC
General purpose parallel interface routine.

DRIVER FOR VECTOR GENERAL GRAPHICS TERMINALS

LINE PRINTER OUTPUT VIA MPC

DRIVER FOR SOC-MEGRAPHIC 7000 INTERFACE

CARD PUNCH I/O VIA MPC .

PRIMOS DIRECT-CALL HANDLER FOR TAG MONITOR

VERSATEC-GOULD PLOTTER I/0

SUBROUTINE TO ATTACH TO A DIRECTORY CHAIN

Define the symbol TDUMPC and cause seg ta allocate space.

Adjust size of tfliob buffers

LOGICAL I/O BUFFERING ROUTINES.
Print connect, cpu, and i/o time utilization.
DATE AND TIME CONVERSION ROUTINES.

CLOCK PROCESS. RING O UTILITY SUBRS.

Terminal—Process connect amlc line

Terminal-Process disconnect for amlc lines

PAGE TURNING INTERLUDE TO DISK 1/0.

Check if there are any characters in input buffer for user.

RESET TTY BUFFERS OF USER PROCESS

TYPERS FOR PRMOS4
RANDOM SUBROUTINES
Generate unique id as a bit string.

Generate a unique identifier as a character string.

UNWIPE AN AREA OF THE VIRTUAL MEMORY.

Get the id’s associated with this user.

Retreive ringO data.
Unassign magnetic tape drive units.
Process the USRASR command.

UTILITY SUBROUTINES FOR FORTRAN PROGRAMS.

Function to return type of user (normal, remete, phantom)

Patmcs 4 DRIVER FOR SOC INTERFACE

WelT WITH PROCESS EXCHANGE INHIBITTED.

IS A WARM STARTABLE HALT ROUTINE.

Frocedure to wire the page fault stack for & process.

Get str ta SOU lists.
HeIDLE WAHT? START PROCESS ABORT.



‘we é

K
R
O
R
R
K

‘
w
w
e
R

ow
A

we
me
h
e

HO
w
e

e
e
e
R
H
K

Po
"

&
dex of files

ACSCAT. PLP
ACSDFT. PLP
ACSLST. PLP
ACSRVT. PLP
ACSSET. PLP
ACC_CHK. PLP
ACDECODE. PLP
ACENCODE. PLP
ACLSEG. PMA
AC_CLEAN. PLP
AC_DELPA. PLP
AC_NEWPA. PLP
ADD_ENT. PLP
ADD_REC. PLP
ALC_REC. PLP
ATS. PLP
ATSABS. PLP
ATSANY. PLP
ATSHOM. PLP
ATSOR. PLP
ATSREL. PLP
ATCHSS. PLP
ATLIST. PLP
AT_ADREM. PLP
AT_CLEAN. PLP
&T_UNREM. PLP
ST_VALPAR. PLP
GENSHT. PLP
CALACS. PLP
Ca&LACS.-ALP
CATSDL. PLP
CLOSE. FTN
CNAMSS. PLP.
COSGET. FTN
COMISS. FTN
COMOES. FTN
COPY_AP. PLP
COPY_UTE. PLP
CREASES. PLE

“~ DEL_ENT. PLP
+ DIRERD. PLP
*» EMETY_CK. PLP
- ENTINDIR. PLP

ZRRCOM. PMA
ZSRRERS. FIN

+ SILSDL. PLP
» FIND_ENT. PLP
- FIND_HOLE. PLP
FORCEW. FTN

~ PREE_REC. PLP
- FSSHSH. PLP
=SHASH. PMA

« FSUHSH. PLP
- SETDVS, PLE
seriesan

ake ws.
YGE. FT

in PRIiMOS°-FS ~- Primos file system.

in column 1 indicates

Page.

Tadex of files in PRIMOSZFS ~- Primos file system.

file did not exist at Rev. i8

Place an obyect into an access category.

Protect am obsect with default access rights.

Return the contents of an ACL in legical format.

Revert an ACL directory toa password protection.

Create an ACL.
Handle access checking for access-setting routines.
Decode a physical ACL entry into a lagical one.
Encode logical <id>:<access> pair into physical ACL entry.

ACL system databases.
Common cleanup for ACL gates.

Delete a priority ACL for a specified lagical device.

Add a new priority ACL to the specified LDEV.

Add a new entry to a directory.
Extend a file. .
Allocate record(s) for new directory entry.
Attach to the specified pathname.

Attach to a top-level directory on a specified partition.

Do an attach scan.
Set current attach point to be same as home.

Set home and/or current attach points to be same as initial.

Attach relative to the current attach point.

Writearound for new attach modules.

Do a lecal attach scan on a specified list of disks.

Set unit table entry for attach point just gone remote.

Common cleanup for attach modules.

Invalidate.remotea attach point(s).

Validate key and directory name for ATS routines.
Handle a unit on a device which has been shut down.

Calculate accesses available on a named obyect.

Calculate accesses.

Delete an access category.

CLOSE A FILE BY NAME OR UNIT
Change the name cf a file system object.

Get ringO data for invoking CLOSE and COMOUTPUT commands.

COMINP=-UT COMM4ND AND SVC HANDLING
SWITCH COMMAND GUTPUT ON/OFF
Copy one attach point to another(handles hashing and quotas)

Copy one unit table entry to another.

Creete a directory in the current directory.

Remove 4&4 directory entry.

Read shysical directory entries. -

Meke sure the object whase BRA is passed may be deleted.

Attach to directory, return entry name in it.

STD. SYSTEM ERROR MESSAGE TABLE.

PRINT SYSTEM ERROR MESSAGE

Delete a file or directory.

Find entry in directory specified ty the unit table antry.

Find first available hole of required size in a directory.

FORCES DISK UPDATE.
Free a file’s records when it is deleted.

Add unit table entry to file system and/or ACL hash threads.

Calculate the hash index for the unit table

Remove unit table entry from FS and/or ACL hash threads.

Return logical device number given unit number.

Returns a user’s complete ID (user id plus group ids).

SUNCTION TO RETURN POINTER TO FREE QUOTA BLOCK.



_index of files in PRIMOSZSFS - Primos file system. Page =

—- GETREC. FTN GET A RECORD FRCM DISK RAT. ~

* GETUN. PLP Allocate a unit table entry from the system-wide paol.

* GET_LDEV. PLP Convert partition name to logical device number.

_* GPASSS. PLP Read passwords on named directory. | ~

x GPATHS. PLP Return a pathname given a unit or attach point. |
* GPDEVS. PLP Return a physical device number given logical device number

CSGSRA. FTN Return segdir entry number by matching BRA in record LOCATEd 5

~#* GTUTBL. FTN Allocate a unit table. ”
* GUFSRA. PLP Get dir entry from BRA in dir defined by LOCATE buf.

* ISACLS. PLP Indicates whether specified unit is an ACL directory.

—* KICKGB. PLP Increment quota block use count for a subtree. _

+ LDISKS. PLP Return a list af disk names.
« LDSKUS. PLP List all users using a given ldev. -

LISTE. FTN LIST DIRECTORY DRIVER
~ LISTFT. FTN LOAD A BUFFER WITH LISTF TEXT

LOCATE. PMA PRIMOS FILE SYSTEM ASSOCIATIVE BUFFERING.

* LUDSKS. PLP Return a list of all disks in use by a given user.

~  M2SMAS. FTN Return Master-to-Slave mapping for remote file unit. oo

MARKUT. FTN MARKS UNIT TABLE ENTRIES ON A DISK ERROR.

* MKUTEPTR. PLP ' Make a pointer to the unit table entry of the given unit.

