
PRIMOS Operating

System Specialist

Revision 19.4

CEO810 - PRIMOS

PRIMOS Operating

System Specialist

Revision 19.4

Date: August, 1985

Revision: 5

Copyright (c) 1985, Prime Computer,

Rev. 19.4

Inc., Natick, MA 01760

Title Page

August, 1985

CEQ0810 - PRIMOS Title Page

Copyright (c) 1985 by
Prime Computer, INc.

Prime Park

Natick, MA 01760

This document discloses subject matter in which Prime Computer, Inc.
has proprietary rights. Neither receipt nor possession of this
document either confers or transfers any right to copy, reproduce, or
disclose the document, any part of such document, or any information
contained therin without the express written consent of a duly
authorized representative of Prime Computer, Inc.

The information in this document is subject to change without notice
and should not be construed as a commitment by Prime Computer, Inc.
Prime Computer, Inc. assumes no responsibility for any errors which
may appear in this document.

PRIME and PRIMOS are registered trademarks of Prime Computer, Inc.

All correspondence on suggested changes to this document should be
directed to:

Prime Technical education Center

Prime Computer, Inc.
Prime Park

Natick, MA 01760

Rev. 19.4 August, 1985

CEOQ0810 - PRIMOS Table of Contents

TABLE OF CONTENTS

Section 1 -- Hardware Features

PRIMOS Operating System

Microcode-Based CPU ...2.00.%

Central Processor Unit

Register Filecceeee

e e e e e e e e e e e e e e e e e e e e

e
e
e

'
i
n
&

W
w

h
b

Section 2 -- Memory Management

Cache Functional Diagram cee eee

Interleaving wee ce reer en vcrvenenccscrscesesesssssesessessees

Segmentationc.ccenceveves

Effective Address Format

Ring Number ...ccerevececveese

Memory Management Techniques0ee-

Address Translation

Full Address Translation

DTAR - Descriptor Table Address Register

SDW - Segment Descriptor Word ...ccceeeee

Page Map Entries - Page in Memoryee0.

The Cacheccccccees

The STLB oeeoeeeee#eteseesos#eee#es+eoee#eee34eseteeereeseeerseeseeeeseeeesenteeerseee#s2#ee8 @ 2-15

The LOTLB eoeeeeegesc#eee#t#e#eteee ee

i
ot

o

s e e e e e e e e * e e e e e e e e e e e e e e e e e ° e * e

B
o

B
S

P
O

B
D

P
K

P
O

K
D

K
H

L
P

b
o

‘

m
e
O
N
O

&
W
w

h
b

=

eo e e e e e e e e e e ® e e e e e e nh 1
m
e

ee
P
W
D

e e e ° e e e e e e e e e e e e e e e e e ° e ° e e e e se e e e e e e e r
t i

oeeeeegesqsose*eeeee#e#sese#eeees+s7eesrs+hreeeeersrsbee#e8tf#e8eee8 ee ¢ 2-16

Read Memory Access oeeeee#eeetegesgg#+n+noeveestrteeeeeereee#se#e#ee#eene#s#ee8# ff 8 #@# ¢ 8@ @ @ 6 @ 2-17

Page Fault oe#e3eeeeete eee eo @emUcmemUcOMmhCUCcCOhrmChCUCcOOrCOmCcCPOCUcM CUM CC OCMC OCC Oc HChUc HOmhUCUM CUCU OCUhMHLUCUM HOChUM MCUMHCUCUhMHOChUCUCcMOCUCUCOrChUCUcCOCrUCOCUcCOmhUCUcPFrmhUCUCOrChUCUCcCOrChUCUCcCOhUCUCcOOrhUcOhUhHU OCU! 2-18

Page Map Entries - Page in Memory wcecceccrscececssesecesseee 2-19

Page Map Entries Page not in Memory cece eeeceecvecccceeee 2220
MMAP eec3o37so+o3?teeee#&#§45neieeteree vee eeeeeeeeee¢ee#steeeeoe##eeee#ee#eeeeseeee#ee#e#2?8 80880 ¢ @ 2-21

Primos Paging Algorithmccecceveee eoeeeo3sos#34e47se#26eee8keeese?e#28 e# ee 688 @ 2-22

Section 3 -- Process Management

State Diagram eecteee eee wees

Process Exchange wercrcecrcesveesvreevsevccere

Wait LiSt Cece r reer nce cere ne sccence

Simple Lock .occcreevevvevvvcvvee

Ordered LocKS ccc eee eee er cen veces

System Locks wcrc cee cer vec ccevvcveses

Process Control Block we... cee eeeeae

PLiOTItieCS eevee eres eee eve vvrsevesevsves

Ready List ExampleS were eer eres vervvvese

State Diagram cece cervesevecvvvevvece

Scheduling of Users ...2..cseccccees

Backstop ProceSS weccrcceveccvvvveccees

a
|

§

m
e
O
N
D

U
r
&
W

f
h

o
O

p
r
~

° ° ° ° ° e ° e ° ° . e ° e ° « « e ° ° °

W
W
W
W
W
W

W
H

W
H

W
H

W
D

W
w

W
D

J b
o
>

i

b
t

b
d

“
s
u

Interactive User were encvneverevvenevvresesessesessesesesesses 3728

Compute Bound User ccc cccvvnveccvccvvescccccvevccesevessee 3729

User Priorities and Time-Slice wer. crevecvavvesnncevnevesecseee 3-30

MAXSCH cece cevcccesevvcessveveecessseesssesesesesscseseeecese ISL

Rev. 19.4 i June, 1985

section 4

Section 5

Section 6

Fault

PRIMOS

~- Device Management

Operation

Transfers

Transfers

Transfers

Transfers

LIOCOM

DISKIO.PMA

-- Procedure Management

The User Register Set

Procedure/Link/Stack Architecture

External Interrupts

Phantom Interrupt Code

Clock Process

The QMALC Driver

Line Configuration Table

LWORD Table

QAMLC Block Diagram

ICS Block Diagram

J

2

ee

eeoe#e fF 8 @ @ e686 @ 6 8

Disk I/O Wait Time

Disk Queue Request Blocks

Disk 1/0 Seek Time

Disk 1/0 Rotation and Transfe

cd

a ee eo fF 2 @ 0 eo eo #6 AO

oe oeoeeweeneee ee eo Re awe woman see ewaee

Subroutine Calls

The Entry Control Block
Stack Header and PCL Stack Frame
The PCL Mechanism

-- Exception Handling

Fault Processing

Fault Handling

The Fault Frame

Ring O Fault Handlers

Process Fault

Software Interrupt Handling

Other Ring 0 Faults

Ring 3 Faults

ss @e@e@e@8 3 8 @ 8

FFH

2

o

Direct Entrance Calls

Condition Mechanism

Definitions

The Extended Stack Frame Header

The On-Unit Descriptor Block - ODB

eos, e¢ 4 @ @ 2

oeeeee ee 80 © 8hmhUOMUMOCUh

a ©ees go @*# FP @ @ 8 @

¢* eee.

eo oo @ © e@ 2 @ @ @

eo @ @

The Condition Frame Header

DMSTK Output

LOGOUTS Condition

Crawlout

TABLE OF CONTENTS

rR

e

CFH

eos; @r 2 ee # @ ts @ 8 & 829 & 29 @ @

oes @eneeeee*eree#kneeeoee

o@e@e@ememmemUmmUCOOmUCUC MU FOmhUcM HO TW CHC HP oF ea eHeweewesrseeee ee ehmlchrmlUlcOOhUcMHrChUCUCOChUCUcCOrChUCUCcOOhChUCUcMChCUcrhCUhH HP OF

(CONT“D)

Contents

$
e
e
r
f

S&
S

t

m
M

e
S
O
n

D
&

W
H

h
o

D
B
D
A
D
A
A
R
D
A
X
A

D
A
A

t
m
e

O
n
s
D
U
S

W
w

b
h

'
R
e

O
U
w
W

n
n

t b
o
r
e

6-22
6-23
6-24
6-25
6-31
6-33

1985

CEO0810 - PRIMOS Table of Contents

TABLE OF CONTENTS (CONT“D)

Section 7 -- Command Environment

Extended FeatureS woccensenevcvneveseeseversevresesecsesseceses

Building the Command Line wc cece cccevcvevevvevnsssevesecececes

Command Line Data - CLDATA .rcreren nen revere veseeerveceseessece

Standard Command Processor = STDSCP wicccccccecccccccccvvccee ~
~
N
S

1
4

c
o

D
O

W
M

b
o

Section 8 -- EPFs

Static vs Dynamic RunfileS ccc eer eee renee eve veces sessceens

Executable Program Format - EPF .w.cccccncvrveccvececcsssevececs

EPF Logical Structure wees er veer evveerrevsseesesessesecese

The Very Critical Information Block - VCIB wwe eeeeerereneeaee
The Critical Information Block = CIB werner eee renner eevvese

The Linkage DeScription ccc ener even reserves nese evessvesssece

The Life of an EPF ccc vnccvevvvvnecrenccreeresesvrecessscsece

The Active Segment Table ~- AST weccsenevevrvreeevesvrvrecceccsseee

The EPF Mapping Phase - EPFSMAP.PLP wccccccvvseccvecvecccsvecs
The Segment Mapping Table - SMT ccc neveeeesrereesvnvrsesesvees

‘

m
r
e
O
O

H
A
O
&

Ww
W
b
h

-
©

SMT Format wccccvcccvvesceevverevreeseesesecesesseseseeseseese

SMT Address Table cece rerecvvvccsvceeseeeeevressseesevssesece

The Allocation Phase - EPFSALLC.PLP wc... ccc rnc cvvveevevcvece

The Initialization Phase - EPFSINIT.PLP ..ccrcenscceeevveeee S15

The Invocation Phase - EPFSINVK.PLP wccccccrcccccccrccseccece S16

Moving Between Command LevelS weer veeevvecceeeessecseecvecees

C
O

C
O
&

G
C

C
O

C
H

O&
O
©
©

C
O
©

H
O

O&
O

(
'

=
—

e
H

&
W

b
h

© ' — ~
!

Section 9 -- File System
Physical Disk StructureS cece ceervr recess veveseeeeseseseesece

Record Header Format wcrc ccccevevevvrcevrcesscessceseeseces

DSKRAT Format cecrvwecccccvvccnceseverevnsessecesseeseseves

Badspot File Format cecccnceceevrecvevevsecsecessesccccseseor

Directory Structure wcoeeescevecevvervsevsessvecesescseseces

SAM Files eeseecvsvecuscsseeoe7esentseeeeenrteesvenreeee#eeeeenereeeeseeeeeteeseees

DAM Files eee5u85xes8#4s#eseseses2nsenv8ktkeeVesveseeseeoeesteeeeeenee7nroeeneen»eseseeeneeee

Multilevel DAM FileS cone eee errs eee reece eeesesreressvecees

Segment Directory Format were cervevvvvevesvcscevrsescessece

Directory Structure

Normal Entry coc ccccccc cv cvv even evesccseceesevsesessces

ACL PoOSitiON cece eevee r ver vce veevvnesevessecessesccseses

ACL EMtry weve escnceveccvevccvccvecvcsesecrsssveseseses In1L4

ACAT Entry weccrevccccccccccvecvecveseesecccseesesssees IRlS5

LOCATE

The LOCATE Mechanism wccccsccccrcvesrevccceesccccccsececsess Inl]

Buffer Control Block wcocccrecccevcveneccsccveevveevesscsee IA18

Managing BCBS ..cccccceceverercvsecesccvccevessveccecesess IALI

LOCATE. PMA .occcncrcccccrercvevevcrcvvvevcscscsssescesesees I=2)

Config Directives ceccer sere recreveccrvcrsvveseeeeceessees In2Z]

o
w
o
w
o
v
o
n
w
v
o

v
t

O
o
O
O

O
O

8

m
m
O
O
K

ti
n
&
W

b
P

r
m
©

w
o

w
o

'
o
4

m
e

W
w

b
h

Rev. 19.4 iii August, 1985

CEO0810 - PRIMOS Table of Contents

TABLE OF CONTENTS (CONT“D)

Section 9 -- File System (Contd)
Unit Tables

Definitions ...c.cccccsecea© Dy Hc
Unit Tables COC eee eee merece rere eserresesecrescscsccsesescee G24
Data Structures Cee ee ere ere rere rere rere r nesses vesesescesescee 925
A Non-Attach Point UTE Ce em meer e reer ene renee sreseccscvcesese G26
An Attach Point UTE Cee eer emer error reer eseeseesesescccceces G27

Flow of Control in the File SYStTEM Leese eeccc ever ecesscceseee 9-29
Overview of File System Routines ...ccccccevcccccccccccese 9-30
Creating a File .oc ccc c ccc evn cence ncccccccccccsccccccucee 9-32
Creating a Segment Directory Subfile .w.cscccccccccccccces 9-34
Writing Data to an Empty File - PRWFSS ...ssccccceccecee 9°35
Closing and Deleting a File ...cccccccccsccvcccccccccccee 9-36

Appendices

Appendix A o_- PRIMOS Segment Usage eooeseevreee eee eee

Appendix B -- Lab Exercises ...cccccccccecces
Appendix C -- Miscellaneouscsesccccccee

Reading the System Load MapS ...cccececesccoes
VPSD Command Summary00.
VPSD Demonstrationccccccces

Appendix D -- Acronyms CoCo mre mre rere eres ere esseeresescecccece
Appendix E -- Reading Listc.eeeeee.

a
R
e
W
H
E

e
e

H
O
O
N
A
O
O
w

SP
i]

Rev. 19.4 iv June, 1985

CEO0810 - PRIMOS

Objectives: The

o describe

° describe

Oo describe

Rev. 19.4

Hardware

Section 1 - Hardware Features

student will be able to

the peripherals and controllers on a Prime system.
the major components of the CPU.

the contents and use of the register file groups

l - 1 June, 1985

G
e
e

e
e
e
e

S
e
e
e
e

CEO8LO ~ PRIMOS

Hardware

PRIMOS OPERATING SYSTEM

The chief features of the Primos operating system are:

L. INTERACTIVE - up to 255 user processes
(14+ interrupt processes)

2. 64 M3 maximumprivate virtual address space per user
3. Users share the resources of the system

High speed memory
Programmable Interval Clock
Peripherals and controllers

System Console
Disk Drive(s)
AMLC(s)/ICS1(8s)/1ICS2(s)

SMLC(s)/MDLC(s)
Ring Node Controller (PNC)
Magnetic Tape Drive(s)
Line Printer(s)

Rev. 19.4 . l - 2 June, 1985

CEOQ0810 - PRIMOS Hardware

‘“Microcode-Based CPU

|

oa

\ t

|
l

>} ——

|

— >|.

|

 > »

Rev. 19.4 l - 3 June, 1985

CEV810 -

Rey,

PRIMOS

CENTRAL PROCESSOR UNIT

CPU

CONTROL UNIT

SEQUENCER CACHE
MEMORY

R.F. ALU STLB

19.4

Hardware

June, 1985

td
a
d
.

o
n
l

o
e

o
e

CE0810 - PRIMOS

MICROCODE SCRATCH

HIGH

LREGSET

DSWPARITY

PSWPB

PSWKEYS

PPA:PLA

PPB: PLB

DSWRMA

DSWSTAT

DSWPB

RSAVPTR

Rev. 19.4

LOW

CHKREG

REGISTER FILE

HIGH

DMA

LOW

Hardware

CURRENT REGISTER

HIGH LOW

GRO:OLT2

GR1:PTS

GR2(1,A,LH)| (2,3 » LL)

GR3 (EH) (EL)

GR4

GR5 (3,58,Y)

GR6
 GR7 (0,X)

FARO (13)

FLRO

FAR1/FAC(4)

FLR1/FAC(6)

PB

SB (14)
 LB (16)

XB

DTAR3 (10)]

DTAR2

DTAR1

DTARO

KEYS {| MODALS

OWNER

FCODE (11)

FADDR (12)

CPU TIMER

MICROCODE SCRATCH
 We

CPNUM

June, 1985

CE0810 -

Rev. 19.4

PRIMOS Hardware

June, 1985

CE0810 PRIMOS Memory

Section 2 - Memory Management

Objectives: The student will be able to

Rev.

Oo describe how cache reduces the effective memory access time

for memory reference instructions.

explain how memory interleaving speeds up sequential memory

access and increases the cachehit rate.

distinguish between virtual and physical memory.

describe the address translation hardware mechanism.

describe how cache and the STLB are used to access a

word of data.

explain how a page fault is generated and handled.

examine memory management-related variables and data

structures in memory using VPSD.

answer memory management-related questions by examination of

source code.

19.4 2 - l June, 1985

CEO0810

Rev. 19.

PRIMOS

CACHE FUNCTIONAL DIAGRAM

MAIN

MEMORY

CACHE

MEMORY

PROCESSOR

EXECUTION UNIT

Memory

June, 1985

CE0810 - PRIMOS

Rev.

V
o
o

n
H
©

‘\

MOS

Memory

EVEN

Addresses

V
o
n
O
D

\

MOS

Memory

ODD

Addresses

19.4

K «222

“
H
O
B
O

&

{+--+

INTERLEAVING

Memory

R
P
m
a
O
F
o
a

CPU

June, 1985

CE0810 - PRIMOS Memory

SEGMENTATION

Virtual Memory is divided into variable length SEGMENTS (64K words
max) 4096 SEGMENTS define 512 MB of Virtual Memory. The Virtual
address space is divided into 4 areas (DTARS), each area consisting of
1024 (~2000) segments.

CURRENTLY ENABLED

“7777

PRIVATE PER USER (SYSTEM)
“6000

“5777

PRIVATE PER USER (USER)
“4000

“3777

SHARED BY ALL USERS
“2000

“1777

EMBEDDED OPERATING SYSTEM
“0000

Rev, 19.4 2 - 4 June, 1985

CE0810 - PRIMOS Memory

EFFECTIVE ADDRESS FORMAT

PROGRAM INSTRUCTIONS GENERATE AN EFFECTIVE ADDRESS (EA).

- 2 Bits RING NUMBER (defines privileges)
- 12 Bits SEGMENT NUMBER

- 16 Bits WORD NUMBER (within SEGMENT)

1 2 3 4 =5 16 17 32
] [RING] [SEGMENT NO. | WORD NUMBER |

The EFFECTIVE ADDRESS (28 BITS) is mapped to PHYSICAL MEMORY.

- 23 Bits of PHYSICAL ADDRESS

- Up to 16M Bytes of PHYSICAL MEMORY.

- 22 Bits PHYSICAL ADDRESS

- Up to 8M Bytes of PHYSICAL MEMORY.

Rev. 19.4 2 - 5 June, 1985

CEQ0810 - PRIMOS Memory

RING NUMBER

There are 3 RINGS which define the privileges of access to the
SEGMENT. |

RING 0 is the most privileged and allows unrestricted
access to all segments. Ring 0 is the only ring
that can execute restricted instructions.
PRIMOS runs in RING 0O.

RING 1 Not currently used by software
RING 3 The least privileged.

USERS run in RING 3.

Hardware defines access rights of:

Inner ring accessing memory in an outer ring.

Outer ring accessing memory in an inner ring.
GATE access

The SHARE command for DTAR l

Rev. 19.4 2 - 6 June, 1985

CEO810 - PRIMOS Memory

MEMORY MANAGEMENT TECHNIQUES

The total number of segments available is currently 8192.

All 8192 segments cannot be contained in physical memory.

Virtual Memory is divided into two parts:

1) the part in physical memory
2) the part on the paging disk

Certain information is too critical to be on the paging disk,

it is "WIRED" ("LOCKED") into physical memory.
At COLD START, PRIMOS “wires" critical information, this area will

grow as PRIMOS requires certain per-user data to be wired.

When user segments are allocated, paging space is allocated.

Programs generate VIRTUAL ADDRESSES.

The VIRTUAL ADDRESS is translated (mapped) to a main memory address.

If the required physical address is resident within physical memory,

the access may proceed without interruption.

If not in physical memory, a PAGE FAULT will occur.

When a PAGE FAULT does occur, the program is suspended while the

required page is moved from the PAGING DISK into main memory.

This is called PAGING IN.

If there is no physical memory page available, PRIMOS will use a

Approximately-Least-Recently-Used algorithm to determine which

page in physical memory will be PAGED OUT to allow space for the

in-coming page.

Rev. 19.4 2 - 7 June, 1985

CEQ0810 = PRIMOS

—
—
—
-

2
2

VIRTUAL

MACHINE

Rev.

USER

19.

--->

--->

MAPPING

LOGIC

MEMORY MANAGEMENT

-~-->

|--->

VVNVAVAAANA
VANNAANAA

REAL

MEMORY

PAGE-OUT

PAGE FAULT (Access then proceeds)

VANAANAAA

PAGING

DISK

June,

Memory

1985

CEO810 - PRIMOS Memory

ADDRESS TRANSLATION

Every VIRTUAL ADDRESS is translated (mapped) to a physical address by
accessing the STLB (Segmentation Translation Lookaside Buffer). The

STLB holds the most recent virtual to physical address translations.

When the STLB does not have a valid entry for the virtual address to
be translated, hardware calculates the address translation using

Descriptor Table Address Registers, Segment Descriptor Tables and

Hardware Page Maps. The STLB is accessed again, this time being sure

to get a STLB hit. During translation, a page fault will occur if

the desired page is not in physical memory.

Simultaneous to the STLB access, hardware starts a CACHE access.

If the word from cache is from the correct physical page, then the

access is complete. If the word sought is not a valid cache entry,

then the information is brought into cache from physical memory.

Rev. 19.4 2 = 9 June, 1985

CE0810 - PRIMOS

Memory

FULL ADDRESS TRANSLATION

SEGMENT NUMBER WORD NUMBER
1234 5 6 7 16 1 6 7 16
{| | [DTAR #] SEGMENT OFFSET | PAGE NO. | PAGE OFFSET |

V | SDT
DTAR |---->

| HMAP/PMT
| -> SDW ---->

-> | PPN --

DTAR - Descriptor Table Address Register V V
SDT - Segment Descriptor Table 1. PPN | PAGE OFFSET[|
SDW - Segment Descriptor Word l 12 13 22
HMAP - Hardware page MAP 13 14 23
PPN - Physical Page Number

Rev, 19.4 2 - 10 June, 1985

CEQ0810 - PRIMOS

Memory

DTAR = DESCRIPTOR TABLE ADDRESS REGISTER

1 10/11 16

17/18 32

Bits 1-10 = 1024 minus number of entries in SDT

11-16 = High order 21 bits of physical address

18-32 of SDT origin

17 = must be zero

Rev. 19.4 2 - dt June, 1985

CE0810 -

Rev. 19.4

Memory

SDW - SEGMENT DESCRIPTOR WORD

1 10 16

Fi; A A Ail BBB ccc |
17 18 20 21 23 24 26 27 32

27-32 Physical address of Page Map Table (HMAP)
1-16 (Bits 11-16 must be zero)

17 Fault Bit

18-20 (AAA) Access rights from RING 1

000 no access
001 Gate access only

010 Read access only

Oll Read and write access

100 reserved

101 reserved

110 Read and execute access

lll Read, write, and execute access

21-23 (BBB) reserved for future use

24-26 (CCC) Access rights from RING 3

same as RING 1 access bits

2 - 12 August, 1985

CE0810 - PRIMOS

PMT

Memory

PAGE MAP ENTRIES - PAGE IN MEMORY

Processor supports > 8MB of physical memory

1 2 3 4 3 6 7 8 9 16

R {| U | M {| S { - | WIRE | F [DISK ADDRESS (HIGH)
PHYSICAL PAGE NUMBER

Processor supports <= 8MB of physical memory

1 2 3 4 3 16

HMAP | R | U {Mf S [PHYSICAL PAGE NUMBER I

 LMAP | WIRE | F | DISK ADDRESS (HIGH)

Resident bit is set when page is in physical memory.

