PRIME

PRIMOS Operating

System Specialist

Revision 19.4

CE0810 - PRIMOS

PRIMOS Operating
System Specialist

Revision 19.4

Date: August, 1985

Revision: 5

Copyright (c¢) 1985, Prime Computer,

Rev. 19.4

Inc.,

Natick,

MA 01760

Title Page

August,

1985

CE0810 - PRIMOS Title Page

Copyright (c) 1985 by
Prime Computer, INc.
Prime Park
Natick, MA 01760

This document discloses subject matter in which Prime Computer, Inc.
has proprietary rights. Neither receipt nor possession of this
document either confers or transfers any right to copy, reproduce, or
disclose the document, any part of such document, or any information
contained therin without the express written consent of a duly
authorized representative of Prime Computer, Imc.

The information in this document is subject to change without notice
and should not be construed as a commitment by Prime Computer, Inc.

Prime Computer, Inc. assumes no responsibility for any errors which

may appear in this document.

PRIME and PRIMOS are registered trademarks of Prime Computer, Inc.

All correspondence on suggested changes to this document should be
directed to:

Prime Technical education Center

Prime Computer, Inc.

Prime Park

Natick, MA 01760

Rev. 19.4 August, 1985

CE0810 - PRIMOS

Section 1 --

TABLE

OF

Table

CONTENTS

Hardware Features

Section 2 --

PRIMOS Operating System
Microcode-Based CPU
Central Processor Umit

Register File

e s 00 0 0

Memory Managemen

Section 3 --

Cache Functional Diagram .

Interleaving

Segmentation ...ceececenes
Effective Address Format .

Ring Number

Memory Management Techniques
Address Translation

® e o 0 0 65 00000 0

Full Address Translation .
DTAR - Descriptor Table Address
SDW - Segment Descriptor Word

Page Map Entries
The Cache
The STLB ...e0ewe
The IOTLB
Read Memory Acces
Page Fault
Page Map Entries
Page Map Entries

s

Page in Memory

LY

Page

.

e o 0 08 0o 0

L)

e o 0 0 0 0 0 0

. o0

in

MMAP ® 8 0 0 0 0 0 0 0 00 00050080 0600

Primos Paging Algorithm

.

Process Management

Rev.

State Diagram ...cccecceee

Process Exchange
Wait List
Simple Lock
Ordered Locks ...
System Locks

.

e e o 0

Process Control Block

Priorities

Ready List Examples ..
State Diagram ..eeeeo.
Scheduling of Users ..

Backstop Process
Interactive User

Compute Bound User

19.4

o o 0 o

User Priorities and Time-Slice
MAXSCH ® & ® & 5 & 5 & & 5 O 0 P O O O O 00000

Memory
Page not in Memory

of Contents

® 065 0060 0060 00 000000000000

June,

-
[
[C 3 X

]
HFEO~NOUPWN

1
(=]

MR
1
P-I

)
1

-

SN

2-15
2-16
2-17
2-18
2-19
2-20
2-21
2-22

[]
-0 NP N

o

WWLWWLWLWLWLWWLWLWWL
] 1
N
&

]
NN
~N b

3-28
3-29
3-30
3-31

1985

PRIMOS

TABLE OF CONTENTS

(CONT”D)

Section 4 -- Device Management

Operation ...oeeeeceneess
Transfers .oeeeeesececessn
Transfers .c.ieeceeeesnonees
Transfers soeeeeececseens
Transfers ...eeeesnenesae

External INnterrupts ..e.esoees
Phantom Interrupt Code

Clock Process .seeeaeesees
The QMALC Driverce4..
Line Configuration Table .
LWORD Table .eveieeensecens
QAMLC Block Diagram
ICS Block Diagram
LIOCOM ...viirennncnnnncs
Disk I/0 Wait Time +.¢.0a.
Disk Queue Request Blocks
Disk 1/0 Seek Time

Disk I/0 Rotation and Transfe

DISKIO.PMA0ivveeecns

Section 5 -- Procedure Management

The User Register Set
Procedure/Link/Stack Architecture
KEYS ittt eescooncconnnnnses
Subroutine Calls .eeecoosoeas
The Entry Control Block
Stack Header and PCL Stack Frame
The PCL Mechanism e...seus0a.

Section 6 =-- Exception Handling

Fault ..o oeseesecsccsancnosses

Fault Processing ..cev00e...
Fault Handling00...
The Fault Frame - FFH
Ring 0 Fault Handlers

Process Fault¢0...

Software Interrupt Handling

Other Ring 0 Faults
Ring 3 Faults ..eeevvnneanens

Direct Entrance Calls
Condition Mechanism .,..00000040
Definitions ...veeveerecconccses
The Extended Stack Frame Header
The On-Unit Descriptor Block - ODB
The Condition Frame Header
DMSTK Output ..ecooecennccocses
LOGOUTS Condition ..eeevesccecoccences

C'Canout ® S 8 0 8 % % P 9 P PO O 0 e S I e A S 2 S N ST S S S S S S S S LSO L0 Seee eo

L]

.

CFH

Contents

EBE RN SR N K
]
=0 oW

]
Lol Y > N < R O T o U ()

(93]

]
N

oo OOCO OO
] 1
[
[=1NF]

!
N
-

6-22
6-23
6-24
6-25
6-31
6-33

1985

CE0810 -

Section 7

PRIMOS

TABLE OF CONTENTS (CONT”D)

-- Command Environment

Exte
Buil

nded Features ..coececosecccccccss
ding the Command Line ..c¢cececeee

Command Line Data - CLDATA ..cvceeeee

Stan

Section 8

dard Command Processor - STDS$CP .

-- EPFs

Stat
Exec
EPF
The
The
The
The
The
The
The
SMT
SMT
The
The
The
Movi

Section 9

ic vs Dynamic Runfiles ...eo0ccee
utable Program Format - EPF
Logical Structure ceeccececccosase
Very Critical Information Block -
Critical Information Block - CIB
Linkage Description .c..ceseeocess
Life of an EPF ...cicieicecrencnns
Active Segment Table - AST
EPF Mapping Phase - EPF$MAP.PLP .
Segment Mapping Table - SMT
Format ..iceeeeeccsccscscacncncscs
Address Table .ueceeeeescesscaconncs
Allocation Phase - EPF$ALLC.PLP ,

Initialization Phase - EPF$INIT.PL

Invocation Phase - EPF$INVK.PLP .
ng Between Command Levels0.

-- File System

Rev.

Phys
R
D
B
D
S
D
M
S

ical Disk Structures ..ccoceeeosce
ecord Header Format ..coceeecocoe
SKRAT FOormat .ccccececeossscccccsscs
adspot File Format «.ceecveecescce
irectory Structure .eeeoececcocess
AM Files .cicececcscccccsosnconnsns
AM Files ciesevscsssssoscscccocscns
ultilevel DAM Files ¢eeescoeccccsce
egment Directory Format

Directory Structure

Normal EDETY .ceeceeoscccsoacccos
ACL Position sccccevescccccncns
ACL ENEtTY ccceeeocesscscooccccss
ACAT EDNtry eceecceesccssssccccas

LOCATE

T
B
M
L
c

19.4

he LOCATE Mechanism ..cccecccecesce
uffer Control Block .ceecevcecscens
anaging BCBS .ccceeccccsccscsconse
OCATE.PMA ..t cceeeeccococnscnsocnse

onfig Directives ceeeeeecccrscsocvscsncas

iii

Table of Contents

August,

NN~
1
cCooNuL N

]
0o EWN

- O

00 0o 00 Co 00 0o 00 00 0o 0o 00 o 00
]

]
s LN

8-15
8-16

(¢]
]
[
~

(Y- JRVo IRV RRVRRY - RV JRTe BV Y
]

[l V-2 e B R R R VURY

=~ O

O O
'

-
w N

9-14
9-15

9-17
9-18
9-19
9-20
9-21

1985

CE0810 - PRIMOS Table of Contents

TABLE OF CONTENTS (CONT”D)

Section 9 -- File System (Cont~d)
Unit Tables

Definitions * e e s st s e ettt e et te s e st e et esecscenssensees 9=23
UNLIt TaADleS tueeueueennteeoenconsoenssnceoceoosoesessnnass 9-24
Data Structures D T e A
A Non-Attach Point UTE St e e e st et s s et e s essssssnessnsses 926
An Attach Point UTE Sttt e s es s e s ee s e et s et ses et eessennnee 9-27

Flow of Control in the File SYStem «veeeeueneeeosonnneneneeennns 9-29
Overview of File System RoOUtiNeSueeeeevoeesnooceenns 9=30
Creating @ File .ueiiuuieioneinooeeenneeoenessossononnnnees 9-32
Creating a Segment Directory Subfile ..eeeeeeeeeeeeeeeees 9=-34
Writing Data to an Empty File - PRWFS$S +vvveevceoceeves 9-35
Closing and Deleting a File ce e e sessesessesssessenssssces 9=36

Appendices
Appendix A -- PRIMOS Segment Usage covevevonsancnes
Appendix B == Lab EXE@ICiS€S euveeeeeeeeconooecenonens
Appendix C == MiSCellaBeouUS ..uveeseseeoeonennns
Reading the System Load Maps ..eeeeecsconceess
VPSD Command SUMMATY «eveevoeeeennsn
VPSD DemonsStration e.eeeeeeeeeensoeenes
Appendix D -- Acronyms D
Appendix E == Reading LiST ueueueseuonoeoeooeoennensn