—_ MOVNAM. PMA Move names between two fialds -

NAMEGS. FTN COMPARE TWO NAMES FOR EQUIV (RET TRUE IF SAME)

NEWDAM. FTN ADD RECORD TO NEW PARTITION DAM FILE. “4

* NEW ACL. PLP Process addition of a new ACL to a directory.

~—* OQPEN_CHK. PLP Check to see whether aor not a file unit is open. |

* PASDEL. PLP Delete a priority ACL. a

PKELDV. FTN Convert disk pack name, node number in to an LDEV

_ PRWESS. FTN READ, WRITE, POSITION SAM OR DAM FILES

* QSREAD. PLP Read quota information for current directory.

* QG@SSET. PLP Set quota fields on specified directory. ~

* QSTRWK. PLP Count records used in a subtree.

~* QSUPDT. FTN UPDATES DIRECTORY HEADERS WITH QUOTA DATA

* R/W_ENT. PLP Read or write the directory entry at the specified position...

* RA42PTH. FTN Return PATHNAME : <disk_name>tree_name based on BRA and LDEV.

* RDENSS. PLP Writearound for RDENSS gate. a

RDLINS. FTN . READ A LINE FROM A FILE.

RDLNSX. PMA SUBROUTINE TO EXPAND LINE READ FROM FILE.

RESTSS. FTN RESTORE SAVED MEMORY IMAGE FILE.

* RTNQB. FTN SUBROUTINE TO RETURN QUOTA BLOCK.

RTNREC. FTN RETURN A RECORD TO DISK RAT.

= RTNUN, PLP Return a unit table entry to the global pool.

> RTUTBL. FTN Return a user unit table to the system free pool.

«# RVKIDS. PLP Revokes indices AGTIDX into AGT for given user. _

RWLACK. FTN - CHECK UNIT TABLES FOR CONFLICT WITH SPECIFIED FILe

* GATRES. PLP Set attributes for specified file.
SAVESS. ETN Save memory image

SEGLO. PMA USER COMMON AND FILE UNIT TABLES. ~

~» SEMSEG. PMA NA&MED SEMAPHORE DATA AREA

- SETIDS. PLP Adds a group into the specified user’s Active Group List.

> SET_DTM. PLP Set date/time modified of file entry to current date/time. ~-

* SET_OR. PLP Set initial attach point (origin).

_# SET_GMOD. PLP Set modified bit in a quota directory black.

+ SGDSDL. PLP Delete a segment directory entry.

SGDORSS. FTN MANIPULATE SEGMENT DIRECTORY (OPEN STATUS DEMANDED):

+ SP4SSS. PLP Set passwords on currents directory.

- SRCHSS. FTN Open, close, delete, change access, check existence of files.

SRCHSR. FTN FAM ILI FS CODE FOR OPEN-CLOSE-DELETE FILE SYSTEM PRIMITIVE

+ SYS

_

OPEN. PLP Coen a directory on the system unit or some other’ unit.

TEXTCK. PMA TESTS FOR A VALID 6-CHARACTER FILE NAME

TRUNCS. FTN TRUNCATE FILES.



"fnéex of

a
y
y

R
R
S

xb

TRWRAT.

VACKGB.

UTALOC.

UTDALC.

UTESEG.

VINITS.

WTLINS.

WTLNSC.

files in PRIMOS?FS - Primos file system. Page.

FTN
PLP
FTN
FTN
PMA .

PLP
FTN
PMA

STARTUP/SHUTDN FILE DEVICE

Decrement quota block use count for a subtree.

Initial sat up af unit
Initial set up of unit

Unit table entries and
Subroutine to initiate

WRITE A LINE TO A FILE.

SUBROUTINE TO COMPRESS

table and other units for a user.

table and other units for a user.

common area.

@a VMFA segment.

LINE WRITTEN TO FILE.



: i.
re

In

? ae

H
H

A
ne

o
e

x

~

ey of

Gex

SCALLS. FTN
&BBREV. PLP
AB_FILE_. PLP
AB_GET_. PLP
AB_PCS_. PLP
ACSCHG. PLP
ACSLIK. PLP
ACSPAR. PLP
ADD_REMID_. PLP
ALOCSS. PMA
APPEND. PMA
APSFXS. PLP
AREA_MAN. PLP
ASTRSKS. PLP
ATCH_. PLP
BINSSR. PLP
BINARY_. PLP
CHSFX1. PMA
CHSOC2. PMA
CHANGE_PW. PLP
CLSGET.PLP
CLSPAR. PLP
CLSPIX. PLP
CLOSE_. PLP
CLRLV_. PLP
CNAME_. PLP
CNINS. PLP
CNSIGS. PLP
COMANL. PLP
COMLVS. PLP
COMOS. PLP
COND_CALLS.PMA

x

CPS. PLP
CP_ITER. PLP
CRAWL_. PLP
CREATE_. PLP
CRFIM_. PMA
DESMOD. PLP
DCSG_. PLP
DCOD_ITR. PLP
DEF_GV. PLP
DELAY_. PLP
SELETE_V4&R. PLP
GeELSeG_. PLP
DETEGET. PLP
or_UNIT_. PLP

oTSLV_. PLP
DUMPS_. PLP
SDIT_ACC_. PLP
EDIT_CL. PMA
ENDPAGE_. PLP
EGUALS. PLP
=QUALSP. PLP
ESRRSET. PMA
=XIT. PLP
TATAL_. PMA

Files in PRIMOSSR3S - Primos Ring 3 code. Page 1

of files in PRIMOSSROS - Primos Ring 3 code. 7

in column 1 indicates file did not exist at Rev. 18

Interludes to old style calls
This is the internal command for abbreviations.
This is the routine to handle file i/o for abbreviations.

Get next whole token from command line, processing abbrevs.
This is the routine to expand abbrevs.
Modifies the contents of an existing ACL
Set ACL on one file to be like that on another. “-
Parse an access control list.
Process the add _remate_id command. ’

ALLOCATE STORAGE ON THE STACK (FREE ONLY BY PRTN).

APPEND --— CONCATENTATE TO VARING STRING

Append suffix to a pathname according to standards

This is a general PL/I Area Manager.
* Command -
Invoke the ATTCH command from rings.
Do a binary search using pointers in a single segment.

BINARY Command.
CHARACTER TO FIXED BIN(15,.0) AND FIXED BIN(31,0) CONVERTERS.

CHARACTER (OCTAL?) TO FIXED BIN(31,0) CONVERTER.

Command to allow a user to change his/her login password.

Gets A Command Line Into User’s Buffer
Parse string accarding to basic "command line” rules.

Parse command line according to a picture specifiar.

Check cmdl syntax and call SRCHSS to close file units.
Clear the existing level.
Invoke the CNAME command from RINGS...via GATE CNAMSS. _

Reads A Number Of Characters From Cammand Input Device
Set continue_sw on in most recent fault frame.

Writearound To CLSGET. “
Call a new command level.

COMOUTPUT Command.
ADDITIONAL ENTRY POINTS FOR THE CONDITION MECHANISM.

Invoke the user’s currently specified command processor.

Command language iteration processor.
Perform crawlout from inner ring, rejoin signlS or fim_.

Invoke the CREATE command from RINGS...via GATE CREASS.
CRAWLOUT FAULT INTERCEPTOR RE-SIGNLS IN THE OUTER RING.

Set/reset debugger-mode switch and static on-unit.

Internal command writearound to the DBG external command.

Decode command language extended feature token ctype.

Command to define global variables file to command env.

Invoke the DELAY command from rings.

Delete glotal variables 7
Process tha DELSEG command.

Get msg from a Diagnostic Error Table.
System Default On—-Unit (includes PL/I runtime support?. aa

Display the current contents of a user’s level.