Used bit is set by the address translation hardware.

Modified bit indicates whether the page has been modified.

Shared bit is set to inhibit cache for all locations in this page.

WIRE bits are set to indicate this page is locked in physical memory.

PHYSICAL PAGE NUMBER is the physical address of the page.

Rev. 19.4 June, 1985

CE0810 - PRIMOS
Memory

THE CACHE

V INDEX DATA

12, (13) BITS 16 (32) BITS

1024 PPN +ENTRIES

2 (4) PARITY

BITS

Rev, 19.4 2 - 14 June, 1985

CEQ0810 - PRIMOS

Rev. 19.4

Memory

THE STLB

Access
_ Rights

V 4 S Ring 1 Ring 3 Process ID Segment No. Phys. Page No.

1 Biti1 Bitii Bit] 3 Bits 3 Bils 12 Bits 12 Bits 12 Bils

(13)

2 - 15 June, 1985

CEQ0810 - PRIMOS
Memory

THE LIOTLB

Vv PPN

1 . 12(13)

Rev. 19.4 2 - 16 June, 1985

CE0810 -

123 4 55

it R |
\

LOTLB

used |
for

seg |
0

addr

only |

| DTAR |
HASH

PRIMOS

READ MEMORY ACCESS

SEGMENT NUMBER

6 7
SEGMENT OFFSET

STLB

16 1
| PAGE NO. |

|
|
|
|
| -->

33

COMPARE

{ PPN

Rev. 19.4

Vv

12 13
13 14

PAGE OFFSET |

22

23

17

WORD NUMBER

6 7

CACHE

Memory

16

PAGE OFFSET |

12
(13)

18

(36)

June,

1985

CEO0810 - PRIMOS Memory

PAGE FAULT

Whenever a user program issues a virtual address the hardware
translates this address into physical memory using the STLB. An STLB
“miss” may be caused by failure to find the desired entry, or by a
reset valid bit for the desired entry. During full translation, the
HMAP/PMT entry will indicate if the desired page is not in memory.

The page map entry contains a marker bit (bit 1) indicating whether
or not the required page is held in memory. If the page is in
physical memory, translation proceeds but if the page is not in
memory, a PAGE FAULT occurs.

This fault causes a branch in execution through the users page
fault vector to the fault table code. A CALF is then executed in the
page fault catcher. (All page faults are handled by this routine).

The page fault catcher will:

1). Save the user state
2). Check recursive page fault. If so HALT

Allow warm start but process takes fatal error.
3). Call PAGTUR

Rev. 19.4 2 - 18 June, 1985

CE0810 - PRIMOS Memory

PAGE MAP ENTRIES - PAGE IN MEMORY

Processor supports > 8MB of physical memory

1 2 3 4 5 6 7 8 9 16
PMT R | U | M |S |- | WIRE | F | DISK ADDRESS (HIGH)

PHYSICAL PAGE NUMBER

Processor supports <= 8 MB of physical memory

1 2 3 4 5 16
HMAP | R | U {| M {| S | PHYSICAL PAGE NUMBER |

LMAP | WIRE | F [| DISK ADDRESS (HIGH) |

Resident bit is set when page is in physical memory.

Used bit is set by the address translation hardware as well as by

PAGTUR on a page-in, reset by PAGTUR aging the page.

Modified bit indicates whether the page has been modified.

WIRE bits are set to indicate this page is locked in physical memory.

First time in bit is set by PAGTUR on page-in, and reset by PAGTUR

aging the page.

Rev. 19.4 2 - 19 June, 1985

CEQO810 - PRIMOS

 PMT

Memory

PAGE MAP ENTRIES PAGE NOT IN MEMORY

Processor supports > 8MB of physical memory

1 2 3 4 3 6 7 8 9 16
R_ [| U [sta] S [tus] WIRE | F | DISK ADDRESS (HIGH)

DISK ADDRESS (LOW)

Processor supports <= 8MB of physical memory

l 2 3 4 5 6 16
HMAP | R {| U [sta[S [tus] DISK ADDRESS (LOW) 1

 LMAP | WIRE | F | DISK ADDRESS (HIGH)

Resident bit is reset when page is not in physical memory.

Status is defined by bit 3 and bit 5 as follows:

00 not in, copy on disk

10 not in, no copy on disk

Ol in transition, coming in

ll in transition, going out

Rev. 19.4 2 20 June, 1985

CE08 10 - PRIMOS

MMAP (segment 33)

1 2 16

Al Vv | HMAP ENTRY SEGMENT NUMBER

HMAP ENTRY WORD NUMBER

DISK ADDRESS (LOW ORDER)

Available bit is set when this page is free for page-in.

Void bit is set to map out a missing or bad page.

MMAP ENTRIES
MMAP_STRT------ > | 1

five ~ ~

pointers MMAPCPTR------ >| |
to ~ ~
MMAP MMAP_FPTR------ >| |

MMAP_END8&------ >{ |

MMAP_END------- >| il

MMAPSTRT points to the first MMAP entry

MMAPCPTR is stepped during page-out

MMAPFPTR is stepped during page-in

MMAP_END points to entry after last MMAP entry

MMAP_END&8 If there are more than 8MB of memory

points to last entry in the first 8MB

else MMAP_END8 MMAP_END

Rev. 19.4 21

Memory

June, 1985

CE0810 - PRIMOS
Memory

‘ Weet for

Teens tion

 any

Avaricole
oges

8 Mare Poge.
. Step CPTR

ta Treens:tion,

Conaira In

Owcrement

Look ot Next Poge

Aveilosle

Void, Locxed Pege Counter
in Trensicion hepSenta

Step FPTR

Leec ot

lext 7o0e

ege Avarlente

Y

Resec

First Tine in }
| N

Bic :
a |

'
Mere cc3o

Coit TRIOS Cott Pacsrs

—<—$—$—

Mor« Page.

In Memory, Leeo !
—

KAN Nye

 la Treersi tien,

GSeira Cut

First Time in Mod. wf ne cooy + ~

— J
Locete Bulfe

Notify Processes |
barling for i

Teens: tron

Cott Lecour

| ; RETURN

Catt Trrcs

 \
| Fins

Preoeging

“ore Poge.

Met in Femory,

Copy on Oven.

Avarlooie

Ineremene

dverlopie

. Page Counter

Rev. 19.4 2 - 22 June, 1985

CEOQ0810 - PRIMOS Process

Section 3 - Process Management

Objectives: The student will be able to:

o describe the different process states.

o describe the data structures and implementation of

process exchange.

o explain how users are scheduled.

o describe the function of the Backstop process.

o explain how a select group of operator commands relate to

process management.

o examine process management-related data structures in

memory.

CE0810 -

Rev.

PRIMOS

STATE DIAGRAM

Process

19.4

June, 1985

CE0810 - PRIMOS Process

PROCESS EXCHANGE

Process Exchange is the hardware/firmware mechanism used to switch

the CP from being used by one user to being used by a different user.

A context switch occurs whenever a higher priority user or system

requires the use of the CP. The context switch involves saving the

registers and state of the currently running process and placing the

needed information in the current register set for the new user or

system. This is accomplished by the firmware/hardware and the multiple

user register sets in the High Speed Register File.

A process is a sequential flow of execution (a user, an 1/0 driver).

The process is described to PRIMOS by a PCB (Process Control Block).

Each process has its own PCB. A process must be in one of two states:

1). waiting for an event or non-CP resource

2). ready to execute.

When the process has all the resources required to run and is only

waiting for the CP, the process” PCB is placed on the READY LIST.
If the process is waiting, its PCB is threaded onto a semaphore or

wait list.

Rev. 19.4 3. - 3 June, 1985

CEO810 - PRIMOS

-~->j| COUNTER

 BOL

WAIT LIST (Semaphore)

|---->] LEVEL
PCB

---| L INK

|OW

W

1

LSN

LWN

WAIT <semaphore name>
access semaphore

count = count + 1

if count > QO

then PCB --> Wait List

else process continues

Rey, 19.4

i
a i

Process

NOTIFY <semaphore name>

access semaphore

count = count - 1

first PCB --> Ready List

4 June, 1985

CEQO810 - PRIMOS Process

USE OF LOCK SEMAPHORES - Simple Lock

DATA

Two processes are sharing the same data area. Process A could be
changing data at the same time as Process B is reading the data.
B may read incorrect data.

To prevent this, use a Simple Lock Semaphore (initial count = -l).

In order to access the data

Process A must wait on the semaphore (count = 0)
Process A proceeds

If Process B attempts to access the data it must first wait on
the semaphore. (count = 1)

Process B goes onto the Wait List for that semaphore
Process A must NOTIFY the semaphore. (count = 0)
Process B returns to the Ready List and proceeds

All processes that access the data must first WAIT on the semaphore
and NOTIFY the semaphore when access is completed.

Rev. 19.4 3. - 5 June, 1985

CE0810 - PRIMOS Process

USE OF LOCK SEMAPHORES - Ordered Locks

SEMAPHORE
DATA 1 {(--------- |

B

|
SEMAPHORE |
DATA 2 Ke-- ee eee |

Two processes are sharing two data areas.
If using simple locks;

Process

Process

Process

Process

A

B

B

A

WAIT on

WAIT on

WAIT on

WALT on

semaphore

semaphore

semaphore

semaphore O
e

A "Deadly Embrace" situation will be the result.

To avoid the “Deadly Embrace",
Share data areas order their locks.

it is vital that all processes that

The WAITs on the various
semaphores must occur in the same order for each process.

Process

Process

Process

Process

Rey. 19.4

A

A

A

A

WAIT on semaphore

WAIT on semaphore

NOTIFY semaphore
NOTIFY semaphore

1

2

1

2

Process B WAIT on semaphore 1

Process B WAIT on semaphore 2

Process B NOTIFY semaphore 1

Process B NOTIFY semaphore 2

6 June, 1985

CEQ0810 - PRIMOS Process

SYSTEM LOCKS

The locks Listed on the following page (in priority order) are used to

control concurrent access to data areas. These locks utilize two

semaphores (or wait lists).

Each lock consists of the following data structure:

COUNTER
POINTER READER”S Semaphore

COUNTER

POINTER WRITER“S Semaphore

| USAGE Counter |

PRIORITY

Rev. 19.4 3. O- 7 June, 1985

CEO810 - PRIMOS

SYSTEM LOCKS

Process

The system locks are listed in priority order, from lowest to highest.

Rev.

FSLOK

UFDLOK

SDLOK

TRNLOK

UTLOK

RATLOK

DEVLCK

SP1LCK

NETLCK

NMMLCK

SLCLCK

MOVLCK

SHRLCK

SEGLCK

PAGLCK

19.4

Global file system lock

UFD lock

Segment directory locks

Transaction locks

Unit tables lock

Record availability lock

Device table in PBDIOS

Network data

Network memory mapping Lock

Smlec driver data

segment mover lock (MOVUTU)
Shared segment data lock
GETSEG/RTNSEG lock (Segment tables)
Page tables LOCK

June, 1985

CE0810 -

Rev. 19.4

PRIMOS

PROCESS CONTROL BLOCK

LEVEL (PRIORITY)

LINK

POINTER TO WAIT LIST

ABORT FLAGS

MULTISTREAM CONTROL

RESERVED
i]

PROCESS ELAPSED TIMER
8

DIAR2

DTAR 3

PROCESS INTERVAL TIMER

REGISTER SAVE MASK
 KEYS

REGISTER SAVE AREA

RING O FAULT VECTOR

RING 1 FAULT VECTOR

NOT USED

RING 3 FAULT VECTOR
i

PAGE FAULT VECTOR

CONCEALED STACK FIRST FRAME PTR

CONCEALED STACK NEXT FRAME PTR

CONCEALED STACK LAST FRAME PTR
 RESERVED

Process

June, 1985

CEO810 -

Rev.

LEVEL

o
O

O
O
A
N
A
L
W
H

L9.4

PRIMOS

PRIORITIES

CLOCK PROCESS/FNTSTOP

ASYNC. CONTROLLER PROCESSES

SYNC. CONTROLLER PROCESSES

MPC PROCESS, MP2

VERSATEC PROCESS, MPC-4

RING NET CONTROLLER PROCESS

DISK, ROIPQNM PROCESSES

NETMAN

SUPERVISOR PROCESS

USER LEVEL 3

USER LEVEL 2

USER LEVEL 1 (DEFAULT LEVEL)

USER LEVEL 0

IDLE

SUSPEND

BK1PCB (BACKSTOP 1) CPU #1

BK2PCB (BACKSTOP 2) CPU #2
 END OF READY LIST = 1

Process

June, 1985

CEQ810 -

Rev.

PPA

“600
“601
“602
“603
“604
“605
“606
“607

“614
“615

“624
“625
“626
“627
“630
“631

“636
“637
“640

19.4

PRIMOS

Process

READY LIST EXAMPLE #1

| LEVEL A | PCB A | | LEVEL B {| PCB B

{ BOLO |
EOL 0

{| BOLL |
EOL l
BOL 2

— BoL 2 71
{. BOL 3 [

EOL 3
PCB

BOL 7 Level |
| EOL 7 | 0

{BOL 10[|
EOL 10 PCB PCB PCB

{_ BOL lio Level Level Level

EOL 11 Link Link 0
| BOL 12[~ ~ ~

EOL 12
~ ~ PCB PCB
-_ BK1PCB| Level Level

BK2PCB Link 0
i + 4

3 - 211 June, 1985

CE0810 - PRIMOS Process

To move a PCB from the Ready List to a Wait List, the WAIT
instruction is used. The NOTIFY instruction will move a process
from a wait list to the Ready List. Both instructions must always
reference a semaphore or wait list. The NOTIFY removes the first
PCB from the semaphore and places it onto the Ready List at the
proper level. When the process has completed execution or requires
another resource, a WAIT is executed and the process moves from
the Ready List to the specified Wait List or semaphore. PCBs are
placed in the Wait List queue in priority level order.

READY LIST

The firmware dispatcher uses two locations in the High Speed Register
File Group 0. The first location is called PPA . PPA holds the
pointer to the PCB of the currently running process. PLA contains
the Ready List level of the currently running process. The currently
running process will be the highest priority process on the Ready
List. PPB contains the PCB address of the next process to run. PLB
has the level of the next process. This allows the User Register Set
for the next process to be set up while still running another process
at a higher level.

The Ready List and the PCBs are all in Segment 4. This is one of the
“wired” segements of PRIMOS. This means it never gets paged out to
the paging disk. The Ready List begins at Segment 4, address “600 and
extends through address “640.

The PCB address and User Number bear a direct relationship to one
another. For example; the address for User 1“s PCB is 100100. The
address for User 7°s PCB is 100700. The PCB at address 101200
belongs to User 10. Addresses are in octal, user numbers are
decimal. All PCBs are 64 (7100) words long so the least significant
two octal digits of any PCB address is “00.

Rev. 19.4 3 - 12 June, 1985

CE0810 -

PPA

CLOCK

AMLC

SMLC

_ MPC

DISK

LEVEL 2

LEVEL 1

— LEVEL 0

__BACKSTOP

PRIMOS Process

READY LIST EXAMPLE #2

| “614 | 777700 | PPB | “626 { “100200 |

“600 | 0
“601 “76600
“602 | ti
“603 “77100
“604 |_ ae
“605 0
“606 | 0

“607 “77200
~ ~ “77700

“614 “77700 “614
“615 | “77700 | | 0

“624 + 0 —

“625 0 “100200 “102000 “102300
“626 |7100200[“626 “626 “626
“627 “102300 “102000 “102300 0
“630 [| oO f ~ ~ ~ ~
“631 0

~ ~ “76400 “76500
“636 | “76400| “636 “636
“637 “76500 “76500 0
“640 1 ~ ~ ~

The contents pf PPA/PPB are calculated.

Rev. 19.4 13

This example shows actual addresses found using VPSD.

June, 1985

CEQ810 -

PPA

SEGMENT #4

CLOCK

AMLC

SMLC

MPC

DISK

LEVEL 2

LEVEL 1

LEVEL 90

BACKSTOP

Rev.

“600
“601
“602
“603
“604
“605
“606
“607

“614

“615

“624
“625
“626
“627
“630
“631

“636
“637
“640

19.4

PRIMOS Process

READY LIST EXAMPLE #3

“600 {| 776600 | PPB | “614 [777700 |

“76600
{776600 | “600

“76600 0
0 i ~

“77100

t+ 9 Lf
0

=a 0

“77200
~ ~ “77700

“77700 “614
“77700 0

{ oO _f
0 “100200 “102000 “102300

{7100200| “626 “626 “626
“102300 “102000 “102300 0

+ 0 —L ~ ~ ~ ~0
~ ~ “76400 “76500
{ ~76400| “636 “636

“76500 “76500 0
7 * s

3 - 14 June, 1985

CEO810 -

PPA

SEGMENT #4

CLOCK

AMLC

SMLC

MPC

DISK

LEVEL 2

LEVEL l

LEVEL 0

~BACKSTOP

Rev.

“600
“601
“602
“603
“604
“605
“606
“607

“614
“615

“624
“625
“626
“627
“630
“631

“636
“637
“640

19.4

EXAMPLE #4

~

i 9
0

~

— y

~102300

{7100200{

PRIMOS

READY LIST

7614 | “77700 |

| ti‘ L
-76600

| lOO
-77100

jt OO _]
0

PE CUO

-77200
~ ~ -77700

“77700 7614
-77700 0

“100200
“626

 “102000

“76400
“636

 “76500

15

Process

PPB | “626 {| “100200 |

“102000 “102300
“626 “626

“102300 0

“76500
“636

0

June, 1985

CE0810 -

PPA

SEGMENT #4

CLOCK 7600

“601

AMLC “602

“603
SMLC “604

“605

MPC “606

“607

DISK “614

“615

LEVEL 2 “624

“625

LEVEL 1 “626

“627

LEVEL 0 7630

“631

BACKSTOP “7636

“637

“640

Rev. 19.4

PRIMOS

READY LIST EXAMPLE #5

“626 {7100200 |

“102300
|7100200|

T

“100200

“626

 “102000

“76400
“636

 “76500

lo

Process

PPB | “626 | “102000 |

“102000 “102300
“626 “626

“102300 0

“76500
“636

0

June, 1985

CE0810 -

PPA

SEGMENT #4

CLOCK

AMLC

SMLC

MPC

DISK

LEVEL 2

LEVEL 1

LEVEL 0

—

BACKSTOP

Rev.

“600
“601
“602
“603
“604
“605
“606
“607

“614
“615

“624
“625
“626
“627
“630
“631

“636
“637
“640

19.4

PRIMOS

READY LIST

[7102000 |

.“102300
7102000__

“102000
“626

 “102300

~76400
“636

 “76500

17

PPB

EXAMPLE #6

Process

| 7626

“102300
“626

 0

“76500
“636

| 7102300 |

June, 1985

R
N
E
S
P

Bienes

fer
e
T

O
R
E
M
T
r
a
e
f
e
e
.
E
S

do
en
e
n
n

ne
ee
e
e
e
e
e

Ta
ge
A
B
RR
y
O
A
R
S
D
E
SD
I
R
I

T
E
N
S
S
E
E
S
I
S
S
g

C8038

iO

SEGMENT fa

CLOCK

- AMLE

SML«

MPS;

DISE.

LEVEL b
a

LEVEL lL

LEVEL 0 ~*

BACKSTOP

“690

“601

“69%

“OOS

“634
“637
“540

PRIMOS

READY LIST

i 0 wn.

800 7

ET SeReDMRIlgca

0

J..02300

102000]
n+A.Viagra

0
6 seca Conetmsaie

cocenmed

_16400|

_46500 | 1RaeeketARetam

*76600. |

EXAMPLE #7

Process

PPB | 7626

“76600
“600

 0

“102000
626 ?

102300 | 0
oe

“76400
636

“102300
626

 ~~ we ~~

“76500
“636

 “76500 0

beCUe “ible

| A wari is4

- 18

[7102000 |

June, 1985

CEO810 -

PPA

SEGMENT #4

CLOCK “600

“601
- AMLC “602

“603
SMLC ~604

_ “605
MPC “606

“607

DISK 7614
“615

~ LEVEL 2 “624
“625

LEVEL 1 “626
_ “627

LEVEL 0 7630
“631

~ BACKSTOP “636
“637
“640

Rev. 19.4

PRIMOS Process

READY LIST EXAMPLE #8

| 7600 | 776600 | | 7614 | 777700 |

“76600
[776600 [“600

“76600 0

ba 0 ~

“77100

4 0 —L
0

ae 0

“77200
~ ~ “77700

“77700 “614
“77700 0

{oI .
0 “102000 102300

|~102000| “626 “626
“102300 7102300 0

4 0 —- ~
0

~ ~ “76400 “76500
“76400 “636 “636
“76500 “76500 0

l ~

3 - 19 June, 1985

CE0810 -

PPA

SEGMENT #4

CLOCK “600

“601

AMLC ~602

“603
SMLC “604

“605

MPC “606

“607

DISK “614

“615

LEVEL 2 “624

“625

LEVEL 1 “626

“627

LEVEL 0 “630

“631

BACKSTOP “636

“637

“640

Rev. 19.4

PRIMOS

READY LIST

EXAMPLE #9

“614 | 777700 |

0
"76600 “T
| 0
“77100

oo 0 —L.

0

0 bn

"77200
~ ~ “77700

“77700 “614
! “77700 | 0

ro 0 on

) “102000
“102000_| “626
“102300 “102000

J OO _] ~
0

~ ~ “76400
{| 776400 “636

“76500 “76500
l ne

3 ~ 20

Process

PPB | “626

“102300
“626

 0

“76500
“636

| 7102000 |

June, 1985

CEQ810 -

PPA

SEGMENT #4

CLOCK

AMLC

SMLC

MPC

DISK

— LEVEL 2

LEVEL 1

LEVEL 0

~ BACKSTOP

Rev.