L]
L]
L]
.
HOOOO O W >
' [
WK = e

¢ o0 000

Rev. 19.4 iv June, 1985

CEO8L10 -

Objectives:

Rev.

o
o
o

19.4

describe
describe
describe

Hardware

Section 1 - Hardware Features

student will be able to
the peripherals and controllers on a Prime system.

the major components of the CPU.
the contents and use of the register file groups

1 - 1 June,

1985

R it o> O O

CEO810 - PRIMOS

Hardware
PRIMOS OPERATING SYSTEM
The chief features of the Primos operating system are:
L. INTERACTIVE - up to 255 user processes
(l4+ interrupt processes)
2. 54 M3 maximum private virtual address space per user
3. @:zevs share the resources of the system
High speed memory
Programmable Interval Clock
Peripherals and controllers
System Console
Disk Drive(s)
AMLC(s)/1CS1(s)/1CS2(s)
SHMLC(s)/MDLC(s)
Ring Node Controller (PNC)
Magnetic Tape Drive(s)
Line Printer(s)
Rev. 19.4 | 1 - 2 June, 1985

CE0O810 - PRIMOS Hardware

"Microcode-Based CPU

|

>’\ NSy

1

]
oae -

]

—

— =]

|

\,17
Rev. 19.4 1 - 3 June, 1985

CE0810 -

Rev.

PRIMOS

CENTRAL PROCESSOR UNIT

CPU
CONTROL UNIT
SEQUENCER CACHE
MEMORY
R.F. ALU STLB

19.4

Hardware

June,

1985

2. -O\Ulf .»Nl

C o
-

CE0810 - PRIMOS Hardware
REGISTER FILE
MICROCODE SCRATCH DMA CURRENT REGISTER
HIGH LOW HIGH LOW HIGH LOW
0 0 |GRO:0OLT2
1 1 [GR1:PTS
2 2 |GR2(1,A,LH)| (2,B,LL)
3 3 [GR3 (EH) (EL)
4 4 |GR&
5 5 [GR5 (3,S,Y)
6 6 |GR6
7 7 [GR7 (0,X)
10 10 FARO (13)
11 11 FLRO
12 12 |FAR1/FAC(4) (5)
13 13 [FLR1/FAC(6)
14 14 PB
15 15 SB (14) (15)
16 16 LB (16) (17)
17 17 XB
20 20 DTAR3 (10)]
21 21 DTAR2
22 22 DTAR1
23 23 DTARO
24 24 KEYS | MODALS
25 25 OWNER
LREGSET CHKREG 26 26 FCODE (11)
DSWPARITY 27 27 FADDR (12)
PSWPB 30 30 CPU TIMER
PSWKEYS 31 31 MICROCODE SCRATCH
PPA:PLA PCBA 32 32 "
PPB:PLB PCBB 33 33 CPNUM
DSWRMA 34 34 "
DSWSTAT 35 35 "
DSWPB 36 36 "
RSAVPTR 37 37 "
Rev. 19.4 - 5 June, 1985

CE0810 -

Rev.

19.4

PRIMOS

Hardware

June, 1985

CE0O810 - PRIMOS Memory

Section 2 - Memory Management

Objectives: The student will be able to

o describe how cache reduces the effective memory access time
for memory reference instructions.

o explain how memory interleaving speeds up sequential memory
access and increases the cache hit rate.

o distinguish between virtual and physical memory.

o describe the address translation hardware mechanism.

o describe how cache and the STLB are used to access a
word of data.

o explain how a page fault is generated and handled.

0o examine memory management-related variables and data
structures in memory using VPSD.

0 answer memory management-related questions by examination of
source code.

Rev. 19.4 2 - 1 June, 1985

CE0810 -

Rev.

19.4

PRIMOS

CACHE FUNCTIONAL DIAGRAM

MAIN
MEMORY

CACHE
MEMORY

PROCESSOR
EXECUTION UNIT

Memory

June,

1985

CE0O810 - PRIMOS

Rev.

VOO O BN O

\

MOS
Memory

EVEN
Addresses

VO N U

\

MOS
Memory

ODD
Addresses

19.4

Cmmm =

«HOBO X

{ommw

INTERLEAVING

Memory

mIToOo>» o0

CPU

June,

1985

CE0O810 - PRIMOS Memory

SEGMENTATION

Virtual Memory is divided into variable length SEGMENTS (64K words
max) 4096 SEGMENTS define 512 MB of Virtual Memory. The Virtual

address space is divided into 4 areas (DTARs), each area consisting of
1024 (“2000) segments.

CURRENTLY ENABLED

“17177

PRIVATE PER USER (SYSTEM)
“6000

“5777

PRIVATE PER USER (USER)
74000

737717

SHARED BY ALL USERS
“2000

“1777

EMBEDDED OPERATING SYSTEM
“0000

Rev. 19.4 2 - 4 June, 1985

CE0810 =~ PRIMOS Memory

EFFECTIVE ADDRESS FORMAT

PROGRAM INSTRUCTIONS GENERATE AN EFFECTIVE ADDRESS (EA).

- 2 Bits RING NUMBER (defines privileges)
- 12 Bits SEGMENT NUMBER
- 16 Bits WORD NUMBER (within SEGMENT)

1 2 3 4 5 16 17 32
1 [RING] | SEGMENT NO. | WORD NUMBER |

The EFFECTIVE ADDRESS (28 BITS) is mapped to PHYSICAL MEMORY.

- 23 Bits of PHYSICAL ADDRESS
- Up to 16M Bytes of PHYSICAL MEMORY.
- 22 Bits PHYSICAL ADDRESS

- Up to 8M Bytes of PHYSICAL MEMORY.

Rev. 19.4 2 - 5 June, 1985

CEO810 ~- PRIMOS Memory

RING NUMBER

There are 3 RINGS which define the privileges of access to the
SEGMENT.

RING 0 is the most privileged and allows unrestricted
access to all segments. Ring 0 is the only ring
that can execute restricted instructions.

PRIMOS rums in RING O.
RING 1 Not currently used by software
RING 3 The least privileged.

USERS rum in RING 3.

Hardware defines access rights of:
Inner ring accessing memory in an outer ring.

Outer ring accessing memory in an inner ring.
GATE access

The SHARE command for DTAR 1

Rev. 19.4 2 - 6 June, 1985

CE0810 - PRIMOS Memory

MEMORY MANAGEMENT TECHNIQUES

The total number of segments available is currently 8192.
All 8192 segments cannot be contained in physical memory.
Virtual Memory is divided into two parts:
1) the part in physical memory
2) the part on the paging disk
Certain information is too critical to be on the paging disk,
it is "WIRED" ("LOCKED") into physical memory.
At COLD START, PRIMOS "wires" critical information, this area will
grow as PRIMOS requires certain per-user data to be wired.
When user segments are allocated, paging space is allocated.

Programs generate VIRTUAL ADDRESSES.

The VIRTUAL ADDRESS is translated (mapped) to a main memory address.

If the required physical address is resident within physical memory,
the access may proceed without interruption.

If not in physical memory, a PAGE FAULT will occur.

When a PAGE FAULT does occur, the program is suspended while the
required page is moved from the PAGING DISK into main memory.

This is called PAGING IN.

If there is no physical memory page available, PRIMOS will use a
Approximately-Least-Recently-Used algorithm to determine which
page in physical memory will be PAGED OUT to allow space for the
in-coming page.

Rev. 19.4 2 - 7 June, 1985

CE0810 - PRIMOS

TTTTTTTTT
111111111

USER
VIRTUAL
MACHINE

Rev., 19.4

--a>

-—e>

MAPPING
LOGIC

MEMORY MANAGEMENT

--=>

|--->

AV

VAR

REAL
MEMORY

PAGE-0OUT

PAGE FAULT (Access then proceeds)

VAV

PAGING
DISK

June,

Memory

1985

CE0810 - PRIMOS Memory

ADDRESS TRANSLATION

Every VIRTUAL ADDRESS is translated (mapped) to a physical address by
accessing the STLB (Segmentation Translation Lookaside Buffer). The
STLB holds the most recent virtual to physical address translations.
When the STLB does not have a valid entry for the virtual address to
be translated, hardware calculates the address translation using
Descriptor Table Address Registers, Segment Descriptor Tables and
Hardware Page Maps. The STLB is accessed again, this time being sure
to get a STLB hit. During translation, a page fault will occur if
the desired page is not in physical memory.

Simultaneous to the STLB access, hardware starts a CACHE access.
If the word from cache is from the correct physical page, then the
access is complete. If the word sought is not a valid cache entry,
then the information is brought into cache from physical memory.