Dump stack in a pretty format.
Process the edit_access command.

EDIT COMMAND LINE TO REMOVE EXPLICIT NULL STRINGS.

PL/I runtime support for ENDPAGE conditicn

Generate name from an object (source) name and a pattern.

Append pathname generated from equalname to a given string.

ERRSET INTERLUDE FOR SEGMENTED MODE
Exit from Static Made, and return to Recursive Made.

GENERATE FATAL PROCESS ERROR.



Index oF
a

w
R

Rw
O
K

Ke
X
e

o
m

x

of

| PLISNL.

PMS, PLP
PRERRS.

FILLSA.

FNCHKS.
FNDCFS.
FMONUS.
GATEQU.
GET_FR.
6S_FAC.
GTSPAR.
GVSGET.
GVSSET.

ICMTB

INFIM

INPUTS
INTCM

fil és

FTN
FINDPROC. PMA
FIND_UID. PLP

PLP
PLP
PLP
PMA
PMA
PMA
PLP
PLP
PLP

HASH_UID. PLP
_. PMA

IDCHKS. PLP
_. PMA

INITS3.
INITSP.

PLP
PLP

. PLP
_. PLP

INVKSM_. PLP
IDAS. PMA
IQAFMS.

IDAGAS.

IQAGDS.

FTN

PMA

PMA

ITR_WLDC. PLP
ITR_WLDT. PLP
LIBTBL. PMA
LISTEN_. PLP
LIST_ACC

_ACL. PLP
LIST_GROUP. PLP
LIST

_. PLP

LIST_PA_. PLP
LIST_GQUGTA. PLP
LIST_REMID_. PLP
LIST_VAR. PLP
LOGIN_. PLP
LOGOUT_. PLP
LONS. PLP
MISSIN.

. PLP
MAONUS.
MKSONS.
MOVWDS.
NEWLVS.
OCALLS.

. PLP
PLP

MKONSF

SNDISP

SPEN_

STN_oRIG

PREVESS

PRIN.

PWCHAS.

GSSiZeE.
GUTF IIm.

REeLic.

PMA

PMA
PLA
PMA
PLP
FTN

PLP
PSEPAGE. PLP
PHONTOMS. PLP

PLP

PLP
PU

1 A

L

L

™'
!v

o
v
u
s

u
p
0
D

f

in PRIMOSR3S -~- Primas Ring 3 code.

FILL ARRAY WITH LITERAL
FIND NAME AND ADDR FOR DF_UNIT_ PL/I CONDITION MESSAGES
Find a <user_id> in a validation file.
Check the string passed for validity as a file system name.
Find most recent conditian frame.

Find onunit in specified stack frame.

EQU’S INTO SEGS ‘(GATE SEGMENT)
Get field address registers and floating point registers.

GET/SET FP ACCUMULATOR FROM A FAULT FRAME REGISTER BLOCK.
Parse string according to four types af characters.
Get the value of a global variable
Set the value of a global variable
Hash a “user_id>.
INTERNAL (OLD AND NEW) COMMAND TABLE.
Check a (user or project) id for legality.
CRAWLOUT “FIM" FOR INITS3 (INITIALIZE RING 3 ENVIRONMENT).

Initialize ring 3 environment
Invoke initial routine (cominput,
INPUT Command.
Fetch local command table entry if any,

Invoke (or restore) static mode program image.

INTERLUDE TO CALL THE IOQAS FORMATTER. (I0A%,. IOASRS,
FORMATTING PACKAGE FOR IAS.
ICAGAS— GET ARGUMENT ROUTINE FOR IOAFMS
This module does an unsigned long divide.
Perform command language Wildcard Iteration.

Perform command language Treewalk Iteration.

LIBRARY TABLES.
Primos command loop standard Listener madule.

Process the list_access command.
Print the contents of an ACL on the terminal.

List the user’s active and/or inactive groups.

Process the List_priority_access command.
Process the LIST_QUOTA command.
List one or all ID’s used by this user on

List global variables and their values.
Handle LOGIN command from ring 3 (user already logged in).

Logout command processor.
Logout Notification Cammand

HANDLE MISSING ARGS IN V-MODE.
FIN interface to make an on-unit in caller’ s frame.

MAKE AN ON-UNIT IN THE CALLER’S STACK FRAME.
Make a static on-unit for either ring.

DATA MOVEMENT SUBROUTINES.
Module to create a new level within the command

OLD PRIMOS SUBROUTINE CALLS
Display onunit data in a specific frame.

QPEN Command.

Command to return to initial attach point.

CPL, EPF, etc.) at login

remote nodes.

environment

Write end of page text to a PL/I file(PL/I runtime support).

PHANTOM Command.
Nenleccal goto processor.

Past Mortem command.

PRERR Command

Find previous stack frame, given ptr to current.

VARIOUS FLAVOURS OF "RETURN" FOR USE BY THE UNWIND_

Check a password for legality.

Return tree used for a directory subtree.

Rine 3 QUIT FIM<Invoke QUIT Condition In Ring 3.

EP™ linkage allocation routine

ROUTINE.

.
A

else check system’s te

IOASER). —



[index of files in PRIMOSDR3S - Primos Ring 3 code. . Page U3

eH

4

—* RSCPF. PLP Get command processor flags from an ep. ™

* RSDEL. PLP Delete an epf program.
* RSINFO. PLP return info about a desired epf file. ~

_* RSINIT. PLP EPF linkage initialization routine

* RSINVK. PLP Routine to start the execution af an EPF
* RSMAP. PLP EPF file mapping routine
* RSRELC. PLP ERP: Epf Relative Pointer relocation routine

—# RSRUN. PLP Run an EPF Executable. Program Format file
RSFALT. PMA RING 3 FAULT CATCHER.
RAISE. PLP Search stack for onunit for condition, and invoke it.

_ RDTKSS. PLP Writearound to rdtk$p for use by static mode programs. a
RDTKSP. FTN READ NEXT TOKEN FROM COMMAND LINE
RDTKNS. FTN USER CALLABLE ENTRY FOR RDTKSS (OLD STYLE)
RDY_. PLP Set user’s ready message mode(s).

—  READYS. PLP Print “ready" message oan terminal.

REENT_. PLP Signal the condition REENTERS for subsystem reentry.
* REM_PA_. PLP

_  RESTO_. PLP
Process the Remove_pricrity_access command.
Internal command “restore”: laad memory image of SM program. --

RESUSS. PMA WRITEAROUND FOR RESUSS CALL.

* RLSLVS. PLP Module to restore a level within the command environment

RLSTK_.. PLP Generate the Listener Order "release stack”.

~  RMODE_. PLP Return into Static Mede program, as defined by an "Trvec".

RSTERM. PLP Command interface ta reset terminal i/o buffer(s).

RVONUS. PLP Revert an onunit in caller’s or given activation.

—_%* RVSONS. PLP Remove static on~unit. ™

SAVES. PLP Save a portion of memory as a file. ;

SETRCS. PLP Set Static Mode error code. -

SETREG. PMA SETREG, GETREG -- SET. RETRIEVE REGS IN SVEC
+ SET_ACC_. PLP Process the set_access command.

SET_PA_. PLP Process the Set_priority_access cammand.

* SET_QUOTA. PLP Command to change quota or create a quota directory.

-~ SET_VAR. PLP Internal command equivalent of &set_var CPL directive

53

SIGNLS. PLP
SNAPSS. PMA
SORSS. PLP
SOURS_. PLP
SRSFXS. PLP

Signal a specific condition.

FIND RING 3 ENTRY POINT FOR POINTER FAULT HANDLER.