“600
“601
“602
“603
“604
“605
“606
“607

“614
“615

“624
“625
“626
“627
“630
“631

“636
“637
“640

19.4

PRIMO S

READY LIST EXAMPLE #10

“626 |

poe

“102300
“102000_[

+— 0
0

—t

~

i

| “76400|
“76500

~

 1

“102000 |

7102000
“626

 “102300

“76400
“636

 “76500

21

PPB

Process

| 7626

“102300
“626

 0

“76500
“636

T 7102300 |

June, 1985

CEQ81O -

PPA

SEGMENT #4

CLOCK “600

“601

AMLC “602

“603
SMLC “604

“605

MPC “606

“607

DISK 7614

“615

LEVEL 2 “624

“625

LEVEL 1 “626

“627

LEVEL 0 “630

“631

BACKSTOP “636

“637

“640

Rev. 19.4

| 7626

PRIMOS

READY LIST

|7102300|
“102300

| 7102300 |

“102300
“626

 0

“76400
“636

 “76500

22

PPB

EXAMPLE #11

Process

| 7636

“76500
“636

| 776400

June,

|

1985

CEO0810 - PRIMOS Process

READY LIST EXAMPLE #12

PPA | “636 {| 776400 | PPB | 636 | 0 |

SEGMENT #4
CLOCK “600 | 4O |

“601 “76600
~ AMLC 7602) [0

—L
“603 “77100

SMLC “604 Y[OO |
~ “605 0

MPC “606 0 “607. |777200 1
~ ~

~ DISK “614 0
“615 “77700

~ ~

_t

—

— LEVEL 2 “624 |
“625

LEVEL 1 “626 |_
“627 “10

LEVEL 0 “630 |
“631

benemnnse

300

—_—Lae

o
O
o
1
h
’
O
O

O
o

~ ~ “76400 “76500
~ BACKSTOP “636 | “76400| “636 “636

“637 “76500 “76500 0
“640 1 ~ ~ ~ ~

_L
.

Rev. 19.4 3 - 23 June, 1985

CEQ0810 - PRIMOS
Process

STATE DIAGRAM

Rev. 19.4 3 = 24 June, 1985

CEQ0810 - PRIMOS Process

SCHEDULING OF USERS

PRIMOS scheduling is based on two criteria.

~ 1). PROCESS EXCHANGE

2). BACKSTOP PROCESS (SCHED)

The process exchange mechanism is implemented in firmware and uses

the ready Llist/wait list philosophy described earlier.

SCHED, also known as the backstop process:

1). Responding to requests for users to be placed on one of

— three queues and allocating a time-slice.

2). Deciding the sequence of processes placed on the READY LIST.

SCHED maintains nine basic queues using semaphores.

1). High priority (HIPRIQ)
_ 2). Eligibility (EL1GQ)

3-7). Low priority (LOPRIQ)
3). Supervisor

_ 4). User level 3

5). User level 2

6). User level 1

7). User level O

8. Idle (IDLEQ)
9. Suspend (SUSPQ)

~When a user process returns to command level, the listener is called

to a invoke a new command level and CLSGET is called to read in the

command line. CLINS is then called to read in the characters. CLIN$

_ will wait on BUFSEM (there is one BUFSEM semaphore per terminal user)

and when a character is input into the user ring buffer the AMLC

driver will notify BUFSEM. The user will continue to use ClINS to
input characters until a <CR> character is detected.

—

On detecting <CR> CLSGET calls SCHED to place the user process on the
~HIGH priority queue and to allocate a full time-slice. SCHED scans

for high priority users before any others and a user in the high

priority queue will be placed on the ready list and scheduled to run

_with a timeslice of 3/10 sec. At the end of this period the process

will fault and be placed on the elgibility queue. The backstop

process scans the elgibility queue after the high priority queue and

eventually the user will be notified and moved on to the ready list

“with another timeslice of 3/10 sec.

Rev. 19.4 3. 25 June, 1985

CEQ0810 ~ PRIMOS Process

SCEDULING OF USERS (CONT“D)

This sequence of events continues until the full 2 second time-slice
has elapsed. The process is then placed on the low priority queue
appropriate to its priority level, and is given a new 2 second
timeslice,

The backstop process will schedule users on the low priority queues
after both the high priority and the elgibility queues have been
exhausted. The Idle level is checked only when there is no activity
on the High Priority queue, the Eligibility queue, and allof the Low
Priority queues.

Rev, 19.4 4S » 26 June, 1985

CEQ810 - PRIMOS Process

BACKSTOP PROCESS

NOTIFY

LEVEL LOPFNY
4 -17
3 -9
2 -5
1 -3
0 -2

NOTIFY

ELI¢e

NOTIFY

LOPRIA

NO

INCREMENT
NFYCNT CNT = 0 yes LEVEL = 0 res

CEO0810 - PRIMOS

READY LIST

we

USER

LEVEL

~

wait after a

Carriage Return

Rev. 19.4

INTERACTIVE USER

WAIT BUFSEM

(CLINS)

wait for a

Character

---->

NFYE (BACKSTOP) -----

(Full timeslice)

BUFSEM

COUNT

 POINTER ---->

HIGH PRIORITY

SEMAPHORE

COUNT

 POINTER

28

Process

NFYE (AMLDIM)

PCB

ToT

wre Te Nr ROT

[~~~~~~ww~

June,

1985

CEQO810 - PRIMOS Process

COMPUTE BOUND USER

READY LIST

~ USER ~

LEVEL le-------- > PCB Ke ec err enee NFYE (BACKSTOP) ------------
| (Full timeslice)

| |
~ - | |

[~~~~wr~~ | ELIGQ
COUNT

ELIGTS -~--> POINTER |----> PCB
EXHAUSTED |
(3/10 SEC.) |

Time remaining

No time remaining a

| LOW PRIORITY
| QUEUES
| COUNT
| --------------------------- > POINTER |----> PCB---->

aeeied

Rev. 19.4 3 - 29 June, 1985

CEQ0810 - PRIMOS Process

USER PRIORITIES AND TIME-SLICE

The following operator command is available for changing user
priorities and time-slice.

CHAP [-USERNO/ALL] [PRIORITY } [TIME-SLICE]
[- IDLE]

{-SUSPEND]

USERNO Is in the form -nn or ALL
PRIORITY Integer 0 to 3 (default = 1)
TIME-SLICE Length of time-slice in tenths of seconds.

OQ means reset to the system default (2 sec.)
If omitted the time-~slice is unchanged.

-IDLE Put process(es) into the IDLE state.
-SUSPEND | Put process(es) into the SUSPEND state.

If both priority and timeslice are omitted, then priority and
time-slice are set to the system default values.

The tollowing user command is available for changing user
priorities and time-slice.

CHAP [UP]

[DOWN]

{| DEFAULT]

[LOWER nnn] [timeslice]
** [IDLE]

** Can only be issued from a phantom

STAT US Displays the priority of users not at user level l.

LOGOUT Resets priority and timeslice to defaults.

ELIGTS Is used to modify the eligibility time-slice from the
System console. This will affect all users equally.

ELIGTS [<eligibilitytimeslice>] (default = 3/10 sec.)

Rev. 19.4 3 - 30 June, 1985

~ CE0810 - PRIMOS Process

— MAXSCH

_Previously, MAXSCH was determined by indexing into an array of

values; 0,0,1,2,3,4,4. The value of the index was the memory size

in 32K units. If there was more than 256K then MAXSCH would be 4.

‘emmee

MAXSCH is now calculated as follows:

— MAXSCH (megabytesofmemory + 3) * x + y

where, x is 1.2 if there exists an alternate device on a

different controller than the primary device,

otherwise it is l.

y is 1 if CPU is a P8&50,

otherwise it is Q.

The optimal value of MAXSCH is application dependent, hence there is

no hard and fast formula to determine its value. Therfore, it is a

configurable parameter.

“rule of thumb:
MAXSCH = Physical-Memory-Size - PRIMOS-locked-memory

average-job-size

Rev. 19.4 3 - 31 June, 1985

CE0810 - PRIMOS Process

Rev. 19.4 3 - 32 June, 1985

CEO810 - PRIMOS

Objectives:

Rev.

explain

explain

explain

explain

examine

VPSD.

0
0
0
0
0
0
0
0
0

0

Device

Section 4 - Device Management

The student will be able to:

describe how a DMx transfer occurs.

how the four types of DMx differ.
list 1/0 controllers and DMx methods used.
define an external interrupt.

describe how external interrupts are serviced.

describe how a clock interrupt is processed.

how terminal 1/0 is processed.
the allocation of terminal buffers.

how disk requests are serviced.

device management-related structures in memory with

Oo answer device management-related questions by examination of

source code.

19.4 4 - 1 June, 1985

CE0810 -

Rev. 19.4

PRIMOS Device

June, 1985

CEO0810 - PRIMOS Device

DMx Operation

DMx is a method whereby an 1/0 data/memory transfer may occur without

software intervention. To perform such operations a temporary

diversion in the sequence of microcode from CPU instruction to DMx >

transfer routines occurs. This is called cycle stealing or a TRAP.

At the end of the DMx/memory transfer, the CPU instruction microcode

continues as though nothing had happened. The actual trap diversion

occurs at the end of the micro step in which it was sensed. At the

same time, information about the next CPU micro step is saved to

effect a return to the original sequence.

There are four types of DMx transfer: DMA, DMC, DMT, and DMQ.

Each method has advantages and disadvantages in terms of speed,

volume, and control features and so form a comprehensive range of

methods.

CEO810 - PRIMOS Device

DMA TRANSFERS

Used by Disk controllers, some Tape controllers, and PNC controllers.

0)

1)

2)

3)

4)

5)

6)

7)

Rev.

Driver acquires channels at coldstart, and for each DMA transfer,

performs the following setup operations:

o preload IOTLB,

o initialize channel with transfer address and range,

o output channel address to controller, and

o initiate read/write operation on device.

When ready to transfer data, the controller raises DMx request.

CPU scans the backplane for any Dmx requests at the

end of each microcode step. If there are pending requests, the

CPU traps into the DMx microcode.

DMx microcode checks the backplane priority network and

enables the DMx request from the highest priority controller.

DMx microcode turns off the DMx request signal.

Controller places channel address onto the address bus and,

over the control bus, indicates both the transfer direction

and the type of DMx operation.

Upon receiving the above information, DMx microcode will

o transfer 16 bits of data,

o adjust transfer address and range, and

o check for EOR condition.

If EOR, DMx microcode sends and EOR signal back to the controller.

DMx microcode checks for more pending DMx requests. If there

are pending requests, go back to (3); if no pending requests,

return to pre-DMx state.

Controller generates an EOR external interrupt upon receipt of

EOR signal from DMx microcode.

CE0810 - PRIMOS

(DMA CHANNELS)

ee

127400 | 006000 |*9

77
1 72 13 14

bu
l

15

DMA‘C ADDRESS REG

000040

 r

1234 5

CHAIN | 1 ONC
NUMBER] Q OMIA

be
CHANNEL

ADDRESS

1G 17 32

«|

l

TRANSFER ADDRESS

99001 16

Device

DMA TRANSFERS (CONT“D)

MEMORY

L 6000 DATA
“7” “7

10020 DATA

= “*

={ {2 <
> = <
= z ~

CPU 1+O CONTROLLER

REt

Rev. 19.4 June, 1985

CEO81LO - PRIMOS
Device

DMC TRANSFERS

Used by MDLC, SMLC, both AMLC and QAMLC for input, some tapecontrollers, and MPC controllers (hi-speed parallel printers).

DMC uses pairs of memory locations in segment 0 to hold the Startingand ending transfer addresses, respectively. Each pair is acquired bythe driver at coldstart. Hence, the address presented by thecontroller to the CPU is the address of the first word in the pair.There is no explicit range; rather, the range will be implicit fromthe starting and ending transfer addresses.

MEMORY

\ 3000 Gooo
+3001 10020

ealw*

V
ia

6000 DATA 7

 10020 DATA
 4

C
O
N
T
R
O
L

A
D
D
R
E
S
S

D
A
T
A

CPU 1/0 CONTROLLER

CPU DETECTS DMC

AND PASSES THE DMA/C ADDRESS REG. 1234 5 6 6

 ADDRESS PORTION

OF DMC ADDRESS

REG. TO MEMORY.

CHAIN |1= DMC CHANNEL007000 7=umBeR| o = OMA ADDRESS

 L
T

 | FIRST LOCATION/TRANSFER ADDRESS
| SECOND LOCATION/FINAL ADDRESS

Rev. 19.4 4 - 6 June, 1985

CE0810 - PRIMOS Device

DMQ TRANSFERS

Used by QAMLC for output, ICS1 and ICS2 for asynch (both input and
output).

DMQ uses a QCB to hold the transfer control information. Each QCB is
a four word data structure located in segment 0. The layout of the
QCB is on the following page. Hence, the address presented by the
controller to the CPU is the address of the QCB. The data buffer, the
QDB, is NOT in segment 0. DMQ is the only form of DMx that allows the
data to be outside of segment 0.

SE MORY

cca

100/1000)

101/1050 Seqment’0

102/ 21

103/ 200

QODB

1000

1050 Segment'21

= 2

= < <
2 a <
cS <

CPU
AMLQ

CPU CETECTS DMQ
AND PASSES THE
ADDRESS OF THE
OCB TO MEMORY

DMOQ ADDRESS REG.

000100

 ADDRESS

]
B
O

Rev. 19.4 June, 1985

CEO810 - PRIMOS Device

DMQ Operation

The control information is held in segment 0 of memory in an area
known as the Queue Control Block (QCB).

Each queue is implemented by an array of 2**N words where N is greater
than or equal to 4, and less than or equal to 16.

Each QCB is a four word structure:

TOP POINTER (read)

BOTTOM POINTER (write)
word number of the head of the queue

word number of the tail of the queue
SEGMENT NUMBER or PHYSICAL ADDRESS

MASK

The instructions provided

ATQ 3

ABQ or DMQ input 3

RTQ or DMQ output ;

RBQ 3

TSTQ 3

Rev, 19.4

segment number or PPN of above pointers
2**N - 1 defines the size of the buffer

for DMQ and QUEUE manipulation are:
add to the top of the queue

add to the bottom of the queue

remove from top of the queue
remove from the bottom of the queue
test the queue (# items->A, if empty EQ->CC)

4 - 8 June, 1985

CEO81LO = PRIMOS Device

DMT TRANSFERS

Used by disk controller for channel programs, AMLC for output, and
downline loading ICSn microcode.

Unlike the other types of DMx, DMT does not place the responsibility
for managing the transfer parameters upon the DMx microcode. Rather,
the controller is responsible for updating the transfer address and
the range.

\ MEMORY

~6000/ DATA

5
}
N
A

\ A
N

w
m

n
w
e
e

\
=

<
Oo

C
O
N
T
R
O
L

A
D
D
R
E
S
S

CPU 1/O CONTROLLER—_— peered

CPU DETECTS DMT ~
AND PASSES THE
ADDRESS DIRECTLY
TO MEMORY.

DMT ADDRESS REG.

ADDRESS 006000

 Bu
l

Rev. 19.4 4 - 9 June, 1985

CE0810 - PRIMOS Device

EXTERNAL INTERRUPTS

How Interrupts Occur

(0) Interrupts must be enabled (bit 1 of the MODALS).

(1) Controller ships over the interrupt request to the CPU.

(2) CPU “sees” the request, but waits for the current instruction
to complete.

(3) CPU disables interrupts (bit 1 of the MODALS).

(4) CPU ACKnowledges the controller.

(6) The controller,upon receiving the ACK, will ship its
“interrupt vector address~ to the CPU.

(7) CPU stores the current process” PB (and P-Ctr) in PSWPB
and its KEYS (and MODALS) in PSWKEYS (RFO).

(8) At this point, (software) control is transferred to Segment 4,

Rev.

at the offset specified by the interrupt vector address.

19.4 4 - 10 June, 1985

CEO0810 - PRIMOS Device

PHANTOM INTERRUPT CODE

In order to NOTIFY a process, PIC must ensure that the PB and KEYS

are restored before issuing the NOTIFY.

The PIC basically consists of one instruction, an INEC, with the name

of a semaphore as the operand.

The INEC instruction performs the following actions:

1) Reload the PB and KEYS from PSWPB and PSWKEYS.
2) Issue a CAI to clean up the I/0 bus.
3) Enable interrupts.
4) Notify the appropriate semaphore.

CEQ810 - PRIMOS Device

CLOCK PROCESS

The clock interrupt is treated like any other device interrupt. An
address (63) is presented to the CPU. The hardware interprets
this location as the address of the Phantom Interrupt Code (PIC) in
Segment 4 for this device. The PIC executes an INEC which
acknowledges the interrupt, clears the Active Interrupt flag, and does
a NOTIFY to CLKSEM.

The clock process will then be entered. Following is a general list
of the functions performed:

1). Handle PBHIST.
2). Increment ONE-MINUTE timer.

If zero, reset clock and set USER 1”%s MINALM abort flag
and NOTIFY ASRSEM.

3). Increment timer 2 (Paper Tape Punch) (1/75 second).
If zero, reset clock and call BRPDIM (if chars in buffer).

4). Increment Timer 3 (Digital input)
If zero, reset timer and enter DIGDIM

5). Increment timer 4 (ASR) (1/30 or 1/10 second).
If zero, reset clock and call ASRDIM.

6). Increment timer 5 (1/10 second).
If zero , doing the following:
A). Reset clock
B). Lf sensor check has occurred,

set USER 1°s CHKALM Abort Flag
C). Update clock ring
D). Handle USER timer semaphores
E). Increment Timer 9 (DISK) 1/2 second,

If zero, reset clock and notify DSKSEM
F). Increment Timer 10 (SMLC) 1/2 second,

If zero, reset clock and set USER 1”s SMLALM
Abort Flag.

G). Increment Timer ll (Gross Network) 10 second,
If zero, reset clock and notify PNTSEM (NETMAN).

H). Increment Timer 12 (Network Protocol) 1 second,
If zero, reset clock and notify PNTSEM.

I). Increment Timer 13 (Remote USER I/0) 1/2 second,
If zero, reset clock and notify PNTSEM.

J). Increment Timer 14 (Date and Time) 4 second
If zero, reset clock and update date and time
for TIMNOW and DATNOW.

7). Increment Timer 15 (Real Time Queue) 1 second,
If zero for any process, set process~ TMOALM abort flag.

8). Handle timers for PNCDIM.
9). WAIT CLKSEM.

Rev. 19.4 4 - 12 June, 1985

CEO810 - PRIMOS Device

THE QAMLC DRIVER - AMLDIM

The QAMLC will configure itself to drive up to eight controllers using

device addresses “54, “53, “52, “35, “15, 716, “17 and “32. The

default configuration can be changed using the AMLC command at the

system console or in PRIMOS.COMI

AMLC [PROTOCOL] LINE [CONFIG] { LWORD]

PROTOCOL
TTY terminal protocol (default protocol)
TRAN transparent protocol

TTYUPC upper case output protocol

TTYNOP ignore this line (used for assigned lines)

TT8BiTt 8-bit protocol

ASD. auto-speed detect

LINE The AMLC line number (octal)

CONFIG See line configuration table.

LWORD See LWORD table.

CE0810 - PRIMOS

Device

LINE CONFIGURATION TABLE

1 2 3 4 5 6 7 8 9 10 11 #12 413 214 «215 «216
Line no. T T TT! Ty! Ty y Character
(bit 4 is Llsb) | length
set to 0 00 - 5 bits

| 10 - 6 bits

01-7 bits
Data Set | 1 1- 8 bits
control<-|

l for modems -> Type of parity, O = odd

loop line<- --> Parity disable, 0 = enable
(for testing) (default) 1 = disable

Set to 0 --->Stop bits

0 = 1 bit

l1 = 2 bits

----> Reverse Flow Control

0 = disabled (default)
1 = enabled (ICS1 only)

Line Speed

000 - 110 baud

00 1 -+ 134.5 baud

010 - 300 baud

011 -+- £21200 baud

100 - program clock - default 9600 baud
l10oO1l- 75 baud

110- 150 baud

1 11 - £41800 baud

Rev. 19.4 4 - 14 June, 1985

CE0810

Rev.

—
f
y

- PRIMOS Device

LWORD TABLE

8 9 10 211 #12 «4213 #214 ~«2215~=«216

USER NUMBER

—
|

--> CHECK, Enable error detection

l1 = Parity or IRB overflow

(send a NAK if parity or irb overflow sensed)

---> DSS hi/low, toggle for bit 5 ------ > DSS enable, Check carrier, simulate XON/XOFF
("buffered" or "reverse channel" protocol)

1 = When XOFF or DSS enabled, flag to show XOFF
0 = no xon/xotf

l = xon/xoff
0 = LF echoed for CR (only if half duplex)

l1 = LF not echoed for CR

Full duplex

Half duplex

19.4 G4 - 15 June, 1985

CE0810 - PRIMOS

Device

QAMLC BLOCK DLAGRAM

User Process (shtware) : -
AML(sothuace> Q AMLE

| HARDWARE

128 worns (cboult)
|

| _
USER INPUT RING

DATA 9BUFFER IN
(1 PER USER) TUMBLE (pc) '} -

TABLE
9

"3

| READ PTR |

WRITE PTR [ome LINE _

SEG _NO, | ;
MASK Ce.

QUEUE CONTROL BLOCK

192 worps (2eGu-) (pma)

‘

 4a4

|

|

|

| 32 WORDS lstne_SS Ls) |

USER OUTPUT RING S
BUFFER |

(] PER user) . |
! QUEUE BUFFER
| (1 PER usER)

Rev. 19.4 4 - 16 June, 1985

CEQ810 - PRIMOS Device

ICS BLOCK DIAGRAM

ICS Ics
ASYNC KROIPQNMY IPONM
DIM “DIM

o™N

! INPUT QCS)
| | |USER IRB | |

| Ma |

| SZ
| |
| !
| Ics
| | CONTROLLER

USER ORB | DMaQ |
y

= 8)
| |. | |USER PROCESS| ASYNDM | ICSn

(SOFTWARE) (SOFTWARED CHARDWARE)
Rev. 19.4 4 - 17 June, 1985

CE0810

A(ORB)

A(IRB)

Rev.

- PRIMOS

A(LIOCOM)

LIOCOM

ADDRESS

CONSOLE’S

OF

ORB

ADDRESS

USER 2°S

OF

ORB

ADDRESS

USER 37S

OF

ORB

 ADDRESS

USER 47S

OF

ORB

ADDRESS

CONSOLES

OF

IRB

ADDRESS

USER 2°S

OF

IRB

ADDRESS

USER 3°S

OF

IRB
 ADDRESS

USER 4°S

OF

IRB
(2 * NUMBER OF PROCESSES)

19.4

; my,

A(LIOCOM) + (2 * (BUFFER NUMBER

ACLIOCOM) + (2 * (BUFFER NUMBER

18

+ 1))

1)) +

Device

June, 1985

CE0810 - PRIMOS

DISK I/O WAIT TIME

Disk 1/0 time = wait time + seek time + rotation time + transfer

Wait time is the time a process must wait before its disk request
is acted upon.