Rev. 19.4 2 - 9 June, 1985

CE0810 - PRIMOS

1 2

FULL ADDRESS TRANSLATION

SEGMENT NUMBER

3 4 5 6 7

WORD NUMBER

Memory

1 6 7 16

| | R | [DTAR #] SEGMENT OFFSET | PAGE NO. | PAGE OFFSET |
v SDT
DTAR |---->
HMAP/PMT
-> SDW -————>
-> [PPN |-~

DTAR - Descriptor Table Address Register v v
SDT - Segment Descriptor Table | PPN | PAGE OFFSET |
SDW - Segment Descriptor Word 1 12 13 22
HMAP - Hardware page MAP 13 14 23
PPN - Physical Page Number

Rev,

19.4

- 10

June, 1985

CE0810 - PRIMOS

Memory
DTAR - DESCRIPTOR TABLE ADDRESS REGISTER

1 10[11 16
17]18 32

Bits 1-10 = 1024 minus number of entries in SDT
B 11-16 = High order 21 bits of physical address
18-32 of SDT origin
17 = must be zero
Rev. 19.4 2 - 11

June, 1985

CE0810 -

Rev.

19.4

Memory

PRIMOS
SDW - SEGMENT DESCRIPTOR WORD
1 10 16
F| A AA| BB B C CC |
17 18 20 21 23 24 26 27 32
Bits 27-32 = Physical address of Page Map Table (HMAP)
1-16 (Bits 11-16 must be zero)
17 = Fault Bit
18-20 = (AAA) Access rights from RING 1
000 no access
001l Gate access only
010 Read access only
01l Read and write access
100 reserved
101 reserved
110 Read and execute access
111 Read, write, and execute access
21-23 = (BBB) reserved for future use
24-26 (CCC) Access rights from RING 3
same as RING 1 access bits
2

- 12 August, 1985

CE0810 - PRIMOS

Memory
PAGE MAP ENTRIES - PAGE IN MEMORY

Processor supports > 8MB of physical memory

1 2 3 4 5 6 7 8 9 16
PMT R [U | M]S| -] WIRE | F | DISK ADDRESS (HIGH)

PHYSICAL PAGE NUMBER

Processor supports <= 8MB of physical memory

1 2 3 4 5 16
HMAP | R | U | M [s | PHYSICAL PAGE NUMBER |

LMAP [WIRE | F | DISK ADDRESS (HIGH)

Resident bit is set when page is in physical memory.
Used bit is set by the address translation hardware.

Modified bit indicates whether the page has been modified.

Shared bit is set to inhibit cache for all locations in this page.

WIRE bits are set to indicate this page is locked in physical memory.

PHYSICAL PAGE NUMBER is the physical address of the page.

Rev. 19.4 2 - 13

June,

1985

CE0810 - PRIMOS Memory

THE CACHE

\' INDEX DATA

12 (13) BITS 16 (32) BITS
1024 PPN +
ENTRIES

2 (4) PARITY

BITS

Rev, 19.4 z - 14

June, 1985

CEO810 -

Rev.

19.4

Memory

PRIMOS

THE STLB

Access

Rights

\' M S Ring 1 Ring 3 Process ID Segment No. Phys. Page No
1 Bit{1 Bit{1 Bit| 3 Bits 3 Bils 12 Bils 12 Bits 12 Bits
(13)

2 - 15 June,

1985

CE0810 - PRIMOS Memory

THE IOTLB
v PPN
1 : 12(13)
Rev. 19.4 2 - 16

June, 1985

CE0810 - PRIMOS

Memory
READ MEMORY ACCESS
SEGMENT NUMBER WORD NUMBER
1l 234 5 6 7 16 1 6 7 16
| | R | | DTAR | SEGMENT OFFSET | PAGE NO. | PAGE OFFSET]
\ HASH / |
| EECERE
I0TLB | STLB | CACHE
used l |
for [-->
seg ->
0 33 12 12 18
addr (13) (13) (36)
only :
I
COMPARE Commmmmeas l
{mmrmceen e e e e e e e e e .-
I
I [=mmmmmm e
v v
1 PPN | PAGE OFFSET |
1 12 13 22
1 13 14 23

Rev. 19.4 2 - 17 June, 1985

CE0810 - PRIMOS Memory

PAGE FAULT

Whenever a user program issues a virtual address the hardware
translates this address into physical memory using the STLB. An STLB
“miss” may be caused by failure to find the desired entry, or by a
reset valid bit for the desired entry. During full translation, the
HMAP/PMT entry will indicate if the desired page is not in memory.

The page map entry contains a marker bit (bit 1) indicating whether
or not the required page is held in memory. If the page is in
physical memory, translation proceeds but if the page is not in
memory, a PAGE FAULT occurs.

This fault causes a branch in execution through the user”s page
fault vector to the fault table code. A CALF is then executed in the
page fault catcher. (All page faults are handled by this routine).

The page fault catcher will:
1). Save the user state
2). Check recursive page fault. If so HALT

Allow warm start but process takes fatal error.
3). Call PAGTUR

Rev. 19.4 2 - 18 June, 1985

CE0810 - PRIMOS Memory

PAGE MAP ENTRIES - PAGE IN MEMORY

Processor supports > 8MB of physical memory

1 2 3 4 5 6 7 8 9 16
PMT R | U M] S | -] WIRE | F | DISK ADDRESS (HIGH)
PHYSICAL PAGE NUMBER

Processor supports <= 8 MB of physical memory

1 2 3 4 5 16
HMAP TR | U] M] S] PHYSICAL PAGE NUMBER T
LMAP T WIRE | F | DISK ADDRESS (HIGH)]

Resident bit is set when page is in physical memory.

Used bit is set by the address translation hardware as well as by
PAGTUR on a page-in, reset by PAGTUR aging the page.

Modified bit indicates whether the page has been modified.
WIRE bits are set to indicate this page is locked in physical memory.

First time in bit is set by PAGTUR on page-in, and reset by PAGTUR
aging the page.

Rev. 19.4 2 =~ 19 June, 1985

CE0O810 - PRIMOS

Memory
PAGE MAP ENTRIES - PAGE NOT IN MEMORY

Processor supports > 8MB of physical memory

1 2 3 4 5 6 7 8 9 16
PMT R | U [sta] S Jtus][WIRE | F | DISK ADDRESS (HIGH)

DISK ADDRESS (LOW)

Processor supports <= 8MB of physical memory

1 2 3 4 5 6 16
HMAP | R | U [sta] S Jtus] DISK ADDRESS (LOW) 1
LMAP [WIRE [F] DISK ADDRESS (HIGH)]

Resident bit is reset when page is not in physical memory.
status is defined by bit 3 and bit 5 as follows:

00 not in, copy on disk

10 not im, no copy omn disk

0l in tramsition, coming in
11 in transition, going out

Rev, 19.4 2 - 20

June,

1985

CEO8

10 - PRIMOS

MMAP (seémen

t 33)

16

Available bit is set when this page is free for page-in.

HMAP ENTRY SEGMENT NUMBER

HMAP ENTRY

WORD NUMBER

DISK ADDRESS (LOW ORDER)

V01d bit is set to map out a missing or bad page.

five
poin
to

MMAP

Rev.

MMAP_

ters

MMAP_
MMAP_

MMAP_

MMAP STRT
MMAP CPTR
MMAP FPTR
MMAP END
MMAP_ENDS

19'4

MMAP_

MMAP ENTRIES

STRT-====~ >]

—

CPTR--=---- >T

FPTR-=----- >

L
END8-=-=---- > |
END---==-- >

— i P

points to the first MMAP entry
is stepped during page-out
is stepped during page-in

points to entry after last MMAP entry
If there are more than 8MB of memory
to last entry in the first 8MB
else MMAP_END8 =

points

MMAP_EN

21

D

Memory

June, 1985

CE0810

Rev.

PRIMOS

Veet for

Trorsition

Page
Just srrive

" Steg CPTR

Loox ot Mext Poge

Yoid, Lockea

in Tronsition

Reset

ary
Avarlcole
Poges

Mork Poge.

In Trons:ition,

Conina In
|

s Oecrement

Avoilcole

Poge Counter

e

Step FPTIR

Looc ot

ezt Poce

oce Ava:r uo(i

Call PACSFS

Leeo 8it
v
Resec
Firgt Timg 1n 3
. N
i
|ic f
. ! 1
! :
1 f
More Pcce . os
Celt TPI
In Trensition, :
Goirg Cut \

Catt

TPICS

' Fim

~ors Poge.

ot un Remory,

Copy on D.iax,
Avoitoole

I

Ineresent

e S —
Morc Poge.

1

1

In Nemory, Leea t
—

Firet Time in YT
AN e
Mad. «f ~o cooy ¢ Wy

[—

Notify Pracesses |
ko ting for H
Tramsicion

RETURN

N

snes y

frepeging

Averlodte

Page Counter

19.4

22

June,

Memory

1985

CE0O810 - PRIMOS Process

Section 3 - Process Management

Objectives: The student will be able to:

o describe the different process states.

o describe the data structures and implementation of
process exchange.

o explain how users are scheduled.

o describe the function of the Backstop process.

0 explain how a select group of operator commands relate to
process management.

0 examine process management-related data structures in
memory.

Rev. 19.4 3 - 1 June, 1985

CEO810 -

Rev .

PRIMOS

STATE DIAGRAM

Process

19.4

June,

1985

CE0810 - PRIMOS Process

PROCESS EXCHANGE

Process Exchange is the hardware/firmware mechanism used to switch
the CP from being used by one user to being used by a different user.

A context switch occurs whenever a higher priority user or system
requires the use of the CP. The context switch involves saving the
registers and state of the currently running process and placing the
needed information in the current register set for the new user or

system. This is accomplished by the firmware/hardware and the multiple
user register sets in the High Speed Register File.