Invoke ring 3 static on-unit.
Find static onwunit list for ring 3.
Perform tree search, with er without suffix standard

SRVEC_. PLP Set Static Mode "“rvec" from a fault frame.

SSSERR. PLP Used by subsystems when they have run into an error.

START_. PLP Internal command "statt": restart recursive or static made.

STDOSCP. PLP Standard Command Processor.

_ * STK_EX. PLP Handle auto stack extension.

Pr STRSAL. PLP
STRSFR. PLP

Temporary storage allocation routine

«
Ne

ge
Xe

TALOC. PLP
TEMP SA. FTN
TEXTOS. PLP
TIME_. PLP
TNCHKS. PLP
TSRCSS. FTN
TYPE, PLP
UNWIND_. PLP
VUSERSS. PLP

VLIST. PMA

WILDS. PLP

XTS. PMA

Temporary storage free routine

Allocate large storage aréa

OPEN UNIQUE TEMPORARY FILE ON CURRENT UrD

Check a character string #or validity as a filename.

Process the TIME command.

Checks a character string for being a legal treename.

OPENS FILE WITH SPECIFIED TREENAME

Type text at a user’s terminal.
Prepare the stack for nonlocai-goto-induced unwinding.

USERS Command

VLIST

Match wildcard name.
XIS UNIMPLEMENTED INSTRUCTION EMULATOR



Index aFf Files

files in PRIMOS>CPLS -— Primas Command Procedure language. Page. 1

in PRIMOSSCPLS ~ Primos Cammand Procedure lanquage.

‘s’ in column 1 indicates file did not exist at Rev. 18

APTER_AF. PLP
ALLOC_VAR. PLP
ATTRB_AF. PLP
BEFORE_AF. PLP
CALC. PLP
CHSHX2. PMA
CND_INFO_AF. PLP
COM_ABRY. PLP
CPL. PLP
CPL_. PLP
CPL_ET_. PLP
CVSDQS. PLP
CVSDTB. PLP
CVEFEDA. PLP
DATE_AF. PLP
DIRSLS. PLP
DIR_AF. PLP
ENTRY_AF. PLP
EVAL_AF. PLP
EVAL_4GN_EXPR. PLP
EVAL_VBL. PLP
EXISTS_AF. PLP
EXTRSA. PLP
EXT_VBL_MAN. PLP
FROM_DECIMAL. PLP
GET_EXPR. PLP
GET_LINE. PLP
GET_REPLY. PLP
GET_TOKEN. PLP
GET_VAR_AF. PLP
GVPATH_AF. PLP
GV_PTR_. PLP
HEX_AF. PLP.
ICPL_. PLP
ID_CHECK. PLP
INDEX_AF. PLP
LENGTH_AF. PLP
MOD_AF. PLP
NULL_AF. PLP
CCTAL_AF. PLP
COPENSB. PLP
OPENFILE_AF. PLP
2 ATHNAME_AF. PLP
SUERY_AF.PLP
GUOTE_. PLP
QUOTE_AF. PLP
READ_FILE_AF. PLP
FESCAN_AF. PLP
SESPCNSE_AF. PLP
SEARCH_AF. PLP

Co

4
A
M
H
M

U

in
}

< p mn U
v

r
c 0

‘after’ active functian for CPL. _

Ailocate an extension area for variables

Get certain file attributes (command function).

‘before’ active function for CPL.

CALC. PLP, PRIMOS[>CPLS, PRIMOS GROUP, 01/07/82
CHARACTER (HEX) TO FIXED BIN(31,0) CONVERTER.
Ccondition_info a.f.: retrieve selection cond. info.

Interlude to invoke command abbreviation processar. _
Interface CPL interpreter to command level.

Command Procedure Language Interpreter.
Return pointer to CPL Error Table pathname.

Convert FS format date/time to quadseconds since Jani 1901.
Convert Date from ASCII to Binary (file system) format.
Standard fs date~time-mod converted to format mm/dd/yy hhmm. t
Date Command (Function). a
Retrieve info about selected entries in a given directory.

‘dir’ active function for CPL.
‘entry’ active function for CPL. .
Active function avaluator for CPL
Evaluate expression containing variables, functions
Evaluate character string containing local/global variables

EXISTS command function for CPL. _

Extract pathname components.
External Variable Manager for Primos Command Loop.

Convert a decimal integer to an integer in a given base. _
Accumulate the next expression from the current line.

Get a new logical line from file on cpl_unit
Fetch a yes/no/null/next reply from command input stream.

Gat next token from CPL program

get_var command function for CPL.
Return pathname of current global variable file.

Get pointer to global variable area. —
Convert hexadecimal integer to decimal integer

Invoke CPL interpreter on given file, processing suffix.

Check a string for valid command var identifier format.

‘index’ active function for CPL

‘length’ active function for CPL.
Implement mod function for CPL.

‘null’ active function for CPL. -

Convert octal integer to decimal integer

Open a branch by tree name (nonstandard)

open_file command function for CPL.

Pathname command function for CPL.

Query cammand function - get yes/no answer.

Perform a quote operation on a given string.
Perform quote operation for CPL active function. _

Tead_file command function for CPL.
Rescan command function for CPL.
Response command function — get textual answer.

‘search’ active function for CPL

Set local and. global user variables

Return the size of a branch in WORDS.

‘substr’ active function for CPL os

Substitute command (function).

Test expression equality for CPL.
Convert a decimal integer to a hexadecimal integer.



ay
yne

TO_LOCTAL_AF. PLP Convert a decimal integer to a octal integer.
" TRANSLATE_AF. PLP ‘translate’ active function for CPL.

TRIM_AF. PLP ’trim’ active function for CPL.
UNQUOTE_AF. PLP Perform unquote active function for CPL.

— YBL_MAN, PLP Variable manager for dynamically allacated string vars.

VERTIFY_AF. PLP ‘verify’ active function for CPL

WILD_AF. PLP "wild" command funetian, get list of files by wildcard name.

WRITE_FILE_AF. PLP’ ‘writefile function for CPL.

x of files in PRIMOS-CPLS - Primos Command Procedure language. Page a

aed

4



Index of files in PRIMCSINS - Primos network code. Page. 1

' Index of files in PRIMOSINS — Primos network cade.

‘xs’ in column 1 indicates file did not exist at Rev. 18

&ALCHCB. PLP Allocate & initialize (to all zeros) a.haost control block

ALCMYL. PLP Allocete &% initialize my node’s line definition table entry

ALCNAM. PLP Allocate & initialize (to all zeros) a name table entry

ALCRNG. PLP Allocate & initialize a ring line definition table entry

ALCSLC. PLP Allocate & initialize an SMLC Line definition table entry

COMDEF. PMA NETWORK COMMON DEFINITIONS

FAMMSG. FTN INVOKE FAM IN THIS PROCESS
FAMPRC. FTN PRIVILEGED SVC FOR FAM

FCPYRG. PMA ARGUMENT COPYING AND RETURNING FOR FAMMSG

_ * FNSIDS. PLP Search the DIFNS id structure for the id for a given node.

GETVCIX. PLP GETS AN INDEX INTO THE VCDATA FOR THIS USER

..% INIPNC. FTN INITIALIZE RING, COLD START TIMER AND LINE TIMERS

LKFA. PMA LOCKFA

r LKTA. PMA ' LOCKTA

> # NSLOCGO. FTN TELL NETWORK TO SEND FORCED LOGOUT MESSAGE TO REMOTE USER .

, NBKDEF. PMS NETWORK NEW BLOCK AND QUEVE DEFINITIONS

NBKINI. FTN ROUTINE TO INITIALIZE NETWORK BLOCKS AND QUEUES

NCMSUB. FTN Initietes a HDX Primenet link.