Wait (1) for a disk queue request block

(2) in a work list

Rev. 19.4 4 - 19 June

Device

time

» 1985

CEO0810 -

Rev. 19.4

PRIMOS Device

DISK QUEUE REQUEST BLOCKS

FORWARD THREAD

SEMAPHORE

DEVICE TYPE

UNIT SELECT BITS

CYLINDER NUMBER

HEAD/RECORD NUMBERS

VIRTUAL BUFFER ADDRESSES

2
-
—
~ PHYSICAL PAGE ADDRESSES |

NUMBER OF WORDS/ CHANNEL

NUMBER OF WORDS/ CHANNEL

NUMBER OF WORDS/ CHANNEL

NUMBER OF CHANNELS

TOTAL TIME

 ERROR MESSAGE INFO

~

Lo

7 queue request blocks at revision 18
17 queue request blocks at revision 19.1
32 queue request blocks at revision 19.3

DSKBLK is the semaphore processes must wait on
to obtain a queue request block.

G4 - 20 June, 1985

CEQ810 - PRIMOS Device

DISK 1/0 SEEK TIME

Disk 1/0 time = wait time + seek time + rotation time + transfer time

Seek time is the time a process must wait for the heads to move over
the desired cylinder.

Rev. 19.4 4 - 21 June, 1985

CEQ810 - PRIMOS

DISK 1/0

Disk 1/0 time = wait time

Rotation time is the time

revolution.

Transfer time is the time

transfer.

Rev. 19.4

ROTATION AND TRANSFER TIMES

Device

+ seek time + rotation time + transfer time

required for the drive to make one complete

required to do the actual physical data

June, 1985

CEO0810 - PRIMOS Device

DISKIO.PMA - CALL SIDE

WAIT
OSKBLK

FILL IN QRB
DEV NO, TYPE

UNIT NO

FILL IN ORB
VBA, PPN,CRA

FILL IN ORB
CYLINDER
NUMBER

THREAD ORB

INTO
WORK LIST

|
NOTIFY
DISK

PROCESS

WAIT ON

SEMAPHORE
IN ORB

RETURN ORB
TO FREE
POOL

NOTIFY
DSKBLK

RETURN
Rev. 19.4 4 - 23 June, 1985

CEO0810 - PRIMOS
Device

DISKIO.PMA - DISK PROCESS CODE

ALLOCATE
ONA

CHANNELS

4>
GET FIRST

QRB ON

WORK LIST

TAKE TIME

STAMP

START

SEEK

WAIT

OSKSEM

@® 1 YES

UPDATE

TIME

'
DEQUELE
ORB

’
NOTTFY

REQUESTING
PROCESS

O

Rev. 19.4 4 June, 1985

CE0810 - PRIMOS Device

DISKIO.PMA - DISK PROCESS CODE (continued)

©

FILL IN QRB
DMA CHANGES,
CHANNELS

|
SETUP
[OTLB

a

START
DATA

TRANSER

serene

WALT

DSKSEM

hn
mee

ai
e o
s

INIT
DMA

CHANNELS
ERRORS

Rev. 19.4 GQ - 25 June, 1985

CE0810

Rey, 19.

PRIMOS

26

Device

June, 1985

CE0810 - PRIMOS Procedure

Section 5 - Procedure Management

Objectives: The student will be able to:

o describe the contents of a user register set.

o explain the use of the PB, LB, and SB registers.

o describe the functions of the PCL mechanism.

CEQ810 -

Rev. 19.4

PRIMOS

THE USER REGISTER SET

HIGH LOW
GRO
GR1

A B GR2
EH EL GR3

GR4
S/¥ GR5

GR6
X GR7

FARO
FLRO

FAR1/FAC
FLR1/FAC

PB
SB
LB
XB

DTAR3
DTAR2
DTAR1
DTARO

KEYS/MODALS
OWNER

FCODE |
FADDR

CPU TIMER
MICROCODE SCRATCH

te

i

Procedure

June, 1985

CE0810 - PRIMOS Procedure

THE USER REGISTER SET CONTENTS

A Accumulator. Register

B Accumulator Extension (A + B = L)

EH,EL Accumulator Extension for long integers (64 bit)

Ss Stack Register (R S Modes)

Y Alternate Index Register (V Mode only)
X Index Register (R, S, V Modes)

GRO-GR7 General Registers 0-7 (I Mode only)
FARO Field Address Register 0

FLRO Field Length Register 0

FAR] Field Address Register 1 (for block moves

FLR1 Field Length Register 1. char./dec. data)
FAC Floating Point Accumulator ,

PB Procedure Base Register

SB Stack Base Register

LB Link Base Register

XB Auxiliary Base Register

OWNER Address of User Register Set Owner”s PCB

FCODE Fault Code

FADDR Fault Address

CPU TIMER overflow of two~s complement value ends timeslice

User programs may access the Register-file using LDLR and STLR (64V).

Only locations “O - “17 are accessible.

Any attempt to access location “14 (PB) will give undefined results.

The first eight locations are interpreted for V-mode (default).

Rev. 19.4 5 - 3 June, 1985

CEO81L0O - PRIMOS Procedure

PROCEDURE/LINK/STACK ARCHITECTURE

PROCEDURE AREA

- l per system if shared

- contains pure code and literals
- pointed to by Procedure Base Register (PB)

LINKAGE AREA

- l per user

- contains local variables and pointers
- pointed to by Linkage Base Register (LB)

STACK FRAME

- l per invocation

- contains caller”s saved state, argument pointers,
and dynamic work space

~ pointed to by Stack Base Register (SB)

CEQ810 - PRIMOS

KEYS

bit # purpose
S R Modes

l Arithmetic Error Cond.

2 Double Precision Bit

3 reserved

4-6 Mode bits
000 16S mode

001 32S

O1ll 32R

010 64R

110 64V

100 321

7 reserved

8 reserved

9 bits 9-16 are bits 9-16

10 of address 6
Ll oe

12 iT

13 tf

14 ot

15 oe

16 es

Rev. 19.4 5 -

Procedure

V I Modes

C Bit

reserved

Link

Mode Bits

Floating Point Exception

Integer Exception

LT (less than) bit

EQ (equal) bit

DEX (decimal exception)

Ascii 8 bit

Floating Point Round

In CHECK bit (850 only)
I bit - In Dispatcher

S bit - Save Done

June, 1985

CEO0810 - PRIMOS

(1)

Rev.

Procedure

SUBROUTINE CALLS

CALLING PROGRAM

CALL

- calls a subroutine

- generates PCL (procedure cali)

PCL
- addresses an ECB through a link
- calculates the ring number Hoe,
- allocates the stack frame <
- intializes the state of the called procedure
- transfers the argument pointers

AP

- generates the argument pointers for the PCL
- follows the PCL instruction
- format

AP ARG, TAG

where TAG modifier can be:

- § variable is an argument
- SL variable is the last argument
= *S the argument is an indirect address
- *SL the argument is an indirect and the last

19.4 > - 6 June, 1985

CEO81LO - PRIMOS Procedure

(2)

THE CALLED SUBROUTINE

THE SUBROUTINE

 ARGT

Rev.

- does the last step of the PCL instruction

- executed only if a fault occurs during argument pointer

transfers

- must be present if the subroutine requires arguments

ECB

- generates an Entry Control Block (ECB) to define a

procedure entry point

- resides in a link frame

- format
LABEL ECB PFIRST,,ARGDISP, NARGS, SFSIZE,KEYS

where

PFIRST pointer to first executable statement

ARGDISP - displacement in the stack frame of the
argument list (default is “12)

NARGS - number of arguments to be passed

SFSIZE - stack frame size, the default is given

by the DYMN
KEYS - keys, the default is 64V

CE0810 -

Rev. 19.4

PRIMOS

o

THE ENTRY CONTROL BLOCK

POINTER TO FIRST

EXECUTABLE STATEMENT

OF THE CALLED PROGRAM

SIZE OF STACK FRAME

STACK ROOT SEGMENT NO.

ARGUMENT DISPLACEMENT

NUMBER OF ARGUMENTS

LINKAGE BASE ADDRESS OF

THE CALLED PROGRAM

KEYS FOR THE CALLED PROGRAM

m
P
O
A
W
D

-
©

17 RESERVED

MUST BE ZERO

Procedure

June, 1985

CE0810 -

Rev. 19.4

PRIMOS

W
h
b

p
e
©

S
M
O
W
H
F

©

10

12

STACK HEADER AND PCL STACK FRAME FORMAT

POINTER TO THE NEXT

FREE FRAME

POINTER TO THE

EXTENSION SEGMENT

FLAGS"

STACK ROOT SEGMENT NUMBER

RETURN

POINTER

CALLER”S STACK

BASE

CALLER“”S LINK

BASE

CALLER“S KEYS

WORD NUMBER AFTER PCL
 POINTERS TO ARGUMENTS

(3 WORD INDIRECT ADDRESSES)

AND

DYNAMIC

VARIABLES

5 - 9

Procedure

June, 1985

CEO0810 = PRIMOS
Procedure

THE PCL MECHANISM

CALL ING CALLING CALLED CALLEDPROCEDURE LINK LINK PROCEDUREFRAME FRAME FRAME FRAME
ee

EC8&

R SN rao ARGT

Le WN }

STACK SIZE
a PTR + ROOT SEG

4 AP
ARG. DISP
elAP

NO. ARGS.

LINK BASE

KEYS

STACK

 FREE POINTER

EXTENSION SEG

FLAGS ——— 58

STACK ROOT SEG. NO.

RETURN POINTER

CALLER’S -S8

CALLER’S L8&

CALLER'S KEYS

WORD AFTER PCL

 3 WORD INDIRECT

ADRESS’S @
"DYNAMIC

\ VARIABLES ae

+

{ NEXT STACK FRAME

| —
—
!

-
—
1
1

}

CEQ810O - PRIMOS Exceptions

Section 6 - Exception Handling

Objectives: The student will be able to

explain what a fault is and how it is handled.

describe the actions of ringO fault handlers.

describe the actions of ring3 fault handlers.

explain how conditions are handled.

track, with VPSD, a dynamic link being snapped.

examine DMSTK output to track a particular sequence

ot events.

0
o
o
0
o
0
0
0

0

Rev. 19.4 6 - 1 June, 1985

CEO810 - PRIMOS Exceptions

FAULT

A FAULT is a condition which has been detected as a result of the
currently running software and which requires software intervention.
A FAULT may be handled by the current software though most frequently
common supervisor code will handle the FAULT (e.g. Page Fault).
FAULTs are CPU events which are synchronous with and caused by
software.

Two data areas are used:

1). PCB FAULT VECTORs and concealed stack pointers
2). the FAULT TABLEs pointed to by the PCB vectors.

Therefore each process can define its own fault handlers and the
concealed stack allows FAULTS to be stacked. The PAGE FAULT has its
own vector and only one system-wide handler is used so all PAGE FAULT
vectors point to the same place.

Each FAULT TABLE entry consists of 4 words, of which the first 3 must
be a CALF instruction. The CALF (CAL1 Fault handler) instruction is
essentially a PCL (Procedure CaLl) instruction for the various Fault
handling routines. The PB and KEYS from the concealed stack are
placed in the Fault Handler”s stack frame along with other base
registers. The Fault Code and Fault Address are placed in words
“12,713, “14 of the Fault Handler”s stack. The first word of the
new stack frame is set to a value of 1. This is to distinguish the
CALF stack frame from the normal PCL stack frame. The ECB (Entry
Control Block) addressed by the CALF must not specify any arguments.
Return from the fault handler is by normal PRTN instruction.

Rev. 19.4 6 - 2 June, 1985

CE0810 - PRIMOS

FAULT PROCESSING

Exceptions

TYPE OFFSET RING SAVED PB FCODE FADDR

RESTRICTED 0 CURRENT BACKED -- --

INSTRUCTION

PROCESS 4 0 CURRENT ABORT --

FLAGS

PAGE 10 0 BACKED -- ADDRESS

SVC 14 CURRENT CURRENT -- --

UNIMPLEMENTED; 20 CURRENT BACKED CURRENT P EFF ADDRESS

INSTRUCTION COUNTER

SEMAPHORE 24 0 BACKED under = $0 SEMAPHORE

OVERFLOW over = $l ADDRESS

ILLEGAL 40 CURRENT BACKED CURRENT P EFF ADDRESS

INSTRUCTION COUNTER

ACCESS 44 0 BACKED -- ADDRESS

VIOLATION
ARITHMETIC 50 CURRENT CURRENT EXCEPTION OPERAND

EXCEPTION CODE ADDRESS

STACK 54 0 BACKED -- LAST STACK

OVERFLOW SEGMENT

SEGMENT 60 0 BACKED # too large ADDRESS

or Fault Bit

POINTER 64 CURRENT BACKED PTR lst ADDRESS OF

word PTR

Rev. 19.4 6 - 3 June, 1985

CEO0810 - PRIMOS
| Exceptions

FAULT HANDLING

FAULT OPERATION
(EG. UII in Ring 3)

RING 3

rco FAULT TABLE

) FAULT,
T—HANDLER

*20
CODE

»

CALF

ECB

FAULT VECTOR § .
FAULT ViCTOW 1

RKESTRVED
.PAULT VECTOR 3

—~~ PAGE FAULTVi@iOn
EiRST

NEXT _
LAST _

_

+| FLAGS

rh r rrKUYS [KEYS
FCODL

FADDR

12 FCODE
"13 :4 FADDR

——_ AA
Rev. 19.4 6 - 4 June, 1985

CE0810 - PRIMOS

THE FAULT FRAME HEADER -

When a hardware

instruction for

fault occurs,

the fault handler.

dcl 1 £fh based, /*
2 flags,

3 backup inh bit(l), /*
3 condfr bit(1l), /*
3 cleanupdone bit(l),

3 efh_present bit(1), /*-
3 user proc bit(l), /*

3 stk_cbits bit(1l), /*
3 libproc bit(1l), /*
3 ecbcbits bit(l), /*

3 mbz bit(6),
3 faultfr bit(2), /*

2 root,

3 mbz bit(4),

3 seg no bit(12),

retpbptr,

ret_sb ptr,

retlb ptr,

ret_keys bit(16) aligned,
faulttype fixed bin,
fault_code fixed bin,

fault addr ptr,

hdr reserved(7) fixed bin,

regs,
3 savemask bit(16) aligned,

3 fac_1(2) fixed bin(31),
3 fac0(2) fixed bin(31),

3 genr(0:7) fixed bin(31),
3 xb_reg ptr,

savedcleanup pb ptr,

2 pad fixed bin;

P
O
R

N
H

K
B

K
L

K
H

H
K

f
f

b
h

b
o

Rev. 19.4 6 -

Exceptions

FFH

a stack frame is created by the CALF

standard fault frame header */

will

will

be

be

“O~b */
"0° «/

be “0”

be

be

be

be

will

will

will

will

will

‘ \

\

o
o
o
o
c
o

\

c
o
o
c
e
s

\ \

‘\

will be “~10%b or “0O1~b */

June, 1985

CEO8L0O - PRIMOS Exceptions

RING 0 FAULT HANDLERS

The Fault Vector in the user”s PCB for RING 0 points to a fault table
called FAULT in segment 6. The fault table is defined in
PRIMOS>KS>ROFALT. PMA.

The following Fault Handlers exist in Segmment 6:
PROCESS FAULT
PAGE FAULT

ULL (UnImplemented Instruction)
ACCESS VIOLATION
STACK OVERFLOW
SEGMENT FAULT
POINTER FAULT

Any other Fault occurring in RING 0 (e.g. SVC, restricted instruction)
will cause the system to HALT. ~

Rev. 19.4 6 - 6 June, 1985

CEQ810 - PRIMOS Exceptions

PROCESS FAULT

1. Check Abort Flags

2. Lf any Abort Flag is set and aborts are enabled, call PABORT.

SYSTEM ABORT FLAGS - User 1

1 MINALM, ONE MINUTE (MINABT)

Dump any entries in LOGBUF to LOGREC

Update all disk buffers

Decrement auto-logout clocks and logout any USERs out of time.

Process USER 1 message buffer

2 SMLALM, SMLC (SMLCEX) Process SMLC requests

3 NETALM, NETWORK Process network requests (NETUSR at Revision 19)

4 LGIALM, LOGIN (WIRSTK) Lock USER stack, notify user (LOGLCK)

5 WRMALM, WARM START (WRMABT)

Initialize MPC, VERSATEC, and Magnetic Tape

Initialize network and AMLCs.

6 MSGALM, SUPERVISOR MESSAGE (T10U) Process USER 1 message buffer.

7 CHKALM, Sensor check has occurred.

Turn off como, turn on TTY

Print “PRIMOS SHUTTING DOWN DUE TO SENSOR CHECK” at console

Print ~NO COMMANDS ACCEPTED” at console

Dump any entries in LOGBUF to LOGREC

Flush LOCATE buffers

Logout all users except user 1, NETMAN, and FAM

Shut down disks

Print “SHUTDOWN COMPLETE” at console

Halt system

8 Not used

Rev. 19.4 6 - 7 June, 1985

CEO310 - PRIMOS Exceptions

PROCESS FAULT

USER ABORT FLAGS

16 TSEALM, TIME SLICE END (SCHED)
Place process on low priority or eligibility queue

14 TMOALM, FORCED LOGOUT (LOGABT)
Output message “TIMEOUT”, Signal “LOGOUTS~

13. DISALM, AMLC DISCONNECT LOGOUT OR OPERATOR LOGOUT (LOGABT)
Output message “FORCE LOGOUT”, Signal “LOGOUTS~

10 iOALM, I/O ALARM Call MTDONE

9 SWIALM, SOFTWARE INTERRUPT (SWSABT) (formerly QUTALM)

15,12,11 Not Used

——

CEO810 - PRIMOS Exceptions

SOFTWARE INTERRUPT HANDLING

MOTIVATION

Due to increased frequency of asynch events at rev 19; more

pressure on quit mechanism.

Ring 0 code had to explicitly inhibit process aborts.

Unexpected exit from many ring 0 routines before completion

produces non-reliable results.

Inhibiting quits would disable multiple process abort events.

IMPLEMENTATION

Rev.

BREAKS code reduced to only handle QUITS.

SoftWare Interrupt modules for rest of process aborts.

SWITYP flag word defines which event.

New mechanism defaults to inhibiting process aborts in ring 0.

Enabling quits in ring 0 must now be explicitly performed.

19.4 6 - 9 June, 1985

CE0810

BREAK$

SWSINT

SETSWI

SETABT

SWSABT

SWFIM

SWSRST

PRIMOS Exceptions

SOFTWARE INTERRUPT HANDLING - Routines and Variables

enable/disable QUITS aborts in ri

process abort interrupt enable/di

store event bit in PUDCOM.SWITYP

set user”s abort flags

fault handler for process aborts

handles deferred ring 0 aborts on

called by SWFIM to reset ROSWIN,

Variables: SWITYP -

Rev, 19.4

QUTINT EQU “100000
CPULNT EQU “40000
TIMINT EQU “20000
LOGINT EQU “10000
LONINT EQU ~4000
CPSINT EQU ~2000
IPCMWI EQU “~1000
WRMINT EQU 7400

ROSWIN - ring O software inter

ROQUIT - ring O quit enable co

ng 0

sable control

return to outer ring

ROQUIT

QUIT
CPU TIME WATCHDOG
REAL TIME WATCHDOG
FORCED LOGOUT
LOGOUT NOTIFICATION
CROSS PROCESS SIGNALLING
IPC MESSAGE WAITING
WARMSTART SOFTWARE INTERRUPT

rupt enable word

unter

June, 1985

CE0810 -

Rev.

1)

2)

3)

4)

5)

6)

19.4

PRIMOS

PROCESS ABORT HANDLING

RING 0,

RING Q

INTERRUPT DISABLED

1 5

2

3

4

6 - 121i

RING 3

Exceptions

June, 1985

CEO810 - PRIMOS Exceptions

OTHER RING O FAULTS

UlL FAULT in ring 0 will HALT the machine except when operating
on a P400/350 using XVRY, ZMV, ZMVD, ZFIL, and ZCM which are
simulated in a routine called ROUII in segment 6.

SEMAPHORE FAULT Save semaphore status information and HALT the
system.

ACCESS VIOLATION call SIGNALS called to output the message
"ACCESS VIOLATION RALSED AT"

STACK OVERFLOW call STKOVF, SIGNALS “STACKOVFS*”, message
"STACK-OVFS RAISED AT eee

SEGMENT FAULT call GETSEG to either allocate a segment or call
SIGNAL$ to output the message "ILLEGAL SEGNOS$ RAISED AT "

POINTER FAULT - Ring 0

1). Save user state

2). Pick up faulting pointer
3). Return if pointer is greater or equal 0
4). Erase fault bit
5). Error message if pointer is equal 0, or invalid
6). Call SNAP$3 to get new pointer
7). Snap link
8). If not found error message
POINTER FAULT outputs the message "POINTER-FAULTS RAISED AT"

Rey. 19.4 6 - 12 June, 1985

CE0810 - PRIMOS Exceptions

RING 3 FAULTS

The fault vector in the user”~s PCB for ring 3 points to a fault table

called R3FALT in segment 13.

The following fault handlers exist in segment 13:

RESTRICTED LINSTRUCTION FAULT
SVC FAULT
UII FAULT
ILLEGAL INSTRUCTION FAULT
ARITHMETIC FAULT
STACK OVERFLOW FAULT
POINTER FAULT

Any other fault occuring in ring 3 is handled by the

ring 0 fault handlers.

RESTRICTED INSTRUCTION FAULT

Call PTRAP in ring 0

1). Read violating instruction and analyze.

2). If illegal or HALT instruction call SIGNALS
to output the message “PROGRAM HALT AT~

3). Simulate trapped 1/0 instructions for
System console, CRTs

Paper tape reader/punch
Card reader

Control panel

SVC

Enter SVC fault handler to initiate SVC and pass arguments.

UII FAULT
Enter ULI routine in segment 13 to software emulate the instruction.

ILLEGAL INSTRUCTION FAULT

Enter illegal instruction fault handler which signals “ILLEGAL-INST$”.

ARITHMETIC FAULT

Enter arithmetic fault handler which signals ARITHS condition.

CEQ0810 - PRIMOS Exceptions

RING 3 FAULTS

STACK OVERFLOW FAULT _
Call STKOVF. (Automatic Ring 3 Stack Extension)

Examine stack frame prior to fault frame and determine stack root
segment.

It root is “6002 then STK EX is called.
Otherwise condition “STACKOVFS$“ is signalled as before.

STK EX -
Attempts to get a DTAR 2 dynamic segment.
If not possible calls FATALS.
Otherwise fixes up stack extension ptr to point to new segment, ——

and returns.

POINTER FAULT

1). Save user state

2). Clear fault bit

3). If bad pointer - signal POINTER-FAULTS

4). Call LN_SLIB to initiate the search to snap the link:

a) Call SNAP$O to check if the routine is a RO gate routine,
and if it is, return ECB address.

b) Call SNAPS$3 to check if the routine is an “All Rings
Callable”~ routine, and if it is, return ECB address. ~

c) Call LN EPF or LN STAT, based on user”s search list, to
check if the routine is in an EPF library or a static mode
library, and if it is, return ECB address.

5). Lf ECB address found, replace faulty pointer (i.e., Snap the
link) and execute the PCL again.

If ECB address not found, signal LINKAGEFAULT$.