A process is a sequential flow of execution (a user, an 1/0 driver).
The process is described to PRIMOS by a PCB (Process Control Block).
Each process has its own PCB. A process must be in one of two states:

1). waiting for an event or non-CP resource
2). ready to execute.

When the process has all the resources required to rum and is only
waiting for the CP, the process” PCB is placed on the READY LIST.
If the process is waiting, its PCB is threaded onto a semaphore or
wait list.

Rev. 19.4 3 - 3 June, 1985

CE0O810 - PRIMOS
-=-=>] COUNTER
BOL

WAIT LIST

|---->

WAIT <semaphore name>

access semaphore
= count + 1

count
if co

Rev, 19.4

unt > 0
then PCB

PCB

LEVEL

LINK

[

WLSN

[WLWN

--> Wait List
else process continues

»
i

(Semaphore)

PCB
f==---> LEVEL
---] 0
---- 1l WLSN _[----|
| WLWN |

NOTIFY <semaphore name>
access semaphore

count = count - 1

first PCB --> Ready List

June,

Process

1985

CE0810 - PRIMOS

USE OF LOCK SEMAPHORES - Simple Lock

DATA

Two processes are sharing the same data area. Process A could be
changing data at the same time as Process B is reading the data.
B may read incorrect data.

To prevent this, use a Simple Lock Semaphore (initial count = -1).

In order to access the data

Process A must wait on the semaphore (count = Q)
Process A proceeds

If Process B attempts to access the data it must first wait on
the semaphore. (count = 1)
Process B goes onto the Wait List for that semaphore
Process A must NOTIFY the semaphore. (count = 0)
Process B returns to the Ready List and proceeds

All processes that access the data must first WAIT on the semaphore

and NOTIFY the semaphore when access is completed.

Rev. 19.4 3 - 5 June,

Process

1985

CE0810 - PRIMOS Process

USE OF LOCK SEMAPHORES - Ordered Locks

SEMAPHORE
[==-=een-- > DATA 1 Comamemaaa |
A B
I |
| SEMAPHORE |
[---eemmu- > DATA 2 A |

Two processes are sharing two data areas.
If using simple locks;

Process A WAIT on semaphore 1
Process B WAIT on semaphore 2
Process B WAIT on semaphore 1
Process A WAIT on semaphore 2

A "Deadly Embrace" situation will be the result.

To avoid the "Deadly Embrace", it is vital that all processes that
share data areas order their locks. The WAITs on the various
semaphores must occur in the same order for each process.

Process A WAIT on semaphore 1 Process
Process A WAIT on semaphore 2 Process
Process A NOTIFY semaphore 1 Process
Process A NOTIFY semaphore 2 Process

WAIT on semaphore
WAIT on semaphore
NOTIFY semaphore
NOTIFY semaphore

o
N~ N

Rev. 19.4 3 - 6 June, 1985

CE0O810 - PRIMOS Process

SYSTEM LOCKS

The locks listed on the following page (in priority order) are used to
control concurrent access to data areas. These locks utilize two
semaphores (or wait lists).

Each lock consists of the following data structure:

COUNTER

POINTER READER”S Semaphore
COUNTER ‘

POINTER WRITER”S Semaphore

| USAGE Counter |

] PRIORITY |

Rev. 19.4 3 - 7 June, 1985

CE0O810 - PRIMOS

SYSTEM LOCKS

Process

The system locks are listed in priority order, from lowest to highest.

Rev.

FSLOK

UFDLOK
SDLOK

TRNLOK
UTLOK

RATLOK
DEVLCK
SPILCK
NETLCK
NMMLCK
SLCLCK
MOVLCK
SHRLCK
SEGLCK
PAGLCK

19.4

Global file system lock
UFD lock

Segment directory locks
Transaction locks

Unit tables lock

Record availability lock
Device table in PBDIOS

Network data

Network memory mapping lock

Smlc driver data

segment mover lock (MOVUTU)

Shared segment data lock
GETSEG/RTNSEG lock (Segment tables)
Page tables LOCK

June,

1985

CE0810 -

Rev.

19.4

PRIMOS

PROCESS CONTROL BLOCK

LEVEL (PRIORITY)

LINK

POINTER TO WAIT LIST

ABORT FLAGS

MULTISTREAM CONTROL

RESERVED
11

PROCESS ELAPSED TIMER
"

DTAR 2

DTAR 3

PROCESS INTERVAL TIMER

REGISTER SAVE MASK

KEYS

Qe

REGISTER SAVE AREA

RING 0 FAULT VECTOR

RING 1 FAULT VECTOR

NOT USED

RING 3 FAULT VECTOR
"

PAGE FAULT VECTOR

CONCEALED STACK FIRST FRAME PTR

CONCEALED STACK NEXT FRAME PTR

CONCEALED STACK LAST FRAME PTR

RESERVED

Process

June,

1985

CEO810 -

Rev.

LEVEL

o

CoZyoOPLWND -~

19.4

PRIMOS

PRIORITIES

CLOCK PROCESS/FNTSTOP

ASYNC. CONTROLLER PROCESSES

SYNC. CONTROLLER PROCESSES

MPC PROCESS, MP2

VERSATEC PROCESS, MPC-4

RING NET CONTROLLER PROCESS

DISK, ROIPQNM PROCESSES

NETMAN

SUPERVISOR PROCESS

USER LEVEL 3

USER LEVEL 2

USER LEVEL 1 (DEFAULT LEVEL)

USER LEVEL 0

IDLE

SUSPEND

BK1PCB (BACKSTOP 1) CPU #l1

BK2PCB (BACKSTOP 2) CPU #2

END OF READY LIST = 1

Process

June,

1985

CE0O810 -

Rev.

PPA

“600
“601
“602
“603
“604
7605
606
“607

“61l4

“615

“624
“625
“626
“627
“630
“631

“636
“637
7640

19.4

PRIMOS Process
READY LIST EXAMPLE {1
| LEVEL A | PCB A | PPB | LEVEL B [PCB B
l BOL O _|
EOL ©
l BOL 1 _ |
EOL 1
BOL 2
4 —4
[EOL 2
] BOL 3 |
EOL 3
PCB
~ BOL 7 Level
| EOL 7 0
| BOL 10_L
EOL PCB PCB PCB
1 BOL ll_L Level Level Level
EOL 11 Link Link 0
L_ BOL 12 | ~ ~ ~ ~
EOL 12
~ ~ PCB PCB
1 BKlPCB_L Level Level
BK2PCB Link 0
1 ~ ~ ~
3 - 11 June, 1985

CE0810 - PRIMOS Process

To move a PCB from the Ready List to a Wait List, the WAIT
instruction is used. The NOTIFY instruction will move a process
from a wait list to the Ready List. Both instructions must always
reference a semaphore or wait list. The NOTIFY removes the first
PCB from the semaphore and places it onto the Ready List at the
proper level. When the process has completed execution or requires
another resource, a WAIT is executed and the process moves from

the Ready List to the specified Wait List or semaphore. PCBs are
Placed in the Wait List queue in priority level order.

READY LIST

The firmware dispatcher uses two locations in the High Speed Register
File Group 0. The first location is called PPA . PPA holds the
pointer to the PCB of the currently running process. PLA contains
the Ready List level of the currently running process. The currently
running process will be the highest priority process on the Ready
List. PPB contains the PCB address of the next process to rum. PLB
has the level of the next process. This allows the User Register Set

for the next process to be set up while still running another process
at a higher level.

The Ready List and the PCBs are all in Segment 4. This is one of the
“wired” segements of PRIMOS. This means it never gets paged out to

the paging disk. The Ready List begins at Segment 4, address “600 and
extends through address 640,

The PCB address and User Number bear a direct relationship to one
another. For example; the address for User 1°s PCB is 100100. The
address for User 7”s PCB is 100700. The PCB at address 101200
belongs to User 10. Addresses are in octal, user numbers are
decimal. All PCBs are 64 (“100) words long so the least significant
two octal digits of any PCB address is “00.

Rev. 19.4 3 - 12 June, 1985

CEO810 -

PPA

CLOCK
AMLC
SMLC

- MPC

- DISK

LEVEL 2
LEVEL 1

— LEVEL 0

_BACKSTOP

PRIMOS Process
READY LIST EXAMPLE #2
| “6l4 [777700 | PPB 626] 7100200 |
“600 | 0 1
“601 “76600
‘602 1 0 1
“603 777100
“604 1 0 1
“605 0
606] 0]
“607 “77200
~ ~ “77700
“614 77700 _| +_ “614
7615 +“'777oo] 0 _+
“624 1 0 1
“625 0 “100200 “102000 “102300
“626 1 7100200_| “626 “626 “626
‘627 “102300 “102000 “102300 0
“630 1 0 1 ~ ~ ~
“631 0
~ ~ “76400 “76500

“636 1 “76400_| “636 “636
“637 “76500 “76500 0
“640 1 ~ ~

This example shows actual addresses found using VPSD.

The contents pf PPA/PPB are calculated.
19.4 3 - 13 June, 1985

Rev.

CEO810 -

PPA

SEGMENT 4#4

CLOCK

AMLC

SMLC

MPC

DISK

LEVEL 2

LEVEL 1

LEVEL 0

BACKSTOP

Rev.