_.*« NETABT. FTN Main "work" loop for network process

NETCMS. FTN Handles ‘NET’ commands for HDX operator interface.

NETOMP.PMA USED TO TRACE ILLOGICAL SYSTEM FAILURES DURING PRIMOS OPERATION _

+ NETOWN. PLP Shuts down networks

NETEV1L. PMA FIRST-LEVEL EVENT LOGGER (PCL-ABLE VERSION)

NETEV2. FTN SECOND-LEVEL EVENT LOGGER

METFIG. FTN NETKCRK COLD START CONFIGURATION MODULE

NETMAP. PLP Subroutine to manage segment mapping for networks

~ NETON. PLP Turn network on
x NETPRE. PLP NETWORK PROCESS RUNNING IN RING O

NETRTN. PLP Subroutine to invalidate network cache on RTNSEG -

NETSGS. PMA COMMON DEFINITION FOR NETWORK MAPPED DATA MOVEMENT SUBROUTINES

NMETUTU. PLP Subroutine to copy from Networks to user space

NNITL. PMA LL THAT’S LEFT HERE IS A HALT (FOR FORTRAN STOPS)

NPXPRC. FTN © THE RING O CALLS TO SUPPORT NPX (ANALOGOUS TO FAMSVC, FAMPRC)

~ NTINIT. FTN Initialize the network

+ NTWMAB. PLP Warm start code executed by the network process

OLDFAM. FTN CALLED BY RSCALL TO INVOKE FAM 1.

OLDLSF. FTN PROCESS ‘’LISTF’ COMMAND FOR DOSSUB

PNCDIM. PMA HORDWARE INTERFACE FOR PRIMENET NODE CONTROLLER

PRETMR. ETN TIMER FOR RING NETWORK PROTOCOL

- PROALM. PMA Indicate protocol required and notify network server process

PROMLC. FTN LEVEL SMLC PROTOCOL FOR NETWORK, X. 25

RE4L0C. PLP ALLOCATES & VCIX SLOT FOR NODE XRNODE

FSCell. PLP USER CALLASLE INTERFACE TO NPX TO MAKE REMOTE PROCEDURE CALLS

SECAVC. PLP CALLED BY LOGAST TO CHECK NPX VIRTUAL CIRCUIT.

FRERLS. PLP DECREMENTS 4& PERNODE ALLOCATION COUNT FOR NPX.

RSWHER. PLE Return information on lacation of a file.

REMOTE. FT? DENY/PERMIT FOR DISKS, CALLED FROM DOSSUB

PLOGIN, FTN CONTROL USER PROCESS ON TERMINAL SIDE OF REMOTE LOGIN

GNGRCYV. FTN LEVEL II PROTOCOL RECEIVE LOGIC FOR RING NETWORK

ANGSND. FTN LEVEL II PROTOCOL XMIT FOR HIGH SPEED RING NETWORK

ELCNET. PMA SMLC INTERRUPT STATUS HANDLER FOR X.25 LEVEL 2

TRNRCV. PLP TRANSMIT/RECEIVE MESSAGES TO AND FROM SLAVES IN ONE CPERATION.

UPUSL. PLP Subroutine to update. user status words

WPUS2. PLE Subroutine to update user status words

PUS3. PLP Subroutine to update user status words

SE4DCL. STN ROUTINE TO ADD DECLARATION TO DCL LIST



XSADR. FTN

XSAGFI.

XSCACP.

XSCLOK.

XSCLRA.

XSCOPY.

XSCREQ.

XSFCTY.

XSFLDS.

XSGBCD.

XSGETU.

XSGIVU.

XSGVVC.

XSHOWN.

XSIDNT.

ASIPKT.

XSLINK.

XSLOQOP.

FT}
FTN
FTN
FTN
FTN
FTN
PLP
FTN
FTN
FTN
FTN
FTN
FTN
FTN
FTN
FTN
FTN

XSMAP. PMA

ASNORM.

XSNTFY.

XSPRIM.

FTN

FTN

FTN

XSRLG. FTN

XSRLT. FTN

XSRSET.
XSSTAT.
KSUSRQ.
XSUTIL.
XSXGFTI.
KQSDEF.

TN

FTN

FTN

FTN

FTN

PMA

XLGCS. FTN

‘nmdex of files in PRIMOSZNS —- Primos network cade. Page 2

Modules to decode addresses fram incaming calls —

ROUTINE TO DECLARE INTEREST IN GFI
ROUTINE TO ACCEPT A CALL ”
BACKGROUND CLOCK FOR LEVEL 3 X. 25 - SHOULD RUN EVERY 10 SECONDS_

ROUTINE THAT CAN BE USED TO CLEAR ALL CONNECTIONS A USER OWNS
ROUTINE TO COPY PACKET INTO AN UNWIRED BUFFER
PROCESS AN INCOMING CALL REQUEST
Facilities parsing for call request/incoming call packets =

XSFLDS —- Get all of the fields in a CREQ@ or ACCEPT packet

XSGBCD - ROUTINE TO COPY BCD DIGIT STRING TO ASCII STRINGS
ROUTINE TO HANDLE QUTPUT PACKETIZING
X$SGIVU - ROUTINE TO TRY TO GIVE DATA PACKETS TO USER LEVEL

PASS CONTROL OF A VIRTUAL CIRCUIT TO ANOTHER USER. 7

ROUTINE TO SHUTDOWN xX. 25 LEVEL 3 FOR A GIVEN HOST

Routine to build a restart ID packet (rev 17. 3+r) i

TAKE INCOMING PACKETS FROM LEVEL II PROTOCOLS .

Links network table entries for HDX on-the-fly configuration. —

ROUTINE TO PROCESS PKTS THAT START AND END IN THE SAME MACHINE —

POINTRS TO IMPORTANT NETWORK STRUCTURES.

DECODE CMND BYTE AND DO ROUTINE WINDOW UPDATES “

WAIT ON AND KICK USER‘’S NETWAIT SEMAPHORE
NETWORK PRIMITIVES
HANDLE USER SIDE OF REMOTE LOGIN
LOG-THRU MODULES - TERMINAL SIDE OF REMOTE LOGIN

ALLGW A USER TO CAUSE A RESET ON ON OF HIS VIRTUAL CIRCUITS ™

ROUTINE TO RETURN STATUS INFORMATION TO USER SPACE

ROUTINE TO PUT VCB IN & USER’S QUEVE OF VCBS “

ALL OF THE NETWORK SOFTWARE UTILITY ROUTINES
MOVE GFI’S TO AND FROM PACKETS
X.25 NETWORK COMMON DEFINITIONS (UNWIRED) _

XLGC$S — GET ALL OF THE FIELDS IN A CONNECT REQUEST PACKET

'
ead



Index of files in PRIPOSDNWPXS —- Primos Network Process Extension. Page. 1
—

-Tndsx of files in PRIMOSENPXS =—- Primos Network Process Extension.

‘x’ in column 1 indicates file did not exist at Rev. 1S

ALLOC. PMA
CALLIT. PMA
CIRLOG. PLP

“> €XTRAC. PLP
MOVB. PMA
NP XDNT. PMA
RSCVT. PLP
SLAVE. PLP

.. SLAVER. PLP
* SLAVE_CK. PLP

"  STOPME. FTN

ALLOCATES SPACE FOR TEMPS ON THE FLY FOR SLAVES

THIS SUBR MAKES A DYNT AND CALLS IT(GIVEN PCL+A4RGS).