If an error occurred while attempting to resolve the faulty —
reference, signal LINKAGEERRORS.

Rev. 19.4 6 - 14 June, 1985

CEO0810 - PRIMOS Exceptions

DIRECT ENTRANCE CALLS

The direct entrance call (DEC) mechanism provides a form of dynamic

linking using the standard Procedure CaLl (PCL) instruction (V-mode

only) and the indirect memory address pointer. The purpose of the

DEC is to provide an efficient mechanism for application and system

programs to call procedures that are part of the operating system or

shared libraries. The DEC provides a mechanism to share a single
copy of a procedure among all users on the system. These procedures

do not have to be relinked for a different revision of PRIMOS, since

the address linkage to the procedure is not made until execution time.

A special form of object module, called a DYNT, is created by
assembling a PMA program that has the form:

SEG

SYML

DYNT procedurename

END

When the SEG or BIND loaders encounter this structure they put an

indirect pointer in the link frame of the calling procedure that has

the fault bit set which points to a location in the procedure area

where SEG or BIND has put the name of the direct entrance call and

the length of the name.

At execution time when the call is made, the fault bit causes the

hardware to detect a pointer fault and enter the pointer fault
handler. The pointer fault handler attempts to resolve the address

linkage to the called procedure by searching lists of ECBs (entry

points) to the direct entrance callable routines. If the ECB is

found, the address pointer to the procedure is stored back in the

pointer that originally caused the fault, the fault bit is erased and

the call is reexecuted (without the fault).

Rev. 19.4 6 - 15 June, 1985

CEO0810 - PRIMOS

VITAL STATS FOR

Ring 0

Hash Table Generator

Hash Table Entry Names

Hash Table

Routines

Memory Location

All Rings Callable

Hash Table Generator

Hash Table Entry Names

Hash Table

Routines

Memory Location

Static Mode Libraries

Hash Table Generator

Hash Table Entry Names

Hash Table

Routines

Memory Location

Rev. 19.4

Exceptions

DIRECT ENTRANCE CALLS IN RING 3

PRIMOS>HASH>GENERATE HASH TABLE.SPL —
PRIMOS>KS>GATE TABLEHASH|
PRIMOS>KS>GATEHTB.PMA
PRIMOS>R3S>R3FALT.PMA (pointer fault
handler)

PRIMOS>R3S>LN SLIB.PLP
PRIMOS>KS>SNAPSO. PLP
PRIMOS>R3S>SEARCHHASHTABLES. PLP
(SRCHS$HTB)
PRIMOS>R3S>FINDS$BKT. PLP
PRIMOS>R3S>HASHUID. PLP —
Segment 5

PRIMOS>HASH>GENERATE HASH TABLE.SPL
PRIMOS>R3S>RING3_ENTRYTABLEHASH
PRIMOS>R3S>R3ENTS. PMA
PRIMOS>R3S>R3FALT.PMA (pointer fault ~

handler)

PRIMOS>R3S>LN SLIB.PLP
PRIMOS>R3S>SNAP$3.PMA _.
PRIMOS>R3S>SEARCHHASHTABLE$.PLP
(SRCHSHTB)
PRIMOS>R3S>FINDSBKT. PLP
PRIMOS>R3S>HASHUID.PLP
Segment 13

DIRECV>HASHER.FTIN

HTAB (Each library that is to be shared

has a table called HTAB in its source

file UFD.)

HTAB (DIRECV>R3POFH.PMA -- There will

be a copy of this procedure, each with
its own HTAB for each shared library

installed.)

PRIMOS>R3S>R3FALT.PMA (pointer fault

handler) —

PRIMOS>R3S>LN_SLIB.PLP

PRIMOS>R3S>LN STAT.PLP (LIBTBL)

DIRECV>R3POFH.PMA (HTAB)
Segment 2xxx

August, 1985

CEQ0810 - PRIMOS Exceptions

VITAL STATS FOR DIRECT ENTRANCE CALLS (CONT“D)

EPF Libraries

Hash Table Generator - BIND loader

Hash Table Entry Names - Input to the BIND loader

Hash Table - Internal to Library

Routines - PRIMOS>R3S>R3FALT.PMA (pointer fault

handler)

- PRIMOS>R3S>LN SLIB.PLP
- PRIMOS>R3S>LNEPF.PLP
- PRIMOS>R3S>EPF SRCH.PLP
- PRIMOS>R3S>KTRANS.PMA

Memory Location - Segment 4xxx

Rev. 19.4 6 - 17 June, 1985

CE0810 - PRIMOS

ENTRY FORMAT ------

Rev. L9.4

PRIMOS HASH TABLE FORMAT

POINTER TO FIRST NAME IN

NAME TABLE

| POINTER TO |
| NAME |

| POINTER TO |
| DATA (e.g., ECB ADDRESS) |

Exceptions

June, 1985

CEQ810 - PRIMOS Exceptions

STATIC MODE LIBRARIES - LIBTBL

LIBTBL is a table that contains address pointers to the search

routines for the various static mode libraries. Entries in LIBTBL

are generally made according to the package number.

LIBTBL --> --------------------------- eee
A(ECB) FOR THE R3POFH

FOR PACKAGE #1

A(ECB) FOR THE R3POFH

FOR PACKAGE #2

| A(ECB FOR THE R3POFH
| FOR PACKAGE #32

CE0810 - PRIMOS

CONDITION MECHANISM

MOTIVATION

- system software error handling

~- manage reentrant/recursive command environment

- user program error (and event) handling

- support ANSI PL/1 condition mechanism

IMPLEMENTATION

Rev.

~ extended stack header

- on-unit descriptor block (on stack)

- condition frame header (on stack)

- fault frame header (on stack)

19.4 6 - 20

Exceptions

June, 1985

CEQ810 - PRIMOS Exceptions

CONDITION MECHANISM - DEFINITIONS

CONDITION - an unscheduled event

ON-UNIT - a procedure to handle an event

MAKE ON-UNIT - turn on event handler for this activation

REVERT ON-UNIT - turn off event handler for this activation

SIGNAL - telling the world the event happened

RAISE - procedure which searches the stack for the ON-UNIT

CRAWL_ - procedure which switches from inner ring to ring 3 stack

NON-LOCAL-GOTO - a goto to a predefined label not in this activation

DEFAULT ON-UNIT - one example of system use of condition mech.

CEQ0810 - PRIMOS Exceptions

THE EXTENDED STACK FRAME HEADER - EFH 7

Any procedure which is to create one or more on-units must reserve
Space in its stack frame for an extension that contains descriptive
information about those on-units. Most of the compilers that support
the condition mechanism will automatically allocate this extra space.

del 1 sfh based, /* stack frame header */
2 flags,

3 backupinh bit(1), /* inhibit crawlout-backup of pb */ a
3 cond fr bit(l),
3 cleanup done bit(l),
3 efh_present bit(l), /* extension to frame is here */
3 userproc bit(1l), 7
3 stk_cbits bit(1), /* stack has valid cond bits */
3 libproc bit(1), /* is a library procedure */
3 ecb_cbits bit(1l), /* ecb has valid cond bits */ —
3 mbz bit(6),
3 faultfr bit(2), /* “00%b -> pel frame */

2 root, _
3 mbz bit(4),
3 segno bit(12), /* seg number of root of stack */

2 retpb ptr, /* caller”s return point */
2 ret_sb ptr, /* caller”s stack frame */
2 ret1b ptr, /* caller”s link frame */
2 ret_keys bit(16) aligned, /* caller“s keys */
2 after pcl fixed bin, /* relp to <pel instr> + 2 */
2 hdr reserved(8) fixed bin, ”
2 owner ptr ptr, /* ptr to ecb that created frame */
2 tempsc(8) fixed bin, /* standard shortcall temps */ _
2 onunit_ptr ptr, /* first ODB on the chain */ .
2 cleanup onunit ptr ptr, /* null if no cleanup onunit */
2 next_efh ptr, /* points to next exten headers */
2 spl_lib_scratch(6) fixed bin,
2 condbits bit(l6) aligned; /* PL1 condition enable bits */

Rev. 19.4 6 - 22 June, 1985

CEQ810 - PRIMOS Exceptions

THE ON-UNIT DESCRIPTOR BLOCK - ODB

Each on-unit created by an activation is described to the condition

mechanism by a descriptor block (except for CLEANUPS). These
descriptor blocks for a given activation are chained together in a

simple linked list.

dcl 1 onub based, /* standard onunit block */
2 ecbptr ptr, /* ecb to call on invocation */

2 next ptr ptr, /* next ODB in this activation */
2 flags, .

3 not_reverted bit(1l), /* ignore if “O%b */
3 isproc bit(l), /* “O”"b->is begin block(pll onunit) */

3 specify bit(l1), /* check onub.specifier if on */

3 snap bit(l), /* snap option requested */
3 mbz bit(12),

2 pad fixed bin, /* must be O */
2 cond name ptr ptr, /* ptr to char(32) var cond name */
2 specifierptr; /* e.g. file desc ptr for "endfile" */

Rev. 19.4 6 - 23 June, 1985

CE0810 - PRIMOS Exceptions

THE CONDITION FRAME HEADER - CFH

SIGNL$ takes its own standard PCL stack frame and turns it into a
condition frame for the condition being signalled.

del 1 cfh based, /*
2 flags,

3 backupinh bit(lL), /*
3 condfr bit(l), _ /*
3 cleanupdone bit(1),
3 efh_present bit(1), /*
3 userproc bit(1), /*
3 stk_cbits bit(1), /*
3 libproc bit(l), /*
3 ecb cbits bit(1l), /*
3 mbzbit(6),
3 fault fr bit(2), /*

2 root, ~

3 mbz bit(4),

3 segno bit(12),
retpb ptr,

retsb ptr,

retlb ptr,

ret_keys bit(16) aligned,

afterpel fixed bin,

hdr_reserved(8) fixed bin,

Ownerptr ptr,

cflags,

crawlout bit(l1),
continuesw bit(1),
return_ok bit(1l),
inaction_ok bit(1),

specifier bit(1),
ringlimit bit (2),

R
O

M
R

P
K

D
B

P
D

K
H

LP
L

f
o

W
W
W

W
H

W
H

W
w

3 sou crash bit (1),

3 sou_comphndld bit (1),
3 mbz bit(7),

version fixed bin,

condnameptr ptr,

infoptr ptr,

ms_len fixed bin,

info len fixed bin,

savedcleanuppb ptr;a

Rev. 19.4 6 -

Standard condition frame header */

will

will

will

will

will

will

will

will

/*0
l

2=
3 =

/*sou

/*sou

be “O7b */

be “1b */

be “O"b */

be “07b */

be “0O"b */

be “0O7b */

be “O~b */

be “007b */

no ring limit

ring 1 limit

ring O limit

ring 3 limit for signals*/
crash indicator*/
hndld not to dfunit*/

/* init(1l) */

24

msptr ptr, /* machine state at time of signal */

June, 1985

CEQ810 - PRIMOS Exceptions

DMSTK OUTPUT

OK, seg sleep

This is SLEEP.FTN, going to sleep for one minute /* normal

This is SLEEP.FTN, finished sleeping, exiting /* execution

OK, seg sleep

This is SLEEP.FTN, going to sleep for one minute /* control P

/* typed
QUIT.

OK, DMSTK -ALL -ONUNITS

Backward trace of stack from frame 1 at 6002(3)/7756.

STACK SEGMENT IS 6002.

(1) 007756: Owner= (LB= 13(0)/13540). /* STDSCP
Called from 13(3)/110567; returns to 13(3)/110573./* (INTERNAL__

/* EXECUTER)

(2) 006700: Owner= (LB= 13(0)/112404). /* CP_ITER

Called from 13(3)/107765; returns to 13(3)/107771./* (LIGASE)

(3) 004440: Owner= (LB= 13(0)/112404). /* CP_ITER
Called from 13(3)/10516; returns to 13(3)/10536.

(4) 003706: Owner= (LB= 13(0)/13540). /* STDSCP
Called from 13(3)/3123; returns to 13(3)/3135.

Onunit for "CLEANUPS" is 13(3)/14541.
Onunit for "STOPS" is 13(3)/14341.

Onunit for "SUBSYS_ERRS$" is 13(3)/14361.

(5) 003370: Owner= (LB= 13(0)/4162). /* LISTEN

Called from 13(3)/104526; returns to 13(3)/104532.

Onunit for "CLEANUPS" is 13(3)/4714.
Onunit for "ANYS" is 13(3)/77424.

Onunit for “LISTENERORDERS" is 13(3)/4754.

Onunit for "SETRCS" is 13(3)/4734.
Onunit for “REENTERS" is 13(3)/4774.

(6) 003344: Owner= (LB= 13(0)/104142). /* COMLVS

Called from 13(3)/63426; returns to 13(3)/63430.

(7) 002560: Owner= (LB= 13(0)/66176). /* DF_UNIT_

Called from 13(3)/52601; returns to 13(3)/52605.

(8) 002460: Owner= (LB= 13(0)/52316). /* RAISE
Called from 13(3)/51651; returns to 13(3)/51663.

Rev. 19.4 6 - 25 June, 1985

CE0810 - PRIMOS Exceptions

DMSTK OUTPUT (CONT“D)

(9) 002332: CONDITION FRAME for "QUITS$"; returns to 13(3)/56625.
Condition raised at 6(0)/3421; LB= 6(0)/3300, Keys= 014000
(Crawlout to 4001(3)/1043; LB= 4002(0)/177400.)
Inner ring fault: type "PROCESS" (4); code= 000200; addr= 0(0)/0
Registers at time of fault in inner ring:

Save Mask= 000000; xXB= 6(0)/1402

GRO 0 0 0 GRl 0 0 0
L,GR2 0 0 O E,GR3 0 0 0

GRG 0 0 0 Y,GR5 0 0 0
GR6 0 Q QO X,GR7 0 0 Q

FARO 0(0)/0 FLRO O FRO O0.Q0000000E O00
FAR] 0(0)/0 FLR1L O FR1 0.00000000E O00

(10) 002130: Owner= (LB= 13(0)/56236). /* CRFIM_
Called from 4001(3)/1043; returns to 4001(3)/1043.

STACK SEGMENT IS 4001. /** CONTROL P TYPED HERE x /

(11) 001174: Owner= (LB= 4002(0)/177400). /* SLEEP.FTN
Called from 4000(3)/61677; returns to 4000(3)/61701.

STACK SEGMENT IS 4000.

(12) 150062: Owner= (LB= 4000(0)/61364). /* SEG(VRUNIT)
Called from 4000(3)/1723; returns to 4000(3)/1725.
Proceed to this activation is prohibited.

(13) 150012: Owner= (LB= 4000(0)/5064). /* SEG(MAIN)
Called from 4000(3)/1100; returns to 4000(3)/1102.
Onunit for "CLEANUPS" is 4000(3)/62470.

(14) 150000: Owner= (LB= 4002(0)/177400). /* INVALID FRAME
Called from 0(0)/177776; returns to 0(0)/0. /* SETUP BY SEG

Rev, 19.4 6 - 26 June, 1985

CE0810 - PRIMOS Exceptions

DMTSK OUTPUT (CONT“D)

STACK SEGMENT IS 6002.

(15) 001666: Owner= (LB= 13(3)/31746). /* INVKSM_

Called from 13(3)/13174; returns to 13(3)/13216.

Onunit for "CLEANUPS" is 13(3)/32433.

Onunit for "ANYS" is 13(3)/32413.

(16) 001506: Owner= (LB= 13(0)/13540). /* STDSCP
Called from 13(3)/12114; returns to 13(3)/12120. /* (SM_EXECUTER)

(17) 000764: Owner= (LB= 13(0)/13540). /* STDSCP

Called from 13(3)/3123; returns to 13(3)/3135.
Onunit for "CLEANUPS" is 13(3)/14541.
Onunit for "STOPS" is 13(3)/14341.
Onunit for "SUBSYSERR$" is 13(3)/14361.

(18) 000446: Owner= (LB= 13(0)/4162). /* LISTEN_

Called from 13(3)/152454; returns to 13(3)/152460.

Onunit for "CLEANUPS" is 13(3)/4714.

Onunit for "ANYS$" is 13(3)/77424.
Onunit for “LISTENER ORDERS" is 13(3)/4754.
Onunit for "SETRCS" is 13(3)/4734.
Onunit for “REENTERS" is 13(3)/4774.

(19) 000440: Owner= (LB= 13(0)/152074). /* INFIM_

Called from 1(0)/152456; returns to 1(0)/0.

Rev. 19.4 6 - 27 June, 1985

CE0810 - PRIMOS Exceptions

SOFTWARE INTERRUPT HANDLING and CONDITIONS

RING 0, INTERRUPTS ENABLED

___ RING 0 RING 3

8 1

9 2

10 3

11 | 4

12/13 5

14 6

7

13

15

16

17

18

19

Rev. 19.4 6 - 28 June, 1985

CE0810 - PRIMOS Exceptions

SOFTWARE INTERRUPT HANDLING and CONDITIONS

RING 0, INTERRUPTS ENABLED

1) 8)

2) 9)

3) 10)

4) 11)

5) 12)

6) 13)

7) 14)

CEQ0810 - PRIMOS Exceptions

SOFTWARE INTERRUPT HANDLING and CONDITIONS (CONT~D)

RING 0, INTERRUPTS ENABLED

15)

16)

17)

18)

19)

Rev. 19.4 6 - 30 June, 1985

CE0810 - PRIMOS Exceptions

LOGOUTS CONDITION

A forced logout will result in SETABT setting the DISALM PCB abort

flag or the TMOALM PCB abort flag. This will be intercepted by PABORT,

which in turn calls LOGABT.

There are five cases:

(1) forced logout (either by operator or AMLC disconnect)
(2) cpu time Limit exceeded

(3) inactivity time limit exceeded
(4) Login time limit exceeded
(5) grace period to process LOGOUTS condition exceeded

When (1) - (4), LOGABT will

(a) inhibit process aborts

(b) set Login time limit to (grace period)

(c) call SETSWI(LOGINT)

(d) call SETABT(SWIALM)

(e) enable process aborts

(£) call SWSABT to signal LOGOUTS

When (5), log the process out immediately.

Rev. 19.4 6 - 31 June, 1985

CE0810 - PRIMOS Exceptions

LOGOUTS$ CONDITION - GRACE PERIOD

If the user process has a handler for LOGOUTS, then there will be
(graceperiod) minutes left in which to tidy up the environment
before the final logout.

Otherwise, DF_UNIT_ will simply print the error message and call
LOGOUS.

when (loginlimt)

call ioa$("“login time limit exceeded”)
when (cpu limit)

callioa$(“cpu time limit exceeded”)
when (timeout)

call ioa$(“maximum inactive time limit exceeded”)
otherwise

call ioa$(“forced Logout”)
call logouS;

LOGOUS (LOGOUT)
call internal routine LOGMSG to print message to system console
and user terminal.

if a phantom, queue Logout Notification (LON) message to spawner.

Rev. 19.4 6 = 32 June, 1985

CE0810 - PRIMOS Exceptions

CRAWLOUT

Crawlout occurs when the end of an inner ring stack has been reached
by the condition mechanism without handling the condition.

Control always orginates in an outer ring, the end of an inner ring

stack is threaded to an outer ring stack. The condition mechanism
continues the stack search across the connection and back down the
outer ring stack. Crawlout is the mechanism which copies the

information describing the condition to the outer ring and resignals.

When RAISE reaches the end of the inner ring stack, it returns to

SIGNL$ with the CRAWLOUT NEEDED flag set, a pointer to the last stack

frame on the inner ring (CRAWL_FRAME) and a pointer to the most

recent inner ring stack frame in which the registers are saved.

SIGNL$ calls CRAWL defining the crawlout fault interceptor module

(CRFIM). The stack frame on the outer ring is the target frame.

CRAWL checks the space needed in the outer ring stack for the target

ring stack and copies the neccessary information into the target

stack. The return information in CRAWL FRAME is adjusted to appear as

though it was called from the target frame.

UNWIND is called to unwind the stacks. A procedure return is then

invoked to CRFIM.

CRFIM calis SIGNL$ to signal the condition in the outer ring and the

on-unit will invoke the next LISTEN level.

Rev. 19.4 6 - 33 June, 1985

CEQ810 -

Rev. 19.4

PRIMOS

34

Exceptions

June, 1985

CEO810 - PRIMOS Command

Section 7 - Command Environment

Objectives: The student will be able to

o describe how a command is executed

Rev. 19.4 7 l June, 1985

CEQ0810 - PRIMOS Command

EXTENDED FEATURES

- Command processor enhanced to support following extended features:

simple iteration

wildcard expansion

treewalking

name generation

special reserved arguments

- All above are processed by c.p. itself.

- Enabling of individual features may be selected in various ways:

CPL - defined to have c.p. do simple iteration only

Static Programs - all features enabled unless special names:
NW$ - no wildcard or equalname
NX$ - only simple iteration

EPF - enabled features specified at BIND time and stored in file

Internal Commands - enabled features specified in internal command
table

Rev. 19.4 7 ” 2 June, 1985

CEO810 -

CP_ITER

Pass I

Pass II

PRIMOS

Pass Ill

ITR_WLDT

ITR_WLDC

EQUALSP

EQUAL$

Rev. 19.4

Command

EXTENDED FEATURES

main routine which processes extended features

makes three passes over command line to verify

syntax, expand iteration, process options

parses command line into 2 level tree

each node represents a token

2nd level for simple iteration tokens

repeated while iteration in progress

convert tree into simple threaded list

expand dot products

call DCODITR to find type of token (e.g.
wildcard, wildtree, control, equalname)

repeated while iteration in progress

verify only one wildcard/tree per line

find location of wild tokens

if wildtree call ITR WLDT

if wildcard call ITRWLDC
if no wilds call LIGASE
free all temporary storage

expands wild trees

uses control args if supplied

calls ITR WLDC if wildcards, or
“executer to execute each match
recurses when required

expands wild cards

uses control args if supplied

asks user for verification if reqd

calls “executer” to execute each match

special routine for c.p.

splits pathnames into dir and entry

calls EQUALS to match names

parse generation pattern components

process “commands” in components

build generated name by concatenation

7 3 June, 1985

CEO0810 - PRIMOS Command

EXTENDED FEATURES

LIGASE (internal to CP_ITER)

- follows assembled node list concatenating
tokens to form command line

- calls EQUALSP to process name generation
- call “executer” routine to execute line

SMEXECUTER (internal to STDSCP)

- executes static mode command

- calls INVKSM__

CPL_EXECUTER (internal to STDS$CP)
- executes CPL command

- calls ICPL_

INTERNALEXECUTER (internal to STDSCP)

- executes an internal command

- calls appropriate routine directly

RUNEXECUTER (internal to STDSCP)
- executes an EPF

- calls EPFSMAP to map in procedure
EPFSALLC to allocate linkage
EPFSINIT to initialize linkage
EPFSINVK to execute EPF

Rev. 19.4 7 - 4 June, 1985

CEO0810 - PRIMOS Command

BUILDING THE COMMAND LINE

[NF IM_

7 Oem OF Oe Cm me © Oh es @ OR OF 68 © Oe 6 ae © O&O fo tw 8s bee © tte © sem Stee

CALL CLSGET CALL CIIN$

7 !
| 7

‘NOTIFY i
ttt eee w cee wwe eren en ccccccecesercncnenee! fron

AHLDIH |

ABBREVIATION

CPL

PREPROCESSING|

| iOF_UNIT_ fons meet ne cere me eeee

 CaLL

STOS&CP

Rev. 19.4 7 - 5 June, 1985

CEO81LO - PRIMOS
Command

“COMMAND LINE DATA - CLDATA

bhis siutLe structure defines the current state of a process” ring3
command environment. The location of this static data block is
defined in beth the ringO and ring3 operating System loads.