“600
“601
“602
“603
“604
“605
“606
“607

“61l4
“615

“624
“625
“626
“627
630
“631

636

“637
“640

19.4

PRIMOS

READY LIST

EXAMPLE #3

600 [“76600 |
“76600
[“76600 | “600
“76600 0
— 0 —t -
“77100
i 0 _]
0
— o —
“77200
~ ~ “77700
+_’77700 _+ ~“6l4
“77700 0
L. o
0 100200
1 7100200_| 626
©102300 102000
1 0 1 ~
0
~ ~ “76400
76400 “636
“76500 “76500
l ~
3 -

14

PPB

June,

Process

| ‘614 j “77700]
“102000 “102300
“626 “626
102300 0
“76500

“636

0

1985

CE0810 -

SEGMENT #4

CLOCK

AMLC

SMLC

MPC

DISK

LEVEL 2

LEVEL 1

LEVEL 0

" BACKSTOP

Rev.

PRIMOS Process
READY LIST EXAMPLE #4

PPA | “6l4 [“77700 | PPB | “626 [“100200 |
“600 o _|

7601 76600

“602 o |

“603 “77100

604 o _|

“605 0

7606 o |

“607 “77200

~ ~ “77700

614 | 77700 | “61l4
7615 “77700 0

‘624 | o |

7625 0 100200 7102000 102300
“626 | “100200_| “626 “626 “626
627 102300 102000 102300 0

7630] o 1 ~ ~ ~
“631 0
~ ~ “76400 “76500

636 | ~76400_| “636 “636
“637 “76500 76500 0

’640 1 ~ ~

19.4 3 - 15 June, 1985

CEO810 - PRIMOS

Process
READY LIST EXAMPLE #5
PPA | 7626 | ~100200 | PPB | “626 | 7102000 |
SEGMENT #4
cLock “600 | 0 |
“601 “76600
AMLC “602 | 0 |
7603 “77100
SMLC “604 | 0 |
7605 0
MPC ’606 -+ 0 —
7607 “77200
DISK “6l4 o |
“615 77700
LEVEL 2 “624 1 0 1 ’
7625 0 100200 102000 102300
LEVEL L “626 | “100200_| “626 “626 “626
627 102300 102000 102300 0
LEVEL 0 "630 | 0 | ~ ~ ~ ~ ~ ~
“631 0
~ ~ “76400 “76500
BACKSTOP “636 | ~76400 | “636 “636
‘637 76500 “76500 0
“640 1 ~ ~ ~ ~

Rev. 19.4 3 - 16 June, 1985

CEO810 -

PPA

SEGMENT #4

CLOCK

AMLC

SMLC

MPC

DISK

LEVEL 2

LEVEL 1

LEVEL 0

BACKSTOP

Rev.

“600
“601
“602
“603
“604
“605
“606
“607

“6l4
“615

“624
“625
“626
‘627
“630
“631

“636

“637
“640

19l4

PRIMOS

READY LIST

EXAMPLE #6

“626

“102000 |

| ©102300

“102000_|

“102000

“626

PPB

-

102300

“102300

Process

| “626

1

102300 |

“626

“76400

“636

0

“76500

-

76500

“636

17

June,

1985

R S S

e R A A T e T AR TR TR AR e R LT

SEGHENT §4&

CLCCK 7500

, 501

. AMLC K3
TR

SMLC 404
BRI
TeGh

"5

MPLC

DISK “514

“515

LEVEL 7 "624%
624
LEVEL 1 “62¢
“627

LEVEL 0 “&3¢

“531
BACKSTOP “63¢
“63i

640

PRIHMOS

READY LIST

EXAMPLE #7

800 |

“76600 |

1776600 |
“16600 T

1777100

76600
“600
0

102000

'Hm’lOZOOO_J
1 7102300

“626
102300

SR A—— A
~

76400

1~ _"636
1T __~76500

PPB

Process

| ~7626

1 102000 |

“102300
626

“76500
“636

0

Lrcie itk

14

W&hgds

June,

1985

CE0O810 -

SEGMENT #4

CLOCK “600
601

AMLC 602
“603

SMLC “604

— 605
MPC 606
607

DISK ~“6l4
615

~ LEVEL 2 “624
<625

LEVEL 1 “626

_ 627
LEVEL 0 “630
631

" BACKSTOP “636
637

640

Rev. 19.4

PRIMOS

READY LIST

EXAMPLE #8

Process

7600 | 776600 | PPB | “6l4 | 777700 |
“76600
| “76600 _| “600
“76600 0
5] L
“77100 |
+ o 1
0
+ 0 1
77200
~ ~ 77700
77700 ‘614
77700 '+ 0
4 0 -1
0 “102000 “102300
| ©102000_| 626 626
“102300 “102300 0
4 0 S ~ ~ .
0
~ ~ 776400 76500
“76400 636 636
76500 “76500 0
T L L L
3 - 19 June,

1985

CEO810 -
PPA

SEGMENT #4
CLOCK ~“600
“601

AMLC ~“602
“603

SMLC 7604
“605

MPC “606
“607

DISK “6l4
‘615
LEVEL 2 “624
“625

LEVEL 1 7626
‘627

LEVEL 0 “630
“631
BACKSTOP “636
‘637
“640
Rev. 19.4

PRIMOS

READY LIST

Process

EXAMPLE #9

“614 | “77700 |
— O e
“76600
amud 0 —
“77100
L 0 -
0
— 0 -
“77200
~ ~ “771700
777700 _| 614
“77700 0
| 0
0 ©102000
7102000 626
©102300 ~102000
| 0 —J ~
0
~ ~ 776400
776400 “636
76500 776500
1 ~
3 -

20

PPB | “626 | “102000 |

“102300
626
0

76500
“636

June, 1985

CEO810 -

PPA

SEGMENT #4

CLOCK
AMLC
SMLC

MPC

DISK

— LEVEL 2
LEVEL 1

LEVEL 0

T BACKSTOP

Rev.

“600
“601
“602
“603
“604
“605
“606
“607

“61l4
“615

“624
“625
“626
“627
630
“631

“636

“637
7640

19.4

PRIMOS

READY LIST

EXAMPLE #10

“626

|

102000 |

i

:

T -102300

“102000_[

0
0

——

L

~

~76500

1l “76400_]|

“102000

626

“102300

“76400

“636

“76500

21

PPB

Process

| 77626

l

102300 |

“102300

“626

0

“76500

636

June,

1985

CE0O810 -
PPA

SEGMENT #4
CLOCK “600
“601

AMLC “602
“603

SMLC “604
“605

MPC “606
‘607

DISK “61l4
‘615

LEVEL 2 “624
“625

LEVEL 1 “626
“627

LEVEL 0 “630
“631
BACKSTOP “636
“637

‘640

Rev., 19.4

PRIMOS

READY LIST

EXAMPLE #11

] “626]

“102300 |

~

1
0
“77700 |
0]
0
| "102300_|

“102300

[

“102300
626

0

0
0

~ ~

N

T

b

76500

| T76400_|

“76400

“636

76500

1

22

Process

|

“76400 |

“76500
636

June, 1985

CE0810 -

PPA

SEGMENT #4

CLOCK “600
“601

= AMLC “602
“603

SMLC “604

- “605
MPC “606
“607

h DISK “6l4
“61l5

— LEVEL 2 “624
‘625

LEVEL 1 7626

_ ‘627
LEVEL 0 “630
“631

“BACKSTOP “636
‘637

“640

Rev. 19.4

Process

23

PRIMOS
READY LIST EXAMPLE #12
“636 | 76400 | | “636 0
A |
“76600
O b
“77100
4 0 —_1
0
—f—— 0 e
“77200
[T 0 —
“77700
L o |
0
102300
+— o 1
0
~ ~ “76400 “76500
L “76400_| “636 636
“76500 76500 0
1 C

June,

1985

CE0810 - PRIMOS Process

STATE DIAGRAM

Rev. 19.4 3 - 24 June, 1985

CE0810 - PRIMOS Process

SCHEDULING OF USERS

PRIMOS scheduling is based on two criteria.
~ 1). PROCESS EXCHANGE
2). BACKSTOP PROCESS (SCHED)

The process exchange mechanism is implemented in firmware and uses
the ready list/wait list philosophy described earlier.

SCHED, also known as the backstop process:
1). Responding to requests for users to be placed on one of
—_ three queues and allocating a time-slice.
2). Deciding the sequence of processes placed on the READY LIST.

" SCHED maintains nine basic queues using semaphores.

1). High priority (HIPRIQ)

- 2). Eligibility (ELIGQ)
3-7). Low priority (LOPRIQ)
3). Supervisor
- 4). User level
5). User level
6). User level
7). User level

8. Idle (IDLEQ)
9. Suspend (SUSPQ)

O NW

~When a user process returns to command level, the listener is called
to a invoke a new command level and CL$GET is called to read in the
command line. ClIN$ is then called to read in the characters. ClINS

_will wait on BUFSEM (there is one BUFSEM semaphore per terminal user)
and when a character is input into the user ring buffer the AMLC
driver will notify BUFSEM. The user will continue to use ClIN$ to
input characters until a <CR> character is detected.