STUFFS CIRCULAR BUFFER FOR DEBUG OF NPX

EXTRACTS A SPARE DATA FIELD FROM A REG OR RESP MESSAGE

MOVES N BYTES FROM SRC 32 BIT POINTER TO DST POINTER

NPXDNT — THE DYNT TO GET NPXPRC DEFFINED FOR RSCALL

CONVERTS A NODE NAME TO A NODE NUMBER

GIVEN REQUEST MESSAGE, SLAVE CALLS TARGET SUBR,. SENDS RESPONSE

ROOT OF ALL SLAVE INVOQKATIONS, ACCEPTS CALL, DEFS. 1ST MESS.

Called by DF_UNIT_ to check usr tupe, USNPX goto SLAVE_ON_UNIT

PRINTS ERROR AND STOPS NPX PHANTOM



njex of files in PRIMOS>CS - Primos synchronous communications. Page i

_ndex of files in PRIMOS-=CS - Primos synchronous communications. ~——

‘*’ in column 1 indicates file did not exist at Rev. 18 ;

—~ BSCMTR. PMA PROTOCOL-SENSITIVE DIM CODE FOR THE ’BSCMAN’ AND ‘’XBM’ PROCESS. —-

CREP. FTN INTEGER#2 FUNCTION TO CREATE A FREE POOL

CRG. FTN INTEGER*4 FUNCTION TO CREATE 4 QUEUE

~— DOMCDYN. FTN RESERVES AND FREES DMC CHANNELS DYNAMICALLY FOR THE SLC USERS ~

FLSHFS. FTN SUBROUTINE TO FLUSH FREE STORE ~ |

QSALOC. PLP Perform heap storage allocation for queueing routines

GSDALC. PLP Perform heap storage deallocation for queueing routines

~ Subs.PMA QUEUEING ROUTINES FOR NETWORK AND COMMUNICATION PRODUCTS ™

GUEDEF. PMA QUEUEING ROUTINES COMMON DEFINITION

SOMAN. FTN ALLOCATES 1-P4GE WINDOWS IN SEG. O FOR COMMUNICATIONS PROCESSES

— SLABRT. FTN ABORTS SMLC ACTIVITY FOR A GIVEN LINE

SLBSMR. FTN INITIALIZES "BSCMR" WORKSPACE BEFORE A RECEIVE.

SLCCMP. PMA UNPACKS SMLC STATUSES TO LINE PAIR BUFFERS HANDLES INT STATUS

SLCDIM. PMA DISTRIBUTES SYNCHRONOUS CONTROLLER STATUS - HAS 1/0 CALLS

SLCLOB. FTN LOADS DRIVER TABLES FROM A CONTROL BLOCK

SLCNFEG. FTN CONFIGURES HSSMLC CONTROLLER AND SINGLE-BOARD SUCCESSORS -

SLCTOP. PMA LOCATES TOP OF HSSMLC DRIVER MODULES

— SLERF. FTN HANDLES SMLC ERROR MESSAGES a

SLSCH. FTN SETS UP DMC CHANNELS FOR A LOGICAL SMLC LINE a

SMLCEX. FTN TRANSFERS SMLC STATUS DATA FROM BASE TO USER LEVEL FOR S300

TSSLCL. FTN CONTROL BLOCK INTERPRETER FOR HSSMLC AND MDLC CONTROLLERS



index of files in PRIMOSSRJES ~— Primos Remote Job Entry code. Page.

Index of files in PRIMOSSRVES - Primos Remote Job Entry code.

“tye

p
e
e
v
e
e
e
e

a
s
e
a
t
s
e
a
n
n
e
e
n
e
d
e
n
c
a
s
e
e
e
e

e
e
e
e
e
e
e

N
T
e GETCP. PLP

HASP. PLP
HASPCK. PLP
PHDBG. PLP
READGT. PLP
RUSATT. PLP
RJSI. PLP
RUSMSG. PLP
RIJSQ. PLP
RUCDE. PMA
RJCMTR. PLP
RJUCPY. PLP
RJDBG. PLP
RJDLIN. PLP
RJEVNT. PLP
RUGEDG. PLP
RJINI. PLP
RJLINE. PLP
RUPCDF. PMA
JPHES. PLP

RJPHLC. PLP
RJUPHS: PLP
RJPLO. PLP
RJPMSG. PLP
RJPROC. PLP
RIG. PLP
RJRERG. PLP
RJRECV. PLP
RJRQST. PLP
RURTRY. PLP
RUSLCFG. PLP
RITIM. PLP
RJTWKR. PLP ©
RJUNDO. PLP
RJWLO. PLP
RUWRFS. PLP
RUWRLC. PLP
RAUJXMIT. PLP
XSO. PLP
XSCCK. PLP
Aah. PLP
SMCK. PLP

YEMCOM. PMA

in column 1 indicates file did not exist at Rev. 18

PH/WRK - returns pointer to area used ta pass PH config

HASP protacol specific RJPROC code

HASP Protocol Specific Check module
PH - returns addresses of common area for protocol handler

routine reads entry off primos queue
RJI interface routine - allows process to attach for line
RJI routines return info to user from the protocol handler
RJPROC message returning froutine
RJI routines will output blocks, control messages,

COMMON DECLERATIONSFOR RJE EMULATORS
Configure MTR subprocess for protocol handler

RJI-PH = routine copies xmit blacks into wired xmit buffers

Debug gate returnspointer to RJI common blocks for worker RJI

Deconfigure line
Event handler for the Ryproc. system
RJI“-PH routine - get a data block off a device queue

Cold start cade for RJE emulators
Low level routines for Ryproc
protocol handler common declerations for rye emulators

rye emulators - routine manages the dim free store area

rye emulators —- routine assigns a line control block

Modify protacol handler state in Worker RUJI database

Legout code for protocol handlers

RJPROC message printing routine
Main driver for RJE emulator process

RJI queueing routines using RQCB
Copy contents of receive block and queve for the worker

Receive routines for RJPROC

Worker request processor for RJPROC

Routines supporting RJPROC retry mechanism
Configure HSSMLC and MDLC for RJE use

Timer routines for the Ryproc system

Send Messages to RingS Workers via RJI
Logout code for RJE emulators.

Lagout cade for RJI workers.

rye emulators - routing manages RJI system free store

Routines assign and unassign control blocks for line

Transmit routines for RJPROC

X80 protocol handler

X8O Protocol Specific Check module

XBM line events and timeouts

Determine type of message from MTR

ALLOCATE SPACE FOR XBM CAT GUEVES

detach line.

(XBM Link level processing?



{
~
y
e
[

1s
- ex or

#/‘ in column 1

“SSIST. PMA
2DSATT. FTN
B3OSDET. FTN
EDSINF. FTN
SOSINP. FTN
SDSLST. FTN
BDSOUT. FTN
BDSSET. FTN
EDFLSH. FTN
SDICHR. FTN
BDOIWRD. FTN
BDLDSO. FTN
PDOWRD. FTN
EDQUIT. FTN
BDUNDO. FTN
SOVBIF. FTN
ZLDOMSG. FTN
SNDAID. FTN
BSCCDF. PMA
SSCINI. FTN
BSCMAN. FTN
BSCMOV. PMA
BSCSEM. FTN
EBSCSHR. PMA
BSCSLC. FTN
CFI. FTN

: CHAP. FTN

r
o

. ae

CHATAT. FTN
CKHOLD. FTN
CLNRB. FTN
COPY. FTN
DH3270. FTN
DHDBSC. FMA
DPSTAT. PMA
DPTSQM. PLP
DPTSST. FTN
OPTCDF. PMA
DPTINI. FTN

* DPTNAM. FTN

Eau. FTN

SCHONL. FTN

EMZ27O. FTN

EMCFSOR. FTN

| ZEROR. FTN
YELM. FTN

MTSCR. FTN
FMMONT. FTN

ELM. FTN
CLD. FTN

a
y

a —
y

i] -J1 wt"
)