Looe/\z
dei 1] cldsata eaxt static, ‘ /* command loop data */

4 avic sb ptr options(short), /* to find stack3 at exit
: from SM procs, PUSHED */

A exii Lb ptr options(short), /* to find stack3 at exit
| from SM procs, PUSHED */

2 usescumber fixed bin(15), _ /*® system user id */
4 svesw bit(16) aligned, /* virtual svc control */
4 flags,

3 seady_on bit(1l), /* enable ready msgs */
“4 weady_br bit(l), /* short ready msgs */
t dbg|mode bit(1), /* “1"b->debugger in use */
3 abbrev_on bit(l), /* “1"b->use abbrev cad proc */
3 sm_used bit(1), /* “1"b->SM used at this lvl */
3 «bbrev_ver bit(l), /* “1"b->print expand cad ln */
3 woz bit(10),

2 com Line char(160) var, /* command line buffer */
? cowLinesize fixed bin(15), /* (size(comLine)-1)*2) */
2 comparsedata fixed bin(15), /* parse datafor SM rdtk$$ */
2 peogsessiondepth fixed bin(15),/* breadth of command env. */
7 sm fault_fr ptr options(short), /* to SM ffh at this lvl */
2 prev smff ptr options(short), /* to SM ffh of prev lvl */
2 level £ixed bin(15), /* current cmd lvl,PUSHED */
¢ vvee, /* the sm state vector */

atart_addr fixed bin(15),
and addr fixed bin(15),
keys bit(16) aligned,
n> ptr options(short),
s) ptr options(short),
1> ptr options(short),
sags, /* in rsav format */

4% save mask bit(16) aligned,
4 facl(2) fixed bin(31),
« £acO(2) fixed bin(31),
+ genr(0:7) fixed bin(31),

xb ptr options(short),

2
4

A
o
n
e

3
A
e

S
S

w
a
e

Me
Ww

Ge

Reve 19.4 | 7 « 6 | June, 1985

CEOQ0810 - PRIMOS Command

/*

/*

/*

/*

COMMAND LINE DATA - CLDATA (CONT“D)

2 abbrev, /* data for the abbrev c.p. */
3 segptr ptr options(short), /* ptr to live abbrev tbl seg */

3 treename char(80) var, /* abbrev file */

2 sm_err_code fixed bin(15), /* for static mode */

2 cpu_secs fixed bin(15), /* cpu meter, seconds */
2 cpu ticks fixed bin(15), /* cpu meter, secs/330 */
2 io secs fixed bin(15), /* io meter, seconds */
2 ioticks fixed bin(15), /* io meter, secs/330 */

Command processor to call upon. Must agree with DCL for

entry variable STDSCP in the routine INITS$3. */

2 commandprocessor entry (char(*) var, fixed bin(15),

fixed bin(15), 1, 2 bit(1l) aligned, 2 bit(l), 2 bit(14),
ptr options(short), ptr options(short)) variable,

Command line reader to call upon. Must agree with DCL for

entry variable CLS$GET in the routine INITS$3. */

2 commandlinereader entry (char(*) var, fixed bin,

fixed bin) returns (bit(16) aligned) variable,

Command prompt routine to call upon. Must agree with DCL for

entry variable READYS in the routine INITS3. */

2 commandprompt entry (bit(16) aligned, fixed bin) variable,

ready like readymessage, /* Ready msg information */
warning like ready message, /* Warning msg information */
error like readymessage, /* Same for errors */

staticon_units (10), /* list of 10 sous*/

3 sou_ecb ptr options(short), /* ptr to ecb*/
3 sou_status fixed bin(15), /* soustatus and cntr*/

searchlist ptr ptr options(short), /* search list head ptr */
smt_list_ptr ptr options(short),/*ptr to list of active EPFs*/
epf_cache_hd_ptr ptr options(short), /* EPF cache head ptr */
epf_“cachetl_ptr ptr options(short), /* EPF cache tail ptr */
epfcachecount fixed bin(15), /* EPF cache counter */

~~

B
h

MB
M
K
B

B
O

B
M

B
D

B
d

b
h

wn

The first stack frame beginneth here. */

2 firstfr fixed bin(15);

CEO810 -

Rev.

PRIMOS

STANDARD COMMAND PROCESSOR STDSCP

Command

MAKE ON—UNITS
HANDLE SYNTAX SUPRESSOR
HANOLE MULTIPLE COPMANDS
EVALUATE VARIABLES. FUNCTIONS
REMOVE NULL STRINGS
PARSE fern

of.

 I L. st

CALL EPFSMAP

TURN OFF WILOCARDY [IF NEEDED,CP_ITER? ICHECK FoR NWS , NXB
IF NEEDED, CP_(TERIF NEEDED,CP_ITER EPFSALLC

CAL ICL EPFSINIT CALL INVKSH_
EPF8 INVK

SELECT

(SUFFIX USED)

IT 3S AN
EXTERMAL
PREFACE WITH
2S <> <>

19.4
June, 1985

CE0810 - PRIMOS

Section 8 - Executable Program Format Files

Objectives: The student will be able to

Rev.

o name the data structures created by BIND

describe the phases in the life of an EPF

o explain how the BIND-created data structures are used in EPF

startup
o explain the data structures built by PRIMOS to manage EPFs

°

19.4 8 - 1 August,

EPFs

1985

CEO810 - PRIMOS EPFs

STATIC VS DYNAMIC RUNFILES

STATIC DYNAMIC

~SEG, .SAVE »RUN

SEG or LOAD loaders BIND loader

Uses the same static segments

for every invocation as

assigned by SEG/LOAD

Uses available dynamic segments

for every invocation as assigned

by PRIMOS

Contains virtual addresses Contain EPF Relocatable Pointers

ERPs

Contains procedure and linkage

images

Contains procedure image and a
description of the linkage area(s)

Entire runfile is read into

memory and paging space

allocated

Procedure images mapped to memory

via VMFA, required linkage is

built, and paging space

allocated for linkage; procedure

read into memory as needed

User manages address space PRIMOS manages address space

Limited restartability of

command environment

Full restartability of

command environment

Uses private stack (4xxx) Uses command processor stack
 Must be explicitly shared Are implicitly shared

Rev. 19.4 2 August, 1985

CEO0810 - PRIMOS EPFs

EXECUTABLE PROGRAM FORMAT - EPF

The Executable Program Format (EPF) implements a new program object

representation for V-mode programs. EPFs, unlike static mode runfiles

which have their virtual addresses assigned by the lLoader/linker, are
mot associated with virtual addresses until runtime. Therefore, the

format of a .RUN file as well as the steps taken to execute it

greatly differ from its static mode counterpart.

+ +

1. VCIB EPF identifier

size of this file
size of linkage to build

ERP (rel ptr) to CIB

+ +

2. PROCEDURE IMAGE procedure image l

procedure image n

+ +

3. CIB ERPs to rest of the EPF

file structure ;

* linkage description

* Library info block

* DBG info block

* misc. info blocks

+ +

4. LINKAGE DESCRIPTION |LTD1 --> lte list

--> dtb list

LTDn --> lte list

--> dtb list

+ +
5. LIBRARY INFORMATION |search type

size of table

ent pt table ptr

entries in table

+ +

6. MISC. INFO command line options

comments

etc.

+ +

7. DBG INFO
+ +

Rev. 19.4 8 - 3 August, 1985

“MOS

EPF LOGICAL STRUCTURE

{ lte | | lte |

| dtb | | dtb |

{| lte |

| dtb |

8 - 4 August,

EPFs

1985

CEQ0810 - PRIMOS EPFs

THE VERY CRITICAL INFORMATION BLOCK - VCIB

The information stored by BIND in the VCIB is critical to PRIMOS

in the initial phase of EPF invocation. Hence, the VCIB comes

first in the EPF runfile.

1 7 8 16

| STARTING ADDRESS | ----> always -1l for an EPF

| ENDING ADDRESS | ----> always 0 for an EPF

| TYPE | VERSION # | ----> types:
1 = progalwaysreinit

| # SEGS NEEDED FOR RESUME | 3 = processclass library
4 programclasslibrary

| # OF LINKAGE AREAS |

| # SEGS NEEDED FOR DBG |

| CIB |

| ERP |

CE0810 - PRIMOS

THE CRITICAL INFORMATION BLOCK CIB

EPFs

The information stored in the CIB by BIND allows PRIMOS to access the

many elements,

contained within the EPF runfile.

various phases of EPF startup.

Rev. 19.4

VERSION OF CIB

STARTING

ECB ERP |

ERP TO

LTDS LIST

LIBRARY ENTRY

POINT TABLE ERP

DBG INFORMATION

ERP |

ner worn

| CMD PROC FEATURES FLAGS |

wr ~ re

| ADDITIONAL INFORMATION |

| ERP

such as the starting ECB and the linkage descriptors

The CIB is accessed during the

August, 1985

CE0810 - PRIMOS

THE LINKAGE DESCRIPTION

The linkage area(s) of an EPF are constructed at runtime from a

“description” created by BIND. The description consists of three
types of data structures: LTDs, LTEs, and DTBs.

Linkage Template Descriptor (LTD)

o Describes a linkage area

o Contains the following information:

o Size of the linkage area

o ERP to its list of LTEs

o ERP to its list of DTBs

Linkage Template Entry (LTE)

o Describes one type of data

o Types of data include:

o ECBs

o IPs

o Faulted IPs

o Static data

o Repeated data

Data Template Block (DTB)

o Contains the actual data described

by a corresponding LTE

Rev. 19.4 8 - 7 August,

EPFs

1985

CEOQ810 - PRIMOS EPFs

THE LIFE OF AN EPF

The life of an EPF can be viewed in phases:

o Mapping the procedure segment(s) to memory (EPFSMAP).

o Allocating the necessary memory for linkage (EPFS$ALLC).

o Initializing the linkage area(s) and relocating all addresses

(EPFSINIT).

o Invoking the EPF (EPFSINVK).

o Deleting the EPF from memory (EPFSDEL).

Rev. 19.4 8 - 8 August, 1985

CE0810 - PRIMOS EPFs

THE ACTIVE SEGMENT TABLE - AST

In order to keep track of the EPF procedure segments currently in

memory, PRIMOS maintains the Active Segment Table (AST). The AST

consists of entries (ASTEs), one for each EPF procedure segment

currently in memory. The number of ASTEs is determined by the

setting of the config directive, NVMFS. The AST resides in segment

14. Following is the format of an ASTE.

1 7 8 16

ADDRESS OF PAGE
| MAP

|DEVICE NUMBER|HI-ORD 8B BRA |

| LOW ORDER 16 BITS BRA |

| PREV RA | NEXT RA |

| LOW 16 BITS - PREDECESSOR RA|

| LOW 16 BITS - SUCCESSOR RA |

| # WINDOW INTO VMFA FILE |

| # ACTIVE PAGES IN SEGMENT |

| # READERS | # WRITERS |

| CONCURRENCY |

Rev. 19.4 8 - 9 August, 1985

CEO0810 - PRIMOS EPFs

THE EPF MAPPING PHASE - EPFSMAP. PLP

When an EPF is RESUMEd, EPFSMAP calls VINITS to map each of the

procedure segments of the EPF into memory. EPFSMAP must access the

VCIB, which resides in the first procedure segment in order to tell

VINIT$ how many more procedure segments are to be mapped into memory.

For each procedure segment, VINITS performs the following steps:

o If the procedure segment is already mapped into memory for a

process other than the requesting process, VINITS$ finds an

unused dynamic segment (i.e., SDW) in the process” DTAR2,
increments the ASTE readers count, and returns the segment

number to EPFSMAP.

o If the procedure segment is already mapped into memory for the

requesting process, VINIT$ returns the number of the segment

that°s already mapped into the user”’s address space to
EPFSMAP.

o If the procedure segment is not mapped into memory at all,

VINITS$ finds an unused dynamic segment (i.e. SDW) in the
process” DTAR2, initializes a new ASTE, and returns the

segment number to EPFSMAP.

o If the EPF is on a remote disk, VINITS finds a free dynamic
segment (i.e., SDW) in the process” DTAR2 , calls PRWFSS$ to
copy the data into the segment, and returns its number to

EPFSMAP. That is, it is not handled like a local EPF.

Rev. 19.4 8 - 10 August, 1985

CE0810 - PRIMOS EPFs

THE SEGMENT MAPPING TABLE - SMT

Each process using an EPF must keep track of the status and virtual

mapping for its use of that EPF. The table dynamically created by

EPFSMAP is called a Segment Mapping Table (SMT). There is one

SMT for each EPF that a process has mapped into memory, and they are

linked together (head of list pointer in CLDATA). There are four

pieces to the SMT:

o SMT.STABLEENT contains information about the EPF, derived

from both the VCIB and the CIB, that will not change regardless

of the number of invocations. .

o SMT.ACTIVEENT contains the volatile information including

the current status.

o SMT.SEGS(n) is the SMT address table that keeps track of the

virtual addresses assigned to this invocation of the EPF.

o SMT.EPFPATHNAME contains the character count and full pathname

of the EPF.

Rev. 19.4 8 - ll August, 1985

CEQO810 - PRIMOS

Rev.

SMT FORMAT

STABLE ENTRY --> |# procedure segments

|# linkage area

[origin ptr (2 words)

|EPF pathname ptr (2 words) |

{next SMT ptr

|lib.search_type

[|lib.enttbl ptr (2 words) |

[lib.ent_tbl_size

[lib.entnum

[lib.linkrefctr (2 words) |

[epf type | epf version

[flags : dbg,cache,init ...|

ACTIVE ENTRY -->|command level

SMT ADDR TABLE -->|seg no. for last linkage

ORIGIN PTR -->

{flags: link init and alloc|

{prev act_ent ptr (2 wrds) |

e

|seg no. for first proc

EPF PATHNAME -->|length of pathname

19.4

[pathname

August,

EPFs

1985

CE0810 - PRIMOS EPFs

SMT ADDRESS TABLE

The SMT address table keeps track of the virtual addresses that are

assigned to the EPF procedure segments and linkage areas. Each entry

will eventually hold the 2-word virtual address assigned to that

procedure segment or linkage area to be used as the base address for

the relocation of ERPs. The index into the table is the relative

segment number portion of an ERP. A sample address table is shown

below.

SMT.ACTIVEENT.SEGS --> -n*2 relocation address

for nth linkage area

=

-2 relocation address

for first linkage area

SMT.STABLEENT.ORIGIN --> 0 relocation address

for first procedure segment

2 relocation address

for second procedure segment

4 relocation address

for third procedure segment

Rev. 19.4 8 - 13 August, 1985

CEO0810 - PRIMOS

Once the procedure image is mapped into memory via VMFA,

THE ALLOCATION PHASE - EPFSALLC.PLP

the memory

EPFs

for the linkage area(s) can be allocated and their address(es) stored

off in the SMT address table.

allocation phase,

linkage areas.

Rev.

CIB

19.4

In order to perform the linkage

LTDs

EPFSALLC examines the LTDs for the sizes of the

August, 1985

CE0810 - PRIMOS EPFs

THE INITIALIZATION PHASE - EPFSINIT.PLP

Once the Linkage has been allocated, EPFSINIT performs the

initialization phase. The following table lists the types of data and

the initialization steps.

DATA TYPE ACTIONS

ISTATIC. | COPIED FROMDTB|
|UNINITIALIZED||NOACTION—|
;REPEATED|COPIEDFROMTB&|

EXPANDED

| ECB(S) {| COPLED FROM DTB &
| | RELOCATE PB, LB

| INDIRECT POINTERS | RELOCATE |

| FAULTED INDIRECT | RELOCATE & SET |
| POINTERS | FAULT BIT |

STATIC INDIRECT | COPIED FROM DTB |
POINTERS | NOT RELOCATED |

Rev. 19.4 8 - 15 August, 1985

CEO810 - PRIMOS EPFs

THE INVOCATION PHASE - EPFSINVK.PLP o

To invoke the EPF, EPFSINVK creates an EPF cache entry and inserts it

at the head of the process” cache list, and then calls the EPF. When

the EPF returns, its cache entry is left threaded onto the cache list,

but its SMT is marked as being inactive. Another invocation of ~

the EPF, while its cache entry is still threaded on the cache list,

will only have to go through a partial initialization (i.e., static

data and faulted IPs) of the Linkage area.

An EPF“s cache entry will remain on the cache list until it is removed

because

(1) the cache list has become full, and it is the least recently
used entry,

(2) it has been explicitly removed with the Remove_Epf command, -
(3) the user”~s ring 3 environment has been reinitialized, or

(4) a new command level is pushed (see next page).

Removal of a cache entry will cause EPFSDEL to be called

to remove the SMT from the process” SMT list (CLDATA.SMT LISTPTR) and
delete the SMT from memory. A subsequent invocation of the EPF must -

then go through all phases.

CLDATA.EPFCACHEHDPR CLDATA.EPFCACHETLPTR

| |
| |
Vv Vv ~

|--- |---
| ACNEXT ENT) | <-- | ACNEXT ENT) | <--- | ACNEXT ENT) |

| ACPREV ENT) | {| ACPREV ENT) | | ACPREV ENT) |--> null -

| A(SMT) | | A(SMT) | | A(SMT) |

Rev. 19.4 8 - 16 August, 1985

CE0810 - PRIMOS EPFs

MOVING BETWEEN COMMAND LEVELS

If an EPF is broken out of (i.e., *~P was typed during execution), a

new command level is pushed. Before the new command level is

initialized, the previous command level is “cleaned up”. Cache

entries in the previous command level cache list representing inactive

EPFs are popped from the list. Hence, only active EPFs are “carried

forward” to the new command level.

If an already active EPF were to be reinvoked at the new command

level, the linkage area assignments for both the original invocation

and the new invocation must be preserved. To ensure this, a copy (in

the diagram called PREVACTIVE_ENT) is made of the SMT.ACTIVEENT for

the original invocation. SMT.ACTIVE ENT is then initialized to show

that a new command has been pushed, and the addresses for the linkage

areas are set to null. These addresses will then be filled in upon

reinvocation of that EPF.

COMMAND LEVEL X: SMT

|
| STABLE |

| |

|
| ACTIVE |
| |

a”

COMMAND LEVEL X+1:

STABLE

|

| ACTIVE |
| |m-onoee >

PREV
ACTIVE
ENT |

Rev. 19.4 8 - 17 August, 1985

CE0810 -

Rev. 19.4

PRIMOS

18 August,

EPFs

1985

CEQ810 - PRIMOS File System

Section 9 - File System

Objectives: The student will be able to

describe physical disk data structure formats

describe the various file types and their advantages

describe ACL data structures

explain how the LOCATE mechanism works

describe unit table data structureso
o
0
o
0
0

Rev. 19.4 9 - 1 June, 1985

CE0810 - PRIMOS File System

PHYSICAL DISK STRUCTURES

A disk drive is divided into one or more partitions where a partition
is one or more pairs of heads. Each partition must contain:

1). MFD (Master file directory)

2). #DSKRAT (Disk record availability table)

3). BOOT (For initial loading)

4). UFD bos (Initially empty - not actually required)

5). UFD CMDNCO (Initially empty)

6). BADSPT (If badspots on the disk)

Each partition is divided into 1040 word records.

The record header is 16 words for Storage modules devices.

The remainder of the record holds data (1024 words).

HEADER

1040

total

words

DATA Total

Rev, 19.4 9 - 2 June, 1985

CEOQ0810 - PRIMOS File System

RECORD HEADER FORMAT - 1040 WORD

0
1 ~REKCRA _ RECORD ADDRESS OF THIS RECORD
2
3 ~REKPOP RA OF DIRECTORY ENTRY OF THIS RECORD
4 REKDCT NUMBER OF DATA WORDS IN RECORD
5 REKTYP TYPE OF FILE (Only on first record)

6
7 ~REKFPT RA OF NEXT SEQUENTIAL RECORD
8
9 “REKBPT _ RA OF PREVIOUS RECORD
10 REKLVL INDEX LEVEL FOR DAM FILLES
Ll
12
13
14 Reserved

15

Rev. 19.4 9 - 3 June, 1985

CE0810 - PRIMOS
File System

DSKRAT FORMAT

dcl 1 disk rat based,

Rev.

lenfixed bin,

rec size fixed bin,
disksize fixed bin(31l),
heads fixed bin,

specbits,

3 dummy bit(14),

3 crash bit(l1),
3 dos bit(l),

cyls fixed bin,

rev_num fixed bin,

N
R

h
m

L
K

B
D

f
o

h
o

f
h

/*

/*

/*

/*

/*

/*

/*

/*

/*

Usually found in LOCATE buffer */
no. of words in DSKRAT header */
phys. record size (448 or 1040)*/
number of records in partition */
number of heads in partition */

improperly shut down last time */
DOS modified or perm. broken * /
number of cylinders (tracks) */
Rev. number */

2 rat(0:1015) bit (16) aligned; /* The RAT itself */

19.4 4 June, 1985

CE0810 - PRIMOS

BADSPOT FILE FORMAT - Data Structures

~- BADSPT file header:

del 1 badspt file header,

2 bad blk off fixed bin, /* offset of the lst badspt blk
MBZfixed bin,

filesize fixed bin, /*

reserve(5) fixed bin;B
R

B
b

f
h

- Badspot entry:

del 1 badspt_blk_header,

/* must be zero

size of the badspt file

2 bew, /* block control word

3 type bit(4), /* block type (badspt blk type =
3 length bit(12), /* length of this block

2 badspt blk((badspt blk header.bew.length-1)/2)
3 track fixed bin,/* track number
3 sector bit(8), /* sector numbertl,
3 head bit(8); /* head

- Remapped badspot entry:

del 1 eqv_blk_header,

2 bew, /*
3 type bit(4), /*

3 length bit(12), /*

number

block control word

type of this block

(eqv blk type = 1)
length of this block

2 eqv_blk((eqv_blk_header.bcw.length-1)/2)

3 bad track fixed bin, /*

3 badsector bit(8), /*

3 bad head bit(8), /*
3 eqvtrack fixed bin, /*
3 eqvsector bit(8), /*
3 eqv_head bit(8); /*

Rev. 19.4 9

bad track number

bad sector number+tl

bad head number

equivlant track number

equivlant sector numbert+l

equivlant head number

0)

*/

*/
*/

*/
*/
*/
*/
*/

*/
0 for whole track*/

*/

June,

File System

1985

CE0810 -

- A directory is a header followed by a bunch of entries.