On detecting <CR> CL$GET calls SCHED to place the user process on the
—HIGH priority queue and to allocate a full time-slice. SCHED scans

for high priority users before any others and a user in the high

priority queue will be placed on the ready list and scheduled to rumn
_with a timeslice of 3/10 sec. At the end of this period the process

will fault and be placed on the elgibility queue. The backstop

process scans the elgibility queue after the high priority queue and

eventually the user will be notified and moved on to the ready list
“with another timeslice of 3/10 sec.

Rev. 19.4 3 - 25 June, 1985

CE0810 - PRIMOS Process

SCEDULING OF USERS (CONT”D)

This sequence of events continues until the full 2 second time-slice
has elapsed. The process is then placed on the low priority queue

appropriate to its priority level, and is given a new 2 second
timeslice.

The backstop process will schedule users on the low priority queues
after both the high priority and the elgibility queues have been
exhausted. The Idle level is checked only when there is no activity

on the High Priority queue, the Eligibility queue, and all of the Low
Priority queues.

Rev, 19.4 o~ 26 June, 1985

CE0810 - PRIMOS Process

BACKSTOP PROCESS

GET LOPNFY
FOR
LEVEL 4
¥
STORE I
NFYCNT
NOT[FY
1DLEQ
YES NOT IFY
ON HIPRIQ
PR
N LEVEL LOPFNY
am = 4 -17
PAGSEM + LOCSEN 3 -9
+DSKQCT + DSKBLK 2 -5
+UFDLOK ¢ UTLOK 1 -3
+RATLOX [+] -2
INCREMENT
LODONE
STORE
NYFCNT
¥
|) |
NOTIFY 6ET LOPNFY GET LOPNFY
LOPRIQ FOR NEXT FOR
LOMER LOPRIQ LEVEL 4
™) ™)

Rev. 19.4 3 - 27 June, 1985

CE0810 - PRIMOS

Process
INTERACTIVE USER
READY LIST
~ USER ~ PCB
LEVEL |==ece-a- > PCB {mmmmmmcon NFYE (BACKSTOP)---=ce-cecan-
| I (Full timeslice)
” - I i T e NFYE (AMLDIM)
|~ ~ BUFSEM |
COUNT |
WAIT BUFSEM -=---> "POINTER [====> PCB
(CLINS) I l
wait for a |
Character
wait after a HIGH PRIORITY It taddadid
Carriage Return SEMAPHORE
| COUNT
TR > POINTER |[----> PCB-~~=-- >

Rev. 19.4 3 - 28 June, 1985

- CE(0810 - PRIMOS Process

COMPUTE BOUND USER

— READY LIST
~ USER ~
LEVEL |===e-n-- > PCB T p——— NFYE (BACKSTOP)--=-co-=co----
i | (Full timeslice)
- I I
~ ~ | l
[~ ELIGQ
— | COUNT
ELIGTS -——> POINTER |~=~==> PCB
EXHAUSTED
(3/10 SEC.) | l
- Time remaining I
No time remaining Tommmeems
| LOW PRIORITY
- | QUEUES
| COUNT
I e R T > POINTER [=-=---> PCB---->

|~~~~~~~~~|

Rev. 19.4 3 - 29 June, 1985

CEU810 - PRIMOS

USER PRIORITIES AND TIME-SLICE

The following operator command is available for changing user
priorities and time-slice.

CHAP [-USERNO/ALL] [PRIORITY] [TIME-SLICE]
[-IDLE]
[-SUSPEND]

USERNO Is in the form -nn or ALL
PRIORITY Integer 0 to 3 (default = 1)
TIME-SLICE Length of time-slice in tenths of seconds.

0 means reset to the system default (2 sec.)

If omitted the time-~slice is unchanged.
-IDLE Put process(es) into the IDLE state.
-SUSPEND Put process(es) into the SUSPEND state.

If both priority and timeslice are omitted, then priority and
time-slice are set to the system default values.

The following user command is available for changing user
priorities and time-slice.

CHAP [UP]
[DOWN]
|DEFAULT]
[LOWER nnn)] [timeslice]
** [IDLE]

** Can only be issued from a phanton

STAT US Displays the priority of users not at user level 1.
LOGOUT Resets priority and timeslice to defaults.
ELIGTS Is used to modify the eligibility time-slice from the

system console. This will affect all users equally.

ELIGTS [<eligibility_timeslice>] (default = 3/10 sec.)

Rev. 19.4 3 - 30

Process

June, 1985

- CE0810 - PRIMOS Process

— MAXSCH

_Previously, MAXSCH was determined by indexing into an array of
values; 0,0,1,2,3,4,4., The value of the index was the memory size
in 32K units. If there was more than 256K then MAXSCH would be 4.

——

MAXSCH is now calculated as follows:

(]

— MAXSCH (megabytes_of memory + 3) * x + y
where, x is 1.2 if there exists an alternate device on a
different controller than the primary device,
otherwise it is 1.
y is 1 if CPU is a P850,
otherwise it is 0.

The optimal value of MAXSCH is application dependent, hence there is
no hard and fast formula to determine its value. Therfore, it is a
configurable parameter.

“rule of thumb:
MAXSCH = Physical-Memory-Size - PRIMOS-locked-memory
average-job-size

Rev. 19.4 3 - 31 June, 1985

CEO810 -

Rev.

19.4

PRIMOS

32

Process

June,

1985

CE0O810 - PRIMOS Device

Section 4 - Device Management

Objectives: The student will be able to:

Rev.

describe how a DMx transfer occurs.

explain how the four types of DMx differ.

list I1/0 controllers and DMx methods used.

define an external interrupt.

describe how externmal interrupts are serviced.

describe how a clock interrupt is processed.

explain how terminal I/0 is processed.

explain the allocation of terminal buffers.

explain how disk requests are serviced.

examine device management-related structures in memory with
VPSD.

answer device management-related questions by examination of
source code.

0O 00 00 00 00O

(=]

19.4 4 - 1 June,

1985

CEO810 -

Rev. 19.4

PRIMOS

Device

June, 1985

CE0810 - PRIMOS Device

DMx Operation

DMx is a method whereby an 1/0 data/memory transfer may occur without
software intervention. To perform such operations a temporary
diversion in the sequence of microcode from CPU instruction to DMx
transfer routines occurs. This is called cycle stealing or a TRAP.
At the end of the DMx/memory transfer, the CPU instruction microcode
continues as though nothing had happened. The actual trap diversion
occurs at the end of the micro step in which it was sensed. At the
same time, information about the next CPU micro step is saved to
effect a return to the original sequence.

There are four types of DMx transfer: DMA, DMC, DMT, and DMQ.
Each method has advantages and disadvantages in terms of speed,
volume, and control features and so form a comprehensive range of
me thods.

Rev. 19.4 4 - 3 June, 1985

CE0810 - PRIMOS Device

DMA TRANSFERS

Used by Disk controllers, some Tape controllers, and PNC controllers.

0)

1)

2)

3)

4)

5)

6)

7)

Rev.

Driver acquires channels at coldstart, and for each DMA transfer,

performs the following setup operations:
o preload IOTLB,
o initialize channel with transfer address and range,
o output channel address to controller, and
o initiate read/write operation on device.

When ready to transfer data, the controller raises DMx request.

CPU scans the backplane for any Dmx requests at the
end of each microcode step. 1If there are pending requests, the
CPU traps into the DMx microcode.

DMx microcode checks the backplane priority network and
enables the DMx request from the highest priority controller.
DMx microcode turns off the DMx request signal.

Controller places channel address onto the address bus and,
over the control bus, indicates both the transfer direction
and the type of DMx operation.

Upon receiving the above informationm, DMx microcode will
o transfer 16 bits of data,
0 adjust transfer address and range, and
o check for EOR condition.

If EOR, DMx microcode sends and EOR signal back to the controller.

DMx microcode checks for more pending DMx requests. If there
are pending requests, go back to (3); if no pending requests,
return to pre-DMx state.

Controller generates an EOR extermal interrupt upon receipt of
EOR signal from DMx microcode.

1985

CE0810 - PRIMOS

Device

DMA TRANSFERS (CONT”D)

VENORY
6000 DATA
- - o
P P
10020 DATA
= 2
S <
z z <
s z -
cPy 1 O CONTROLLER
-
'8 Y
{DMA CHANNELS DMA'C ADDRESS REG 1234 5 6 16
—
127200 | 006000 |<0 " cHain |1 Drc CHANNEL
@ 000040 NUMBER| O DMA ADDRESS
< o >
77
1 T2 13 12 15 16 17 32
XI . TRANSFER ADDRESS
I 001 T 16

Rev. 19.4 4 - 5 June, 1985

CE0810 - PRIMOS Device

DMC TRANSFERS

Used by MDLC, SMLC, both AMLC and QAMLC for input, some tape
controllers, and MPC controllers (hi-speed parallel printers).

DMC uses pairs of memory locations in segment 0 to hold the starting
and ending transfer addresses, respectively. Each pair is acquired by
the driver at coldstart. Hence, the address presented by the
controller to the CPU is the address of the first word in the pair.

There is no explicit range; rather, the range will be implicit from
the starting and ending traansfer addresses.

MENMORY

| 3000 6000
,..,‘; 3001 10020)
-

-~ e

6000 DATA

1t

10020 DATA

CONTROL
ADDRESS
DATA

Cry 1/0 CONTROLLER

CPUDETECTS DMC
AND PASSES THE
ADDRESS PORTION
OF DMC ADDRESS
REG. TO MEMORY.