I

- LOTMQL. FTN[
7
u
l
e

LMAELM. FTN

GADQ1. FTN
SADGE. FTN
MESFAL. FTN
NEGVLD. FTN-

— amy pa mw om yy

sdmae eI. id

Files in PRIMOSSES - Primos DETX cade.

miex of files in PRIMCSSES - Primos DPTX code. od

indicates file did not exist at Rev.13

SUBROUTINES TO MOVE AND CLEAR VIRTUAL BUFFERS FOR DPTX
BLOCK DEVICE ’ATTACH’ SUBROUTINE
BLOCK DEVICE DETACH SUBROUTINE
BLOCK DEVICE INFORMATION & STATUS SUBROUTINE 7
BLOCK DEVICE INPUT SUBROUTINE — |
BLOCK DEVICE INTERFACE DESCRIPTION ROUTINE
BLOCK DEVICE OUTPUT SUBROUTINE
BLOCK DEVICE ATTRIBUTE-SETTING SUBROUTINE
FLUSH BLOCK INPUT/OUTPUT QUEVES FOR A DPTX DEVICE
INPUT CHARACTER FROM BLOCK DEVICE GUEVE ELEMENT
INPUT WORDS FROM BLOCK DEVICE QUEUE ELEMENT
LOAD 3270 SUPPORT OUTPUT INTO A QUEVE ELEMENT
OUTPUT WORDS TO BLOCK DEVICE QUEVE ELEMENT
GUIT PROCESSING FOR A DPTX COMMAND DEVICE © —
UNDCES ALL DPTX ATTACHMENTS OF A PROCESS
LOADS VB AND SOME PARAMETERS. AS PART OF BDSINF CALL “4
BUILDS CANNED MESSAGES FOR TRAFFFIC MANAGER
SID BYTE ANALYSIS ROUTINE FOR TRAFFIC MANAGER
BSCMAN QUEUEING AND FREE STORAGE ALLOCATION
CREATES FREE STORAGE POOLS AND QUEUES FOR BSCMAN AND DPTX

BSCMAN SENDS AND RECEIVES TEXT IN THE BSC PROTOCOL ... MORE OR LTS
MOVES CHARACTERS IN 64V MODE
OBTAIN SEMAPHORE FOR BSCMAN TO USE IN NOTIFYING A MATE "

DEFINES STORAGE FOR BSCMAN VARIABLE INITIALIZED AT COLD-START ONI.Y

INITIALIZE THE SYNC CONTROLLER FOR BSCMAN
PROGRAM TO CHECK IF ANY CHARACTER IN TERMINAL SUFFER A
SETS A USER PROCESS TO A SPECIFIED PRIORITY LEVEL
CHECK TAT FLAGS FOR A DEVICE |

MANAGES TAT HOLDING AREA FOR VBE |
CLEAN THE RB HEADER
COPY COMMAND PROCESSING
DATA HANDLER INTERFACE TO TFLIGOB BUFFERS FOR DPTX/TSF
DH3270 SPECIFIC SHORTCALL SCHAR EQUIVALENT
DEFINE COMMON AREA FOR DPTX STATISTICS MONITORING
QUEVE MONITOR SUBROUTINE FOR DPTX QUEVES
RETRIEVE RINGO INFCRMATION FOR DPTX MONITOR
DEFINE COMMON AREAS FOR DPTX TABLES/VARIABLES
SUBROUTINES TO INITIALIZE OR SHUT DOWN OPTX

DPTN4M CHANGES THE LOG NAME FOR DPTX PROCESSES
ERASE ALL UNFROTECTED (EAU) COMMAND PROCESSING
ECHO 4&4 "NEW LINE" TO 4 2277 MOD 2 TERMINAL
MAIN PROGRAM FOR 3270 VIRTUAL BUFFER EMULATION
CONFIGURE DPTX/DSC SMLC LINE
SAVE INFO AND STOP ACTION (SSCMAN)
INSERT APPROPRIATE KEYS IN & QUEVE STRUCTURE
REFORMAT AND CLEAR (OPTIONAL) 3277 SCREEN .
OUTPUTS ERRGR AND STATUS MESSAGES FOR TM3270
BUILDS EMPTY GUEUE ELEMENT CHAIN
S4VE RESULTS FOR USER IN TAT
(OADS A DATA BUFFER INTC A PREALLCCATED QUEVE ELEMENT

LINK DB’S OF A GUEVE STRUCTURE (ROOTS) TO GUEVE STRUCTURE

LOADS A DATA BUPFER INTO A PREALLOCATED QUEVE ELEMENT

LOAD A DATA BUFFER INTO & QUEVE ELEMENT
SEND MESSAGE FAILED STATUS TO USER FOR TM3270
MESSAGE VALIDATION FUNCTION FOR BSCMAN ROBUSTNESS

SEAD BUFFER COMMAND PROCESSING

(ROOT?)



o
n
t

RTNELM.

mdéex of files in PRIMOSDES - Primos DPTX code.

RDMODR. FTN
RETCDF. PmA
RETRY. FTN
ROBCDF. PMA

FTN
FTN
FTN
FTN
FTN
FTN
FTN

SENEDI.
SENSSC.
SENDPH.
SETNOW.
$$3270.
STTSND.
TABLES. FTN
TBLINI. FTN
TMIATO. FTN
TMCFGS. FTN
TMCLOK. FTN
TMINIT. FTN
TMRRE. FTN
TMSTMP. FTN
TRCDEF. PMA
UNLDGE. FTN
VAaLEUP. FTN
VBGBDI. FTN
VEGEK. FTN
VBINIT. FTN
VBTMPL. FTN
VBUPDA. FTN
VBVTAC. FTN
WORKRY. PMA
WRITE. FTN
XLATSF. PMA
XLCALL. PMA

READ MODIFIED COMMAND PROCESSING
BSCMAN RETRY COMMON STORAGE ALLOCATION
RETRY SUBROUTINES FOR BSCMAN
BSCMAN ROBUSTNESS COMMON STORAGE ALLOCATION
RETURNS ALL OR PART OF A QUEVE ELEMENT
ENGUEVES A QUEVE ELEMENT FOR BLOCK USER INTERFACE
ENQUEVES A GUEVE ELEMENT FOR BSCMAN
ENQUEVE MESSAGE FOR PROTOCOL HANDLER
SETS TIMER USING VCLOCK(1) (BSCMAN)
ANALYZES SENSE AND STATUS BYTES FOR TRAFFIC MANAGER
SEND A STATUS MESSAGE TO A BLOCK DEVICE FOR TMS270
DATA FOR DPTX TASLE TRANSLATIONS
INITIALLIZES BSCMAN’S MESSAGE VALIDATION TABLE
MANMGES SYNCHRONOUS LINE TRAFFIC FOR PRIMNCS 3a7S
CONFIGURE TM3270’S BSC LINE
RETURNS THE VALUES OF GCLOK,
TM3270 INITIALIZATION ROUTINE
DEVICE RECOVERY ROUTINE FOR TM3270

PRINTS OUT A TIME STAMP WITHOUT A FOLLOWING CARRAGE RETURN

TM3270 COMMON AREA (DPTX)
UNLOADS A&A QUEVE ELEMENT INTO A DATA BUFFER

CHECK USER’S OUTPUT BUFFER FOR ILLEGAL CONTROL CHARACTERS,

GET OUTPUT ELEMENT FROM BDI
PERFORM ‘GETBKC’ CALLS FOR VBE
INITIALIZES VIRTUAL BUFFERS FOR DPTX/DSC
BUILDS A VB UPDATE TEMPLATE FROM USER DATA
UPDATES VB FROM USER-SUBMITTED TEMPLATE
TACKS A VB COPY ONTO INPUT DATA
ALLOCATES WORKRS AND ERRCTL COMMON AREAS
WRITE COMMAND GROUP PROCESSING