- Note, ACLs are embedded in the directory itself.
A UFD is a SAM file.

Rev. L9.4

PRIMOS

DIRECTORY STRUCTURE

Directory Header

File

Entry

ACL

hole

 Directory

Entry
Max size is <=64KW.

File System

June, 1985

CEO0810 - PRIMOS File System

DIRECTORY STRUCTURE

del 1 dir hdr based, /* dir header entry structure */

2 ecw like ecw,

2 ownerpassword char(6), /* Owner password * /

2 non owner password char(6), /* Nonowner password * /

2 sparel fixed bin,
2 maxquota fixed bin (31), /* Max Quota * /

2 dir_used fixed bin (31), /* Quota used in this dir */
2 tree_used fixed bin (31), /* Quota used in whole subtree*/

2 rec_timeprod fixed bin (31), /* Record/time product */
2 proddtm like fsdate, /* DIM of record/time product */
2 spare2(5) fixed bin;

dcl 1 ecw based, /* Entry control word * /
2 type bit(8), /* Type of entry */
2 len bit(8); /* Length of entry * /

replace dir_hdr_ecwt by “017b4, /* ECW types: directory header*/
vacant_ecwt by “02~b4, /* vacant entry */
fileecwt by ~037b4, /* file entry * /
acccat_ecwt by “04"b4, /* access category */
acl_ecwt by “05° b4; /* ACL itself */

Rev. 19.4 9 - 7 June, 1985

CFOBLO -

f° SeLSSaE “y

Rew.

urn

EATRY

t
t

ie
]

,

PRIMOS

SAM FILES

First recor

File System

Last record

June, 1985

CEO0810 - PRIMOS
File System

DAM FILES

RECORD 0 DATA

RECORD 1

. _ Address of

| Record 1 Bene

UFD | Address of

Record 2

Entry

Addrass of |

Record 3 DATA

RECORD 2

DATA

RECORD 3

Rev. 19.4 9 - 9 June, 1985

GBOBLO ~ PREMOS
File System

MULTILEVEL DAM FILES

June, 1985

- - LEveL 1 DATA LEVEL -LEVEL2 RECORD 1 RECoRD 1

ADDRESS _OF ADDRESS OF| a
RECORD 1 4 RECORD l

ue} /ADDRESS OF ADDRESS OF .
~ RECORD 2 RECORD 2

EN PRY

— _ ETC ——

foo, DATA LEVEL
RECORD 2

Seaa —_——ooer

J

i

v

t

LEVEL 1, v
_ RECORD DATA LEVEL

| ADDRESS OF RECORD N
RECORD N . |

| ADDRESS OF
RECORD N +]

d[LAA _

LAn_ DATA LEVEL
| RECORD N +1

}

L

[OS
{

q
(

. (v

Lo. 4 9 -« 10

CEQ810 -

Rev. 19.4

PRIMOS File System

SEGMENT DIRECTORY FORMAT

0 BRA QO Beginning record address

1 of first file in directory
2 BRA 1 Beginning record address
3 of second file in directory
4 0 Null entry
5

2n BRA n Beginning record address
2n+1 of last file in directory

9 - Il June, 1985

CE0810 - PRIMOS File

System

DIRECTORY STRUCTURE - NORMAL ENTRY

~ Normal entry for a file or directory:

dcl 1 fileent based, /* Structure of file entry */
2 ecw like ecw,

2 bra fixed bin (31), /* bra of file * /
2 logtype fixed bin, /* logical type attribute */
2 dtb like fsdate, /* Date/time last backed up * /
2 protec bit (16), /* Protection keys */
2 acl_pos fixed bin, /* Position of ACL, assumes

dir <= 64k */
2 dtm like fsdate,

2 fileinfo,

3 long rat_hdr bit (1), /* “8000~b4: file is a long RAT */
3 dumped bit (1), /* ~4000°b4: has been backed up */
3 dos_mod bit (1), /* “2000°b4: modified under DOS */
3 special bit (1), /* “1000°b4: Special file */
3 rwlock bit (2), /* Bits 5-6: Concurrency lock */
3 trunc bit (1), /* Bit 7: truncated by FIXDISK */
3 spare bit (1), /* Bit 8: Unused */
3 type bit (8), /* Bits 9-16: File type * /

‘2 sew fixed bin, /* Length of name subentry */
2 name char (32); /* Name of object */

Rev. 19.4 9 - 12 June, 1985

CEQO&10 - PRIMOS File System

DIRECTORY STRUCTURE - ACL POSITION

- ACLPOS

Position in the directory of the ACL protecting this object.

if specific protection then pointer is to an ACL.

if category protection then pointer is to access category.

if default protection then pointer is zero.

Directory Header

a.efile £j------ |

|--- notes.ufd |

| private.acat <+---- |

| ==> ACL 7]

ACL cae |

b.file ----> 0

- Note, the ACL protecting this directory lives in the parent directory

along with the entry describing this directory.

Rev. 19.4 9 - 13 June, 1985

CEO81O - PRIMOS File System

DIRECTORY STRUCTURE - ACL ENTRY

- Directory entry for an ACL:

del 1 acl_ent based, /* Dir entry for an ACL */
2 ecw like ecw, /* See above * /
2 usercount fixed bin, /* Number of user entries * /
2 group count fixed bin, /* Number of group entries */
2 version fixed bin, /* Version number of structure */
2 sparel fixed bin,
2 group offset fixed bin, /* Relative position of first

~ group entry */
2 rest_accesses like accesses, /* Rights for $REST */
2 ownerpos fixed bin, /* Position of owner in dir * /
2 dtm like fsdate, /* Date/time last modified * /
2 spare2 fixed bin,
2 entry like codedaccess; /* See below */

- Format of a single access pair:

dcl 1 codedaccess based, /* Entry in an ACL * /
2 scw fixed bin, /* Length only */
2 access like accesses, /* <access> x /
2 spare(2) fixed bin,
2 id char(32) var; /* <id> */

dcl 1 accesses based, /* A 16-bit access word */
2 ringl like accbits,

2 ring3 like accbits;

del l accbits based, /* Access bit definition */
2 protect bit(l), /* Directory accesses -- Protect */
2 delete bit(1l), /* Delete */
2 add bit(l), /* Add * /
2 list bit(1), /* List */
2 use bit(l), /* Use */
2 execute bit(1l), /* File accesses -- Execute */
2 write bit(l1), /* Write */
2 read bit(l); /* Read * /

CE0810 - PRIMOS File System

DIRECTORY STRUCTURE - ACCESS CATEGORY ENTRY

- An access category is a named ACL.

- It is a pointer to an ACL entry.

- Each file system object protected by the category points to the

access category entry, not the ACL itself.

- The name field of an access category is always padded to 32

characters in order to reduce directory fragmentation.

del 1 acc _cat_ent based, /* access category directory entry * /

2 ecw like ecw,

2 sparel(3) fixed bin,

2 dtls like fsdate, /* Date/time last saved x /
2 spare2(1l) fixed bin,
2 acl pos fixed bin, /* Position of ACL itself «/
2 dtmlike fsdate, /* Date/time last modified */
2 file type fixed bin, /* For compatibility with normal entry */
2 sew fixed bin, /* Length of name subentry «/
2 name char (32); /* Name of object (padded to 32 chars) */

CE0810 -

Rev. 19.4

PRIMOS

16

File System

June, 1985

CEO0810 - PRIMOS File System

THE LOCATE MECHANISM

R/W

d

v

PRWFSS

4 ot

BCB’s ———=LOCATE BUFFERS
7

' 7
“A ~

~~ ~~ ‘

LOCATEr~

RREC NOTIFY DISK
WREC f€---—-- % CONTROLLER

Rev. 19.4 9 - 17 June, 1985

CE0810

Rev. 1

- PRIMOS

BUFFER CONTROL BLOCK

HASH THREAD

Logical dev | Record _|
ADDRESS

|. BRA of file record is in _[

Process no. Hash index

User count Flagbits

41 L

4 —f:

oo —J.

4+— —

| ADDRESS OF PTW _f
FOR BUFFER

i. LRU THREAD FOR _|

UNUSED BUFFERS
FLAG BITS 16

15

14

BUFFER MODIFIED

UPDATE MISSED

9.4 9 - 18

BUFLNK

BUFRA

BUFBRA

BUFUSR

BUFLAG

REKCRA

REKPOP

REKDCT

REKTYP

REKFPT

REKBPT

REKLVL

BUFPMP

BUFTHD

BUFFER IN TRANSITION

disk

record

header

File System

June, 1985

CEO810 - PRIMOS

BCBs are;

A chart:

on the

Unused

list?

Rev. 19.4

on the “unu

MANAGING BCBs

sed list"

in the Hash Table

or in both places

In the Hash Table?

no yes

 yes

June,

File System

1985

CE0O810 -

PRIMOS

FORM RACEY

BCS CSUFRA)

=RACZSY
?

PRTN

File

LOCATE.PMA

Q a SUFNEV
DESREM=

hans he 6 A hed 6 teed

SAGE COUNT

ANY USER

IN THIS &C8

IF UPDATE
MISSED, WRITE
OUT RECORD

1

| THREAS
8C8 ONTO

UNUSED LIST

 E UNTHREAD IT

ON UNUSED LIST

 IN HASH
|! ody
 TABLE AT HASH

ADORESS UNHASH FROM
HASH TABLE

|
in
 WIRE PAGE

wwoaTs ussor | UNTHREAD

CNT SST SUPNZy| UNUSEDLyeT

WRITE OUT
CLO RECS
IF NECESSARY

 .

|

4

REAO IN

NEW RECORD
UPDATE USACE

 NT SET BUFNEW

| “UNWLRE PAGE 1

HASH BCB

System

Rev.

19.4
June, 1985

CE0810 - PRIMOS File System

ASSOCIATIVE BUFFERS - CONFIG DIRECTIVE

Previously- there were always 64 associative buffers which resided

in segment l.

Now there can be any where from 8 to 256 associative buffers.

New CONFIG directive: NLBUF no

where n = the octal number of LOCATE buffers to use.

The buffers will reside in segments 50 - 53.

The 22 word Buffer Control Block (BCB) is wired at cold start.

The LOCATE buffer is only wired when it is in use.

The optimal number of associative buffers depends on the system.

If the LOCATE miss rate is greater than 10 percent,

NLBUF should be increased until %MISS is less than 10%
However, if PF/S is greater than 10, do not increase NLBUF.

Be sure that LM/S is high enough to make %MISS meaningful.

Rev. 19.4 9 - 21 June, 1985

CEO0810 - PRIMOS File System

Rev. 19.4 9 - 22 June, 1985

CEO0810 - PRIMOS File System

UNIT TABLES - Definitions

- A unit table (ut) is a list of pointers to unit table entries.

A hash table is a set of pointers to Linked lists of unit

table entries.

- A unit table entry (ute) desribes a file system object that is
currently in use via the file system.

A file system object is a data file, directory or access category.

These objects may reside on a local or a remote system.

Rev. 19.4 9 - 23 June, 1985

CE0810 - PRIMOS File System

UNIT TABLES

OLD METHOD

Per-User unit tables allocated/deallocated dynamically.

Constrains working set of unit table databases to what is
actually being used.

Vital statistics:

3247 file units available per system

guaranteed per user (default)
System unit per user (unit #0)
attach points (home,current,initial) per user
maximum “usable” file units per user“

W
G

F
e
0

NEW METHOD

Rev.

Per-user unit tables allocated/deallocated dynamically.

Maximum of 32768 units per user.

Unit table dynamically grows as more file units are requested.

Initially, get 38 file units:

-5 temporary attach
-4 como

-3 IAP

-2 home

-l current

O system

1-32 available for user

19.4 9 - 24 June, 1985

CEO810 - PRIMOS

pudcom.utblptr

Rev. 19.4

--->

UNIT TABLE

temporary attach

UTE pointer

initial attach point

UTE pointer

home attach point

UTE pointer

current attach point

UTE pointer

file unit 1

UTE pointer
file unit 32

UTE pointer

File System

June, 1985

CE0810 PRIMOS File System

A NON-ATTACH POINT UTE

Del 1 utcme based,

vstat like status bits,

del 1

Rev.

2

B
h

N
b

R
D

P
h

K
R

B
D

B
H

D
H

L
K

H
h

L
K

L
K

PL
P

P
o bra fixed bin (31),

cur ra fixed bin (31),
ldevno fixed bin,

rel_wordno fixed bin,

/* File/Directory Unit Table Entry */

relrecno fixed bin (31),
rwlock bit(8s),

access like access bits,

pos_in_parent fixed bin,

parent_bra fixed bin (31),

hash_ thread fixed bin,

quota_blkptr fixed bin,

dir blk_ptr fixed bin,

dam_idxra fixed bin (31),
spare fixed bin;

Status bits based,

2 modified bit (1),
2 sysuse bit (1),

2 shtbit bit (1),
2 noclose bit (1),

2 disk error bit (1),

2 tile_type bit (3),

2 openmode bit (8);

file type:

samftype by 0O,

damftype by l,

samsegftype by 2,

damsegftype by 3,
dir ftype by 4,

acldirftype by 5,
acccatftype by 6;

19.4

/*

/*

/*

/*

/*

/*

/*

/*

/* See below */
/* BRA of file */
/* current r.a. in file * /
/* logical device number * /
/* position within current record*/
/* ordinal record no. in file * /
/* Read/write concurrency lock * /
/* Accesses allowed on file */
/* position in parent * /
/* BRA of parent directory */
/* hash thread */
/* Quota block pointer */
/* Directory block pointer */
/* current r.a. in DAM index * /

VSTAT definition */

modified * /
open for system use * /
device shut down */

special file, not closed by C -ALL */
disk error occurred * /
Defined below * /
Accesses which file is opened with */

/*

/*

/*

/*

/*

/*

/*

F

D
ile types: SAM file */
AM file */

SAM segment directory */
D

D

A

A

AM segment directory */

irectory */
CL directory */
ccess category x /

26 June, 1985

CEO0810 - PRIMOS File System

AN ATTACH POINT UTE

dcl 1 dir_utcme based, /*
2 vstat like statusbits, /*

2 bra fixed bin(3l1), /*
2 cur ra fixed bin(31), /*

2 ldevno fixed bin, /*
2 rel_wordno fixed bin, /*
2 rel recno fixed bin(3l), /*
2 access, /*

3 ringl like access bits, /*
3 ring3 like accessbits, /*

2 pos in parent fixed bin, /*
2 parentbra fixed bin (31), /*

2 hash thread fixed bin, /*
2 quotablkptr fixed bin, /*
2 dirblk_ptr fixed bin, /*
2 acl_bra fixed bin (31), /* B

2 aclpos fixed bin, /* P
2 spare fixed bin;

Rev. 19.4 9

attach point Unit Table Entry */

See definition below * /
BRA */
current r.a. in file * /
Logical device number *«/
position within current record*/

ordinal record no. in file * /
Access rights x /

in ring l */
and ring 3 * /

position in parent x /
BRA of parent directory */
hash thread * /
Quota block pointer */
Quota directory block pointer */

RA of directory containing ACL */
osition of default acl in dir */

27 June, 1985

EOGHU | MP ERaS File System

9 - 28 June, 1985

CEO810 - PRIMOS File System

FLOW OF CONTROL IN THE FILE SYSTEM

Following this page

made to file system

o CALL SRCHS$$

o CALL PRWFS$

Rev. 19.4

is pseudo-code illustrating the sequence of calls

routines to create and write data to a file.

to create (and open) the file.

to write data to the newly created file.

9 - 29 June, 1985

CE0810 -

Rev. 19.4

PRIMOS

30

File System

June, 1985

CE0810 - PRIMOS File System

OVERVIEW OF FILE SYSTEM ROUTINES

Before covering the specifics of the file system routines called to

create a file and write data to that file, a general description of
each of the routines is presented below:

SRCHSS$S -

FIL-OP~ -

SGDSOP -

ADD-ENT -

ALC-REC -

GETREC -

PRWFSS$ -

LOCATE -

Rev. 19.4

opens, closes, deletes, and checks the existence of

files

opens a file and sets up the UTE after the initial

record(s) for the file are allocated and the directory

entry is created on disk

opens a segment directory subfile

adds a new entry to a directory once the initial

record(s) for the file are allocated

allocates initial record(s) for a new file (or

directory) and adjusts record pointers, as necessary

gets a free record in a logical partition by searching

the DSKRAT

moves data to and from files as well as performing file

positioning

keeps copies of disk records in memory in order to

minimize disk operations

9 - 31 June, 1985

CE0810 - PRIMOS File System

CREATING A FILE

SRCHSS;:

Call FILOP to create the file

FIL-OP:

If (caller supplied unit number)
Then do

If (unit number invalid)

Then return (ESBUNT)

If (unit in use)

Then return (ESUIUS)
End

Take FSLOK for reading

Take UFDLOK for writing
Call ADDENT to create the file (entry)

ADD-ENT:

If (user does not have add rights)

Then return (ESNRIT)

Call ALCREC to allocate disk record(s)

ALC-REC:

Call GETREC to get a disk record

GETREC:

Take RATLOK for writing

Hint = RAT word containing bit for UFD record
If (RAT bit representing hint >= RAT bit

representing the first available record on that
partition)

Then

If (free bit in RAT word holding hint bit)
Then do

Calculate RA

Call LOCATE to write modified RAT record
Release RATLOK

Return (RA)
End

Else

If (free bit in RAT record holding hint bit)
Then do

Calculate RA

Call LOCATE to write modified RAT record
Release RATLOK

Return (RA)

End

CE0810 - PRIMOS File System

CREATING A FILE (CONT“D)

GETREC (contd):
If (an available record somewhere in that partition)

Then do

Calculate RA

Call LOCATE to write modified RAT record

Calculate new first available record in partition

Release RATLOK

Return (RA)

End

Release RATLOK

Return (E$DISK_FULL)

ALC-REC (contd):
Call LOCATE to acquire buffer for new record

Initialize the record header in the BCB

If (DAM or SEGDAM)

Then do
Call GETREC to get the first data record

Call LOCATE to get the index record

Set DAM index to point to new data record

Call LOCATE to acquire buffer for new data record

Initialize the record header in BCB

End

Return (new RA)

ADD-ENT (contd):

Build memory image of file entry

Write new file entry to UFD record on disk

Update DTM of parent

Return (BRA)

FIL-OP (contd):

Set RWLOCK

Build memory image of UTE

If (DAM or SEGDAM)

Then (set first data record address as UTE.CUR_RA and lowest

level index record address as UTE.DAM_IDX_RA)

Allocate a UTE

Copy UTE image to UTE

Release UFDLOK and FSLOK

Return (unit)

SRCHSS (contd):
If (user did not supplied unit number)
Then (return (unit))

Return

Rev. 19.4 9 - 33 August, 1985

CE0810 - PRIMOS

CREATING A SEGMENT DIRECTORY SUBFILE

SRCHSS:

Call SGDSOP to create segment directory subfile

SGDSOP:

If (caller supplied unit number)
Then

If (not a valid unit number)

Then (return (ESBUNT))

If (unit is in use)

Then (return (ESUIUS))

Take FSLOK for reading

Take UFDLOK for reading

Take a SDLOK for writing
Call ALCREC to allocate a disk record

ALC-REC:;

Call GETREC to get a disk record

GETREC:

ALC-REC (contd):

return (BRA)

SGDSOP (contd):

Call SGD WE to write the BRA into segment directory
Build the UTE image in memory

If (DAM subfile)

Then (set first data record address as UTE.CUR RA and lowest

level index record address as UTE.DAMIDXRA)
Allocate a UTE

Copy UTE image to UTE

Release SDLOK, UFDLOK and FSLOK

Return (unit)

SRCHSS$ (contd):

If (user did not supplied unit number)
Then (return (unit))

Return

Rev. 19.4 9 - 34 June,

File System

1985

CEO810 - PRIMOS Fite System

WRITING DATA TO AN EMPTY FILE - PRWFS$

PRWFSS:

Take FSLOK for reading

If (file not open)
Then (return (ESUNOP))

Take a TRNLK for writing

Pick up the number of words of data to be written

Set the LOCATE key to RCD MODIFIED

Position file to appropriate record

Call LOCATE to read recoru into LOCATE buffer

Do While (there is data to write)

If (enough room in data record for all the users data)

Then do
Move the data from user’s buffer to the LOCATE buffer

Update UTE.REL WORDNO

End ~~
Else do

Move as much data as will fit into the LOCATE buffer

Call ADD REC to extend the file

Call LOCATE to acquire buffer for new record

Update UTE.CUR RA and UTE.RELWORDNO

Update number of words of data left to write

End

End

Call LOCATE to “forget” the LOCATE buffer
Release all locks

Return

CE0810 - PRIMOS File System

CLOSING AND DELETING A FILE

Since many of the operations involved in closing and deleting a file
Simply reverse opening and creating a file, only a list of the
routines is presented.

CLOSING

SRCHS$$ calls either CLOSFN or CLOSFU:

o CLOSFN closes a file by name by calling CLOSE.

o CLOS$FU closes a file by file unit by calling CLOSE.

o CLOSE closes either by name (ldev/BRA) or by unit number
and, in both cases, nullifies the UTE pointer in the users
unit table.

DELETING

SRCH$$ calls FILSDL to delete a file or a directory or SGDSDL to
delete a segment directory subfile:

o FILSDL attaches to the named object~s parent and searches for
the entry in the current directory. If the entry is found and
the user has delete rights, then the entry is removed from the
directory and all records associated with the entry are
released. Supporting routines called by FILSDL are:

o ENTINDIR to attach to parent,
o FIND ENT to find the entry in the parent directory,
o DEL_ENT to delete the directory entry, and write out a

vacant entry.

o FREEREC to release each disk record, Starting at the
BRA,and calling RTNREC to adjust the DSKRAT for each
freed record.

o SGD$DL reads the BRA of the entry, deletes the entry by
clearing the BRA, and then releases all records associated with
the subfile. Supporting routines called by SGDSDL are:

o SGD RE to read in the subfile”s BRA,
o SGDWR to write out the modified record containing the

cleared BRA of the subfile being deleted,
o FREEREC to release the disk records.