DMA/C ADDRESS REG. 1234 5 6 16

CHAIN |1=DMC CHANNCL
007000 T “|nUmBER| 0 - DMA ADDRESS

L

L_‘ FIRST LOCATION/TRANSFER ADDRESS
’ SECOND LOCATION/FINAL ADDRESS

Rev. 19.4 4 - 6 June, 1985

CE0810 - PRIMOS Device

DMQ TRANSFERS

Used by QAMLC for output, ICS1 and ICS2 for asynch (both input and
output).

DMQ uses a QCB to hold the transfer control information. Each QCB is
a four word data structure located in segment 0. The layout of the
QCB is on the following page. Hence, the address presented by the
controller to the CPU is the address of the QCB. The data buffer, the

QDB, is NOT in segment 0. DMQ is the only form of DMx that allows the
data to be outside of segment O. ‘

VO RY

ccs
10071000)
10171050 Segmenl'O
102/ 21
103/ 200

folo):!
1000

! 050 Segment’21

= 2
= g <
z = <
S =3 B

CPU AMLQ

CPU CETECTS DMQ
AND PASSES THE
ADDRESS OF THE
QC8 TO MEMORY

DMQ ADDRESS REG.

000100

ADDRESS

|

Rev. 19.4 June, 1985

CE0810 - PRIMOS

Device

DMQ Operation

The control information is held in segment 0 of memory in an area
known as the Queue Control Block (QCB).

Each queue is implemented by an array of 2**N words where N is greater
than or equal to 4, and less than or equal to 16.

Each QCB is a four word structure:

TOP POINTER (read)

BOTTOM POINTER (write)

word number of the head of the queue
word number of the tail of the queue

SEGMENT NUMBER or PHYSICAL ADDRESS

MASK

The instructions provided
ATQ
ABQ or DMQ input
RTQ or DMQ output :
RBQ :
TSTQ

* a0

.

Rev., 19.4

segment number or PPN of above pointers
2**N - 1 defines the size of the buffer

for DMQ and QUEUE manipulation are:

add to the top of the queue

add to the bottom of the queue

remove from top of the queue

remove from the bottom of the queue

test the queue (# items->A, if empty EQ->CC)

4 - 8 June, 1985

CE0810 - PRIMOS

Used by disk controller for channel programs, AMLC for output, and

DMT TRANSFERS

downline loading ICSn microcode.

Device

Unlike the other types of DMx, DMT does not place the responsibility
Rather,

for managing the transfer parameters upon the DMx microcode.
the controller is responsible for updating the transfer address and

the range.

\ MEMORY
" 6000/ DATA
1

3\
\\

N - ——

3)
AN

>
b=
<
a]

CONTROL
ADDRESS

CPU

CPUDETECTS DMT -
AND PASSES THE
ADDRESS DIRECTLY
TO MEMORY.

ADDRESS

I

1/0 CONTROLLER

DMT ADDRESS REG.

006000

Rev. 19.4

June,

1985

CE0810 - PRIMOS

Device

EXTERNAL INTERRUPTS

How Interrupts Occur

(0) Interrupts must be enabled (bit 1 of the MODALS).

(1) Controller ships over the interrupt request to the CPU.

(2) CPU “sees” the request, but waits for the current instruction

to complete.

(3) CPU disables interrupts (bit 1 of the MODALS).

(4) CPU ACKnowledges the controller.

(6) The controller,upon receiving the ACK, will ship its

“interrupt vector address” to the CPU.

(7) CPU stores the current process” PB (and P-Ctr) in PSWPB

and its KEYS (and MODALS) in PSWKEYS (RFO).

(8) At this point, (software) control is transferred to segment 4,

Rev,

at the offset specified by the interrupt vector address.

19.4 4 - 10 June, 1985

CE0810 - PRIMOS Device

PHANTOM INTERRUPT CODE

In order to NOTIFY a process, PIC must ensure that the PB and KEYS
are restored before issuing the NOTIFY.

The PIC basically consists of one instruction, an INEC, with the name
of a semaphore as the operand.

The INEC instruction performs the following actions:
1) Reload the PB and KEYS from PSWPB and PSWKEYS.
2) Issue a CAI to clean up the 1/0 bus.

3) Enable interrupts.
4) Notify the appropriate semaphore.

Rev. 19.4 4 - 11 June, 1985

CE0810 -

PRIMOS

Device
CLOCK PROCESS
The clock interrupt is treated like any other device interrupt. An
address (“63) is presented to the CPU. The hardware interprets
this location as the address of the Phantom Interrupt Code (PIC) in

Segment 4 for this device. The PIC executes an INEC which

acknowledges the interrupt, clears the Active Interrupt flag, and does
a NOTIFY to CLKSEM,

The clock process will then be entered.

of the functions performed:

).
2).
3).
4).
5).

6).

7).

8).
9).

Rev. 19.4

Handle PBHIST.)

Increment ONE-MINUTE timer.
If zero, reset clock and set USER 1°s MINALM abort flag
and NOTIFY ASRSEM.

Increment timer 2 (Paper Tape Punch) (1/75 second) .

If zero, reset clock and call BRPDIM (if chars in buffer).
Increment Timer 3 (Digital input)

If zero, reset timer and enter DIGDIM
Increment timer 4 (ASR) (1/30 or 1/10 second).

If zero, reset clock and call ASRDIM.
Increment timer 5 (1/10 second).

If zero , doing the following:

A).
B).

c).
D).
E).

F).

G).
H).
L.

J).

Reset clock
If sensor check has occurred,
set USER 1°s CHKALM Abort Flag
Update clock ring
Handle USER timer semaphores
Increment Timer 9 (DISK) 1/2 second,
If zero, reset clock and notify DSKSEM
Increment Timer 10 (SMLC) 1/2 second,
If zero, reset clock and set USER 1”°s SMLALM
Abort Flag. :
Increment Timer 11 (Gross Network) 10 second,
If zero, reset clock and notify PNTSEM (NETMAN)
Increment Timer 12 (Network Protocol) 1 second,
If zero, reset clock and notify PNTSEM.
Increment Timer 13 (Remote USER I/0) 1/2 second,
If zero, reset clock and notify PNTSEM.
Increment Timer 14 (Date and Time) 4 second
If zero, reset clock and update date and time
for TIMNOW and DATNOW.

Increment Timer 15 (Real Time Queue) 1 second,
If zero for any process,
Handle timers for PNCDIM.
WAIT CLKSEM.

4 - 12 June,

Following is a general list

.

set process” TMOALM abort flag.

1985

CE0810 - PRIMOS Device

THE QAMLC DRIVER - AMLDIM

The QAMLC will configure itself to drive up to eight controllers using
device addresses “54, “53, “52, “35, “15, “16, “17 and “32. The
default configuration can be changed using the AMLC command at the
system console or im PRIMOS.COMI

AMLC [PROTOCOL] LINE [CONFIG] [LWORD]

PROTOCOL
TTY terminal protocol (default protocol)
TRAN transparent protocol
TTYUPC upper case output protocol
TTYNOP ignore this line (used for assigned lines)
TT8BIT 8-bit protocol
ASD auto~-speed detect

LINE The AMLC line number (octal)
CONFIG See line configuration table.

LWORD See LWORD table.

Rev. 19.4 4 - 13 June, 1985

CE0810 - PRIMOS

Device
LINE CONFIGURATION TABLE
1 2 3 4 5 6 7 8 9 10 11 1 13 14 15 16
Line no. [T T T— T— Character
(bit 4 is 1lsb) length
set to O 0 0 - 5 bits
1 0 - 6 bits
01 - 7 bits
Data Set 1 1 - 8 bits
control<-
l for modems -> Type of parity, 0 = odd
loop line<- --> Parity disable, 0 = enable
(for testing) : (default) 1 = disable
Set to O --->Stop bits
0 =1 bit
l = 2 bits
-=-=-=-> Reverse Flow Control
0 = disabled (default)
1 = enabled (ICS1 only)

Line Speed

0 00 - 110 baud

0 01l - 134.5 baud

01 0 - 300 baud

011 - 1200 baud

1 00 - program clock - default 9600 baud
101 - 75 baud

110 - 150 baud

111 -~ 1800 baud

Rev. 19.4 4 - 14 June, 1985

CE0O810 - PRIMOS Device

LWORD TABLE

l1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
T [[T USER NUMBER
| --> CHECK, Enable error detection
1 = Parity or IRB overflow
(send a NAK if parity or irb overflow sensed)
---> DSS hi/low, toggle for bit 5
------ > DSS enable, Check carrier, simulate XON/XOFF
("buffered" or "reverse channel" protocol)
1 = When XOFF or DSS enabled, flag to show XOFF
0 = no xon/xoff
1 = xon/xoff
0 = LF echoed for CR (only if half duplex)
1 = LF not echoed for CR