ASCII-EBCDIC BUFFER TRANSLATION ROUTINE FOR DPTX

CALLS XLATBF WITH BIT OFFSETS

TERMINALS

KUSR AND MPXSEM TO TM3270

Page. PJ


	Front cover
	Title page
	ii
	Table of contents
	1
	2
	3
	4
	5
	6
	Hardware Features
	Hardware Architecture Overview
	1-1
	1-2
	1-3
	- Peripherals and Controllers
	1-4
	1-5
	1-6
	1-7
	1-8
	1-9
	1-10
	- Instruction Pre-fetch
	1-11
	- P850 Functional Diagram
	1-12
	- DMx Operation
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	Lab Exercise 1
	Installing a Ring 0 Gate
	2-1
	- Building PRIMOS
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	- Booting PRIMOS
	2-8
	2-9
	2-10
	Memory
	3-1
	- Cache
	3-2
	- Interleaving
	3-3
	- Segmentation
	3-4
	3-5
	- Rings
	3-6
	- Memory Management
	3-7
	3-8
	3-9
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	Process Exchange
	4-1
	- State Diagram
	4-2
	4-3
	- Wait List
	4-4
	- Process Control Block (PCB)
	4-5
	- Ready List
	4-6
	4-7
	4-8
	4-9
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	Traps, Interrupts, Faults and Checks
	5-1
	5-2
	- External Interrupts
	5-3
	5-4
	- Real Time Clock
	5-5
	- Faults
	5-6
	5-7
	5-8
	5-9
	- Checks
	5-10
	System Initialization
	6-1
	6-2
	6-3
	- Cold Start
	6-4
	6-5
	6-6
	- Warm Start
	6-7
	6-8
	Condition Mechanism
	7-1
	7-2
	- Definitions
	7-3
	- 'QUIT$', DF_UNIT_: Example
	7-4
	7-5
	7-6
	7-7
	7-8
	7-9
	7-10
	- Program Example
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	- 'REENTER$'
	7-18
	- Crawlout
	7-19
	7-20
	Fault Handling
	8-1
	- Ring 0 Faults
	8-2
	8-3
	8-4
	8-5
	8-6
	8-7
	8-8
	8-9
	8-10
	8-11
	8-12
	8-13
	- Ring 3 Faults
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	Interrupt Handling
	9-1
	- Clock Process
	9-2
	9-3
	- AMLQ/ICS Driver
	9-4
	9-5
	9-6
	9-7
	9-8
	9-9
	9-10
	9-11
	9-12
	Scheduling of Users
	10-1
	10-2
	- Backstop Process
	10-3
	10-4
	- SCHED Flowchart
	10-5
	10-6
	10-7
	- User Priorities and Time Slice
	10-8
	- MAXSCH
	10-9
	10-10
	User Profiles
	11-1
	11-2
	- Definitions
	11-3
	- System Administrator Directory (SAD)
	11-4
	11-5
	11-6
	11-7
	11-8
	11-9
	11-10
	11-11
	11-12
	Login/Logout Mechanisms
	12-1
	- Login
	12-2
	12-3
	12-4
	12-5
	12-6
	12-7
	12-8
	12-9
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	- Logout
	12-16
	12-17
	12-18
	12-19
	12-20
	12-21
	12-22
	12-23
	12-24
	12-25
	12-26
	12-27
	- Getting into the Command Loop
	12-28
	12-29
	12-30
	Command Processor Extended Features
	13-1
	13-2
	- Routines
	13-3
	13-4
	13-5
	- BUFSEM Flowchart
	13-6
	- STD$CP Flowchart
	13-7
	13-8
	13-9
	13-10
	13-11
	13-12
	13-13
	13-14
	13-15
	13-16
	Static On-Units
	14-1
	14-2
	14-3
	14-4
	14-5
	14-6
	Filing System
	15-1
	- Disk Structures
	15-2
	15-3
	15-4
	- Directory Structures
	15-5
	15-6
	15-7
	15-8
	15-9
	15-10
	- Directory Entry Types
	15-11
	15-12
	15-13
	15-14
	15-15
	15-16
	- Directory Entry Structures
	15-17
	15-18
	15-19
	15-20
	15-21
	15-22
	Unit Tables
	16-1
	16-2
	- Definitions
	16-3
	16-4
	- Data Structures
	16-5
	16-6
	16-7
	16-8
	16-9
	16-10
	16-11
	16-12
	LOCATE Data Structures
	17-1
	- Buffer Control Block (BCB)
	17-2
	- LOCATE Flowchart
	17-3
	- Configurable Associative Buffers
	17-4
	Disk Quotas
	18-1
	18-2
	18-3
	18-4
	- Data Structures
	18-5
	18-6
	18-7
	18-8
	18-9
	- Examples
	18-10
	18-11
	18-12
	18-13
	18-14
	18-15
	18-16
	Attach Functionality
	19-1
	19-2
	- Attach Scan
	19-3
	- Common cleanup routine (AT_CLEAN)
	19-4
	19-5
	- Access Control Lists (ACLs)
	19-6
	- Priority ACLs
	19-7
	19-8
	- Calculating Access
	19-9
	19-10
	Miscellaneous
	20-1
	- File System Locks
	20-2
	20-3
	20-4
	- PRIMOS Segment Usage
	20-5
	20-6
	20-7
	20-8
	20-9
	20-10
	20-11
	- 19.1 I/O Enhancements
	20-12
	20-13
	- System Limits
	20-14
	- Area Management
	20-15
	20-16
	Programmed Input/Output (PIO)
	Device Drviers
	A-1
	- Programmed Input/Output (PIO)
	A-2
	A-3
	A-4
	- Device Drivers
	A-5
	A-6
	A-7
	A-8
	A-9
	A-10
	A-11
	A-12
	Process Exchange
	PE-T-232
	B-1
	B-2
	B-3 [1]
	B-4 [2]
	B-5 [2a]
	B-6 [3]
	B-7 [3a]
	B-8 [3b]
	B-9 [4]
	B-10 [5]
	B-11 [5a]
	B-12 [6]
	B-13 [6a]
	B-14 [6b]
	B-15 [6c]
	B-16 [7]
	B-17 [8]
	B-18 [9]
	B-19 [10]
	B-20 [10a]
	B-21 [11]
	B-22 [11a]
	B-23 [12]
	B-24 [12a]
	B-25 [13]
	B-26 [13a]
	B-27 [14]
	B-28 [14a]
	B-29 [14b]
	B-30 [14c]
	B-31 [15]
	B-32 [15a]
	B-33 [15b]
	B-34 [16]
	B-35 [16b]
	B-36 [17]
	B-37 [17b]
	B-38 [18]
	Procedure Call (PCL) Mechanism
	C-1
	C-2
	C-3
	C-4
	C-5
	C-6
	C-7
	C-8
	Revision 19.0 Routine List
	D-1
	D-2 [KS-1]
	D-3 [KS-2]
	D-4 [KS-3]
	D-5 [KS-4]
	D-6 [FS-1]
	D-7 [FS-2]
	D-8 [FS-3]
	D-9 [R3S-1]
	D-10 [R3S-2]
	D-11 [R3S-3]
	D-12 [CPLS-1]
	D-13 [CPLS-2]
	D-14 [NS-1]
	D-15 [NS-2]
	D-16 [NPXS-1]
	D-17 [CS-1]
	D-18 [RJES-1]
	D-19 [ES-1]
	D-20 [ES-2]