CEQ0810 - PRIMOS Segment Usage

Appendix A - Primos Segment Usage

Rev. 19.4 A - 1 June, 1985

E0810 = PRIMOS Segment Usage

PRIMOS SEGMENTS - DTARO

G 1/O map segment | | | [KS>SEGO. PMA]
i L/O map segment |

movitu
3 movutu

4 PIG, PCBs, fault handlers, checks, SEMCOM, vpsd [KS>SEG4. PMA]
5 ciug 0 gate segment . |
G ring Q@ kernel code and linkage
? TFLLIOB buffers (TFLSN1)

16 thirvrd segment for kernal code and linkage
Ll file system code and linkage (LCSEG$)
12 network system code and linkage. (NETSGS)
3 command Loop segment 1

14 PAGCOM, HDRBUF, config, RSAV, FIGCOM, MMAP, [SEG1L4.PMA]
tape-dump, warm/cold start code

15 second segment for kernal code and Linkage
16 comms code and Linkage
21 OMQ buffers (DMQBUF)
22 General Event Monitor buffers
23 SMLC map segment
24 SMLC map segment
25 SMI.C map segment
26 SMLC map segment
27 uctwork buffers (NETBFS$)
30 network queues (NETBHS)
31 network, SNA code
32 command loop segment 2
33 MMAP

34 uamed semaphores data area
35 logout notification queues, CPS
36. secand TFLIOB buffers (TFLSN2)
37 ACL data area
41 Command Loop segment 1
50 associative buffers (BUFSEG)
51 associative buffers
52 associative buffers
53 associative buffers
54 SNA (lateractive) data bases
60 TFLIOQR buffer segment #3
61 YVEIOBR buffer segment #4
62 T¥YLLOB buffer segment #€5
63 TELIOB butfer segment #6
67 SIK® code and linkage
70 RJE code and Linkage
él

° RIE bulfers
reo

Rev. 19.4 A - 2 June, 1985

CE0810 - PRIMOS

101

140

141

142

143

200
201

577
600

617
620

717

Rev.

PRIMOS SEGMENTS - DTARO (continued)

32 network mapped segments

DPTX code and linkage

additional DPTX code and linkage

(DPTCOM)
DPTX buffers

(PUDCMS)
mapped per-process ring 0 stacks

HMAPs/LMAPs or PMTs

dynamically allocated by GETSNS$

19.4 A - 3

Segment Usage

June, 1985

CE0810 - PRIMOS Segment Usage

PRIMOS SEGMENTS - DTAR1

2000

. shared code

2577
2600

. dynamically allocated by GETSNS

2677

CEO0810 - PRIMOS Segment Usage

PRIMOS SEGMENTS - DTAR2

4000

. user procedure and linkage, dynamic memory

4777

Rev. 19.4 A - 5 June, 1985

CE0810 -

6000

6001
6002
6003
6004
6005
6006
6007

6011
6012

6014

PRIMOS Segment Usage

PRIMOS SEGMENTS - DTAR3

user profile stuff, UPCOM, page fault (wired ring 0) stack,
SDTs for DTARS 2 and 3, mapped LOCATE buffer (717600)
abbrevs, shared Library linkage
CLDATA, ring 3 stack (PUSTAK)
unwired ring O stack
CPL work area

global variables
additional shared library linkage

(DYSNBG)
dynamically allocated by GETSN$

ROAM work area

dynamically allocated by GETSN$

Rev. 19.4 A - 6 June, 1985

CEO0810 -

Rev. 19.4

PRIMOS

Appendix B Lab Exercises

Exercises

June, 1985

CE0810 - PRIMOS

Directions:

EXERCISE 1

Exercises

Answer the following questions using VPSD, source code,
the RingO or Ring3 load maps, and what you have learned about Primos.

1)

2)

3)

4)

5)

Rev.

What is the name of the variable whose value
number of virtual segments available for the
this variable”s value in memory.

How many DTARO segments are enabled for this
(HINT: Locate DTAR in the map).

How many DTAR1 segments are enabled for this

indicates the maximum

entire system? Locate

revision of Primos?

revision of Primos?

To which segments from 0 to 50 in DTARO do you as a ring3 user
have access rights? If you do, what are the access rights?
(HINT: Locate SDWO in the map - this is the live SDT for DTARO).

What is done to the STLB before a page-out?

19.4 B - 2

Why?

June, 1985

CEQ0810 - PRIMOS Exercises

EXERCISE 2

Directions: Answer the following questions using VPSD, source code,

the RingO or Ring3 load maps, and what you have learned about Primos.

1)

2)

3)

4)

5)

6)

7)

8)

Rev.

How many DTAR2 segments are enabled for your process at this

revision of Primos? Can you access all those segments?

How many DTAR3 segments are enabled at this revision of Primos?

Locate and dump the Ready List in memory.

a) Who is on the Ready List?

b) Dump your level on the Ready List until you see your PCB. How

many processes are also on your level?

Chap your process down a level by changing the priority level in

your PCB. What happens, and why?

Ask the instructor to spawn the CPL program EXERCISE.2.5.CPL

from PI>CLASS as a phantom. Note the user number.

a) Locate the HOLD state semaphores in memory.

b) Monitor the queues and watch to see if the phantom process

appears on any of the queues.

c) Based on what you saw or didn“t see, what can you conclude

about your phantom process?

Spawn the program, PI>CLASS>EXERCISE.2.5.CPL, as a phantom from

your process. Access the phantom”s PCB abort flags and change

the value to 4. What happens?

Locate MAXSCH in memory. What is its value?

Locate your PCB in memory. Access the abort flags and change
the value to 10. What happens?

19.4 Be 3 June, 1985

CEO810 - PRIMOS Exercises

EXERCISE 3

Directions: Answer the following questions using VPSD, source code,
the

1)

2)

3)

Rev.

RingO or Ring3 load maps, and what you have learned about Primos.

Locate you process” IRB and ORB in memory.

Are any processes currently waiting for queue request blocks?

You are having a problem with loss of terminal data on input and
are unsure as to whether the problem is with your IRB or the tumble
tables. There is a counter that keeps track of the number of times
the tumble tables have overflowed since coldstart. Normally, the
counter is zero (i.e., no tumble table overflow). If the counter
is zero, then the problem is the IRB. If the counter is non-zero,
then you have a problem with the tumble tables, and possibly, with
your IRB as well. But, if the tumble table problem was eliminated
and the problem persisted, then it’s probably the IRB.
QUESTION: What is the name of this counter?

19.4 B - 4 June, 1985

CEQ810 - PRIMOS Exercises

EXERCISE 4

Directions: Answer the following questions using VPSD, source code,

1)

Rev.

the RingO or Ring3 load maps, and what you have learned about Primos.

Copy the program EXERCISE.4.1.FTN from PI>CLASS to your directory.
EXERCISE.4.1.FTN does a call to TNOU to print out “HELLO” at the
terminal and then calls EXIT. You are going to verify that the
link to TNOU is dynamically snapped at runtime. Compile
EXERCISE.4.1.FTN with -64V and -EXPLIST. EXPLIST will generate an
expanded listing of the FTN statements and the PMA instructions
generated by each one. Do a normal load, but be sure to get a map.
Spool off both EXERCISE.4.1.LIST and the runfile map. Then invoke
the runfile by typing SEG EXERCISE.4.1 1/1. This causes VPSD to be
loaded with your runfile, as well.

a) What is the offset in EXERCISE.4.1°S link base to which the

2-word PCL instruction, generated by the call to TNOU, is

pointing.

b) What is the contents of the LB location you found in (a)? This
will be a 2-word address so make sure you get both the segment

number and the word offset.

c) Go to the address you found in (b) and display its contents
and the contents of the next couple of locations. What are

you looking at?

d) Set a breakpoint on the PCL instruction for the CALL EXIT

statement at location 1006 in the PB. Then execute the program.

e) You will see HELLO and on the next line, an indication that the

breakpoint at 1006 has been reached (i.e., you have executed

the PCL for TNOU and are “waiting” on the PCL instruction for

the call to EXIT. Now, go back into the link base and access

the same location you accessed in (b). What is the address you

see now? What has happened?

£) Continue execution of EXERCISE.4.1.

EXERCISE 4 IS CONTINUED ON THE NEXT PAGE.

CE08

2)

Rev.

10 - PRIMOS Exercises

EXERCISE 4 (continued)

Copy the file EXERCISE.4.2.CPL from PI>CLASS to your directory.
EXERCISE.4.2.CPL compiles and loads EXERCISE.4.2.F77. When
EXERCISE.4.2.CPL terminates execution, issue a RLS -ALL command
to make sure you clean up your ring3 stack. Then execute
EXERCISE.4.2.SEG. Open up a como file and issue the DMSTK command,
specifying -ALL and -ON UNITS as arguments. Then close and spool
your como file. ~

a) Using the RING3 and RINGO maps, determine which routines are
represented by the stack frames in the DMSTK output in
your como file.

b) Based on (a), what sequence of events occurred?

c) To check your answer to (b), copy EXERCISE.4.2.F77 and
FAKE.PMA from PI>CLASS to your directory. Examine.

19.4 B 6 June, 1985

CE0810

Rev.

PRIMOS Exercises

EXERCISE 5

Execute the RLS -ALL command. Then execute the LD command on a

directory of your choice.

a)

b)

c)

d)

e)

£)

Extra

Locate the starting address of CLDATA in the ring 3 map.

Copy CLDATA.INS.PMA to your own directory. Remove the NLST

pseudo-op (about the fifth line), save and assemble. Examine

CLDATA.INS.LIST and locate the offset from the beginning of

CLDATA to SMTLPT(2). Add that offset to the address of

CLDATA found in (a) above. This is the address of your

process” first SMT block.

Find the SMT for LD. (Hint: look at the pathname field).

How many DTAR2 segments are used for LD’s procedure code and

linkage?

Where in DTAR2 is LD”s procedure and linkage?

Verify your answers by executing LE LD.RUN -DET.

Execute LD on a large directory such as PRIMOS>KS. Hit “P.

Execute the LD command again.

a)

b)

Determine the DTAR2 segment(s) used for the second

invocation’ s linkage.

Locate the first invocation’s saved linkage segment number

(Hint: look at the layout of SMTACTIVEENT in

PRIMOS>INSERT>EPFFMT.INS.PLP).

19.4 B - 7 August, 1985

CE0810 -

Rev. 19.4

PRIMOS Exercises

August, 1985

CE0810 - PRIMOS Miscellaneous

Appendix C - Miscellaneous

Rev. 19.4 Cc - 1 June, 1985

CEQ810 -

PPNLST

NSEG

PAGCOM

NUSEG

PFSW

USRLEV

PASSET
PABORT
PAGSFS

Rev. 19.4

READING THE SYSTEM LOAD MAPS

PRIMOS

seg seg

num offset

| |
V V

0014 000567

0014 000614

0014 000614

0014 000615

0014 000616

0014 000625

A(ECB)

|
|
V

OO0ll 123732

0006 040744

0006 033403

OTHER

COMMON

COMMON

COMMON

OTHER

OTHER

STARTING

PB

V
0011
0006
0006

120732
037672
033242

NUM OF

WORDS OF

STACK

|
V

002534

000040

000102

Miscellaneous

NUM OF LB
WORDS OF SETTING
LINKAGE

|
V V

000212 0011 123312
000222 0006 040322
000041 0006 033000

June, 1985

CEQ0810 - PRIMOS Miscellaneous

VPSD COMMAND SUMMARY

SN segment-number -- sets segment number

A [:format-symbol] [value] [:new-format-symbol]| terminator --

accesses a location relative to current segment

format-symbol value terminator

| sA ASCII | n absolute | CR +1
| 3B Binary * current , *+1
| 3D Decimal | | *+n relative * *-1
| :H Hexadecimal | | *-n relative | -nCR *+n
| 30 Octal | --nCR *-n
| 3S Symbolic | / return, remember *

? return, remember *

! return, forget *

Q -- quit from VPSD and return to command level

D start-offset ending-offset [:new format symbol] -- dump a block of
locations relative to current segment

B offset -- set a breakpoint at specified offset relative to current

segment

EX -- execute a runfile from the start

PR -- proceed with execution from current breakpoint

Rev. 19.4 c - 3 June, 1985

CE0810 - PRIMOS Miscellaneous

VPSD DEMONSTRATION

OK, FTN HELLO -64V -EXPLIST

0000 ERRORS [<.MAIN.>FTN-REV19.2.2]

OK, SEG -LOAD

[SEG rev 19.2.2]

$ LO HELLO
$ LI
LOAD COMPLETE
$ SA
$ MA HELLO.MAP

$ Q

OK, SEG HELLO 1/1 /* “1/17 LOADS IN VPSD
/* “$7 IS VPSD“S PROMPT

SSN 4001 C/R /* SN = SET THE SEGMENT NUMBER TO GOO1

$A 1000 C/R /* A = ACCESS LOCATION 4001/1000
4001/ 1000 PCL% LB%+ 422,* C/R /* THE DEFAULT DISPLAY MODE IS SYMBOLIC
4001/ 1002 AP 1010,S C/R-—s /* TO DISPLAY THE NEXT LOCATION, SIMPLY
4001/ 1004 AP LBZ+ 400,SL C/R /* TYPE A CARRIAGE RETURN.VPSD DOES NOT
4001/ 1006 PCLZ% LBZ+ 424,* C/R /* UNDERSTAND THE “ERASE~ CHARACTER AND
4001/ 1010 LDA# 305,*X C/R /* WILL GIVE YOU AN ERROR (“E~) AND
4001/ 1011 ANA# 314,*X C/R /* THE PROMPT. YOU MUST RETYPE THE LINE

4001/ 1012 ANA# 653,*X C/R

4001/ 1013 JST# 240,*
4001/ 1LOL2 ANA# 653,%*X
4001/ 1LOL1 ANA# 314,*xX
4001/ 1010 LDA# 305,*xX
4001/ 1007 DAC 424 ~
4001/ 1006 PCL% LB%+ 424,* *
4001/ 1005 AP SB%+ 61432 *
4001/ 1004 AP. LB%+ 400,SL*
4001/ 1003 E32I ~* ~
4001/ 1002 DAC 100 *

/* TO ACCESS THE PREVIOUS LOCATION, TYPE
/* THE CAROT (*) CHARACTER INSTEAD OF A
/* CARRIAGE RETURN.

|
>
r
o
l

4001/ 1001 DAC 422 7% /* TO CHANGE THE DISPLAY MODE FROM
4001/ 1000 PCL% LB%+ 422,* :0 C/* SYMBOLIC TO OCTAL, TYPE ~:07
4001/ 1002 100 :D C/R /* DECIMAL REPRESENTATION, TYPE ~:D~
4001/ 1003 00520 :H C/R /* HEX REPRESENTATION, TYPE “:H’
4001/ 1004 02C0 :5 C/R /* TO RETURN TO SYMBOLIC, TYPE “:S87
4001/ 1005 pac 400 / /* TO RETURN TO THE “~$° PROMPT, TYPE

/* “/° (WITH NO CARRIAGE RETURN).

CEO810 - PRIMOS

/*

/*

/*

/*

/*

$D 1000 1010 :0 C/R
4001/ 1000 61432
4001/ 1010 144305

SSN 4002 C/R

SA 0 C/R
4002/ 0 5 C/R
4002/10 +7
SA 1 C/R ~
4002/ 1 0 1 C/R
4002/ 2 4001 *
4002/ 11 ~
4002/ 2 4001 /

SSN 4001 C/R

$B 1006 C/R

Miscellaneous

VPSD DEMONSTRATION (continued)

TO DUMP A SERIES OF LOCATIONS, ISSUE

THE “D“ DIRECTIVE AND SPECIFY BOTH

THE STARTING AND ENDING LOCATIONS.

YOU CAN ALSO SPECIFY THE DISPLAY MODE.

8 LOCATIONS PER LINE IS DISPLAYED.

422 100 1010 1300 400 61432 424

/* SWITCH FROM SEGMENT 4001 TO 4002

/* ACCESS LOCATION 4002/0

/* TO CHANGE THE CONTENTS OF A LOCATION

/* SIMPLY ACCESS THE LOCATION. WHEN THE

/* LOCATION IS DISPLAYED, TYPE IN THE NEW

/* VALUE. IN THE EXAMPLE, LOCATION

/* 4002/1 WAS ACCESSED. ITS ORIGINAL

/* VALUE WAS 0. IT WAS CHANGED TO BE A l.

/* SWITCH BACK TO SEGMENT 4001

/* SET A BREAKPOINT AT LOCATION

/* 4001/1006. THE PURPOSE OF A

/* BREAKPOINT IS TO HALT PROGRAM

/* EXECUTION AT A PARTICULAR LOCATION

/* SO THAT MEMORY CAN BE EXAMINED.

SEX C/R /* TO START PROGRAM EXECUTION,TYPE “EX”

HELLO /* “HELLO”~ IS PRINTED OUT BY THE

/* PROGRAM. THE NEXT LINE TELLS US

/* THAT EXECUTION IS HALTED AT THE

/* BREAKPOINT WE SET ABOVE.

4001/ 1006: PCL% LBX+ 424,* A=100000 B=212 X=0 K=14100 R=0 Y=26430

SPR C/R /* TO CONTINUE EXECUTION, TYPE “PR”

OK,

Rev. 19.4 Cc - 5 June, 1985

CE0810 -

Rev. 19.4

PRIMOS Miscellaneous

June, 1985

CEO0810 - PRIMOS

Rev. 19.4

Appendix D - Acronyms

Acronyms

June, 1985

CE0810

ACRONYM

ALU
AMLC
ARGT
AST
BMA
BMC
BMD
BPA
BPC
BPD
BRA
CALF
CF
CLB
CTI
DFU
DMA
DMC
DMQ
DMT
DP
DSKRAT
DTAR
DTB
EPF
FADDR
FF
FCODE
FIM
HMAP
Ics
LOTLB
IRB
LB
LDEV
LMAP
LTD
LTE
MMAP
MPC
ODB
ORB
PB

Rev. 19.4

PRIMOS

ACRONYMS

MEANING

Arithmetic Logic Unit

Asynchronous Multi-Line Controller
Argument Transfer

Assigned Segment Table

Bus Memory Address

Bus Memory Control

Bus Memory Data

Bus Peripheral Address

Bus Peripheral Control

Bus Peripheral Data

Beginning Record Address

Call Fault Handler

Condition Frame

Critical Information Block

Character Time Interrupt

Dynamic File Units

Direct Memory Access

Direct Memory Channel

Direct Memory Queue

Direct Memory Transfer

Diagnostic Processor

Disk Record Availability Table

Descriptor Table Address Register

Data Template Block

Executable program Format

Fault Address

Fault Frame

Fault Code

Fault Intercept Module

Hardware Map

Intelligent Controller Subsystem

I/O Table Lookaside Buffer
Input Ring Buffer

Linkage Base

Logical Device Number

Logical Map

Linkage Template Descriptor

Linkage Template Entry

Memory Map

Micro Programmable Controller

On-Unit Descriptor Block

Output Ring Buffer

Procedure Base

Acronyms

SECTION COVERED

Hardware

Device

Procedure

EPFs

Hardware

Hardware

Hardware

Hardware

Hardware

Hardware

File System

Exceptions

Exceptions

EPFs

Device

File System

Device

Device

Device

Device

Hardware

File System

Memory

EPFs

EPFs

Exceptions

Exceptions

Exceptions

Exceptions

Memory

Device

Memory

Device

Procedure

File System

Memory

EPFs

EPFs

Memory

Hardware

Exceptions

Device

Procedure

June, 1985

CE0810

ACRONYM

PCB

Pe-ctr

PCL

PIC

PIO
PMT
PPA
PPB
PPN
PRTN
QRB
RA
RF
ROIPQNM
SB
SDT
SDW
SMT
SOc
STLB
SWI
UART
U-CODE
URC
UTE
VCIB
VCP
VMFA

Rev. 19.4

PRIMOS

ACRONYMS (contd)

MEANING

Acronyms

SECTION COVERED

Process Control Block

Program Counter

Procedure Call

Phantom Interrupt Code

Programmable Interval Clock

Programmed Input/Output
Page Map Table

Pointer to Process A

Pointer to Process B

Physical Page Number

Procedure Return

(Disk) Queue Request Block
Record Address

Register File

RO Input Queue Notification Mechanism

Stack Base

Segment Descriptor Table

Segment Descriptor Word

Segment Mapping Table

System Option Controller

Segment Table Lookaside Buffer

Software Interrupt

Universal Asynchronous Receive Transmit

Microcode (firmware)

Unit Record Controller
Unit Table Entry

Very Critical Information Block

Virtual Control Panel

Virtual Memory File Access

Process

Hardware

Procedure

Device

Device

Device

Memory

Process

Process

Memory

Device

File System

Hardware

Device

Procedure

Memory

Memory

EPFs

Hardware

Memory

Exceptions

Device

Hardware

Hardware
File System

EPFs

Hardware

Memory

June, 1985

mt 8
eoER IA ~*~ MOS Acronyms

June, 1985

CEO0810 - PRIMOS Reading

Appendix E - Reading List

Rev. 19.4 E - 1 June, 1985

CEO0810 - PRIMOS

READING LIST

SG-194 Primos Student Guide

DOC9473-1PA

DOC3621-190P

DOC6904-191P

Hardware Features

Memory Management

Process Management

Device Management

Procedure Management

Exception Handling

Command Environment

File System

Rev. 19.4

DOC9473-1PA

DOC6904-191P

DOC9473-1PA

DOC6904-191P

SG-194

DOC9473-1PA

bDOC6904-191P

SG-194

DOC9473-1PA

DOC6904-191P

SG-194

DOC9473-1PA

DOC6904-191P

SG-194

DOC9473-1PA
DOC6904-191P
DOC3621-190P

SG-194

DOC6904-191P

SG-194

DOC3621-190P

DOC6904-191P

SG-194

Reading

System Architecture Reference Guide
Subroutines Reference Guide

Prime 50 Series Technical Summary

N
m
&

t
b

r
m ‘ i
)

W
N

b
o

_
— ‘ ~
~

©

3

10:3-5; Lll:l-17

5; 10:4-5
4

i
n

G
O

O
o

t C
O

10:6-16

8:7-10; 10:4

22:1-6,(7-15),

16-24,25-43) ,43-53

6

9:4-10, (11-12)
7

w
o
m

e
H

e
o

6
8
f

P
r

a
|

o
S
) >

June, 1985

	Front cover
	Title page
	Copyright page
	i
	ii
	iii
	iv
	1-1
	1-2
	1-3
	1-4
	1-5
	1-6
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	2-8
	2-9
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	3-1
	3-2
	3-3
	3-4
	3-5
	3-6
	3-7
	3-8
	3-9
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	4-1
	4-2
	4-3
	4-4
	4-5
	4-6
	4-7
	4-8
	4-9
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	5-1
	5-2
	5-3
	5-4
	5-5
	5-6
	5-7
	5-8
	5-9
	5-10
	6-1
	6-2
	6-3
	6-4
	6-5
	6-6
	6-7
	6-8
	6-9
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	7-1
	7-2
	7-3
	7-4
	7-5
	7-6
	7-7
	7-8
	8-1
	8-2
	8-3
	8-4
	8-5
	8-6
	8-7
	8-8
	8-9
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	9-1
	9-2
	9-3
	9-4
	9-5
	9-6
	9-7
	9-8
	9-9
	9-10
	9-11
	9-12
	9-13
	9-14
	9-15
	9-16
	9-17
	9-18
	9-19
	9-20
	9-21
	9-22
	9-23
	9-24
	9-25
	9-26
	9-27
	9-28
	9-29
	9-30
	9-31
	9-32
	9-33
	9-34
	9-35
	9-36
	A-1
	A-2
	A-3
	A-4
	A-5
	A-6
	B-1
	B-2
	B-3
	B-4
	B-5
	B-6
	B-7
	B-8
	C-1
	C-2
	C-3
	C-4
	C-5
	C-6
	D-1
	D-2
	D-3
	D-4
	E-1
	E-2