O = Full duplex
1 = Half duplex

Rev. 19.4 4 - 15 June, 1985

CE0810 - PRIMOS Device
QAMLC BLOCK DIAGRAM
User Process (Soﬁ‘ware) ; i
ALt (s&uam) QAMLE :
: cug | HARDweRE
l —_—
128 worps (o) , 48 |
N |
=] 4
USER INPUT RING | DATA ,
BUFFER | IN 0
(1 PER USER) TUMBLE | \{prc) 3 -
| TABLE "
| '3
| Fome
| READ PTR |
§ ! WRITE PTR [J-ome LINE B
| SEG MO |
hne
| MASK G-‘(ﬁ.’fu
QUEUE CCNTROL BLOCK .
: ! (pma) 14
192 worps (febrd) ' pra g 4
| 5 32 WorDS l‘&lme/‘ -
K I
USER OUTPUT RING | N
BUFFER | e -
(1 PER USER) . |
! QUEUE BUFFER |
| (1 PER USER) ~
Rev. 19.4 4 - 16 June, 1985

CE0O810 - PRIMOS Device

ICS BLOCK DIAGRAM

ICS ICS
ASYNC KROTIPONMY IPONM
DIM "DIM
PN
{ INPUT Q(S) :
' I I
USER IRB | |
| MO
| | >~ 7
| |
| |
l
| | | Ics
B { : CONTROLLER
USER ORB { DMQ |
4
| éﬁ
—
} |
USER PROCESS |~ ASYNDM | 1CSn
(SOF TWARE) (SOFTWARE) (HARDWARE)

Rev. 19.4 4 - 17 June, 1985

CE0810 - PRIMOS Device

LIOCOM

A(LIOCOM) =-====- > T ADDRESS OF
' CONSOLE“S ORB
ADDRESS OF
USER 2°S ORB
ADDRESS OF
USER 3°S ORB
ADDRESS OF
USER 4°S ORB

ADDRESS OF
CONSOLE”S 1IRB
ADDRESS OF
USER 2°S IRB
ADDRESS OF
USER 3°S IRB
ADDRESS OF
USER 4°S IRB

A(ORB)

A(LIOCOM) + (2 * (BUFFER NUMBER + 1))

A(IRB)

A(LIOCOM) + (2 * (BUFFER NUMBER + 1)) +
(2 * NUMBER OF PROCESSES)

i Ty

Rev. 19.4 4 - 18 June, 1985

CE0810 - PRIMOS Device

DISK I/0 WAIT TIME

Disk I/0 time = wait time + seek time + rotation time + transfer time

Wait time is the time a process must wait before its disk request
is acted upon.

Wait (1) for a disk queue request block

(2) in a work list

Rev. 19.4 4 - 19 June, 1985

CEO810 -

Rev.

19.4

PRIMOS

DISK QUEUE REQUEST BLOCKS

FORWARD THREAD
SEMAPHORE

DEVICE TYPE
UNIT SELECT BITS
CYLINDER NUMBER
HEAD/RECORD NUMBERS
VIRTUAL BUFFER ADDRESSES

PHYSICAL PAGE ADDRESSES J

NUMBER OF WORDS/CHANNEL
NUMBER OF WORDS/CHANNEL
NUMBER OF WORDS/CHANNEL
NUMBER OF CHANNELS
TOTAL TIME

ERROR MESSAGE INFO

7 queue request blocks at revision 18
17 queue request blocks at revision 19.1
32 queue request blocks at revision 19.3

DSKBLK is the semaphore processes must wait on
to obtain a queue request block.

Device

June,

1985

CE0810 - PRIMOS Device

DISK 1/0 SEEK TIME

Disk I/0 time = wait time + seek time + rotation time + transfer time

Seek time is the time a process must wait for the heads to move over

the desired cylinder.

Rev. 19.4 4 - 21 June, 1985

CE0810 - PRIMOS Device

DISK I/0 ROTATION AND TRANSFER TIMES

Disk I/0 time = wait time + seek time + rotation time + transfer time

Rotation time is the time required for the drive to make one complete
revolution. :

Transfer time is the time required to do the actual physical data
transfer.

Rev., 19.4 4 - 22 June, 1985

CE0810 -

Rev.

19.4

PRIMOS

DISKIO.PMA

CALL SIDE

WAIT
DSKBLK

FILL IN GRB
DEV NO, TYPE
UNIT NO

EE
REQUEST

NO

FILL IN QRB
CYL INDER
NUMBER

FILL IN ORB
VBA, PPN, CRA

THREAD GRB
INTO
WORK LIST

NOTIFY
DISK
PROCESS

WAIT ON
SEMAPHORE
IN GRB

RETURN QRB
T0 FREE
POOL

NOTIFY
DSKBLK

RETURN

23

Device

June,

1985

CEO810 -

Rev.

PRIMOS

DISKIQO.PMA - DISK PROCESS CODE

ALLOCATE
OMA

CHANNELS

GET FIRST
GRB ON
WORK LIST

TAKE TIME

STAMP

START

WAIT
DSKSEM

REQUEST

YES

SEEK

UPCATE
TIME

'

DEQUELE
GRB

)

NOTTFY
REQUESTING
PROCESS

l

@

19.4

24

June,

Device

1985

CE0810 - PRIMOS Device

DISKIO.PMA - DISK PROCESS CODE (continued)

®
l

FILL IN QRB
DMA CHANGES,
CHANNELS

l

SETUP
10TLB

e

START
DATA
TRANSER

——

WAIT
DSKSEM

INIT
DMA
CHANNELS

ERRORS

Rev. 19.4 4 - 25 June, 1985

CE0810 -

Rev. 19.4

PRIMOS

26

Device

June, 1985

CE0810 - PRIMOS Procedure

Section 5 - Procedure Management

Objectives: The student will be able to:
o describe the contents of a user register set.

o explain the use of the PB, LB, and SB registers.
o describe the functions of the PCL mechanism.

Rev. 19.4 5 - 1 June, 1985

CE0810 -

Rev.

19.4

PRIMOS

THE USER REGISTER SET

HIGH LOW
GRO
GR1
A B GR2
EH EL GR3
GR4
S/Y GRS
GR6
X GR7
FARO
FLRO
FARL/FAC
FLR1/FAC
PB
SB
LB
XB
DTAR3
DTAR2
DTARL
DTARO
KEYS/MODALS
OWNER
FCODE |
FADDR
CPU TIMER

MICROCODE SCRATCH

Procedure

June,

1985

CE0810 - PRIMOS Procedure

THE USER REGISTER SET CONTENTS

A Accumulator Register
B Accumulator Extension (A + B = L)
EH,EL Accumulator Extension for long integers (64 bit)
S Stack Register (R S Modes)
Y Alternate Index Register (V Mode only)
X Index Register (R, S, V Modes)
GRO-GR7 General Registers 0-7 (I Mode only)
FARO Field Address Register 0
FLRO Field Length Register O
FAR1 Field Address Register 1 (for block moves
FLR1 Field Length Register 1 - char./dec. data)
FAC Floating Point Accumulator '
PB Procedure Base Register
SB Stack Base Register
LB Link Base Register
XB Auxiliary Base Register
OWNER Address of User Register Set Owner”s PCB
FCODE Fault Code
FADDR Fault Address
CPU TIMER overflow of two s complement value ends timeslice

User programs may access the Register-file using LDLR and STLR (64V).
Only locations “0 - 717 are accessible.

Any attempt to access location 714 (PB) will give undefined results.
The first eight locations are interpreted for V-mode (default).

Rev. 19.4 5 - 3 June, 1985

CE0810 - PRIMOS

PROCEDURE/LINK/STACK ARCHITECTURE

PROCEDURE AREA
- 1 per system if shared
- contains pure code and literals
- pointed to by Procedure Base Register (PB)

LINKAGE AREA
- 1 per user
- contains local variables and pointers
- pointed to by Linkage Base Register (LB)

STACK FRAME
- 1 per invocation

- contains caller”s saved state, argument pointers,
and dynamic work space

- pointed to by Stack Base Register (SB)

Rev. 19.4 5 - 4

Procedure

June,

1985

CE0810 - PRIMOS

[I VI L

10
11
12
13
14
15
16

Rev.

19.4

KEYS

purpose
S R Modes

Arithmetic Error Cond.
Double Precision Bit
reserved

Mode bits
000 16S mode
001 328
011 32R
010 64R
110 64V
100 321

reserved

reserved

Bits 9-16 are bits 9-16
of address 6

Procedure

v I Modes

C Bit
reserved
Link

Mode Bits

Floating Point Exception
Integer Exception

LT (less than) bit

EQ (equal) bit

DEX (decimal exception)
Ascii 8 bit

Floating Point Round

In CHECK bit (850 only)
I bit - In Dispatcher

S bit - Save Done

June, 1985

CE0810 - PRIMOS Procedure

SUBROUTINE CALLS

(1) CALLING PROGRAM

CALL
- calls a subroutine
- generates PCL (procedure call)

PCL

- addresses an ECB through a link

- calculates the ring number PO B
- allocates the stack frame =
- intializes the state of the called procedure

- transfers the argument pointers

AP

- generates the argument pointers for the PCL
- follows the PCL instruction
- format
AP ARG, TAG
where TAG modifier camn be:

- S variable is amn argument
- SL variable is the last argument
- *§ the argument is an indirect address

- *SL the argument is an indirect and the last

Rev. 19.4 5 - 6 June, 1985

CEO0810

(2)

PRIMOS Procedure

THE CALLED SUBROUTINE

THE SUBROUTINE

 ARGT

Rev.

- does the last step of the PCL instruction

- executed only if a fault occurs during argument pointer
transfers

- must be present if the subroutine requires arguments

ECB ,

- generates an Entry Control Block (ECB) to define a
procedure entry point

- resides in a link frame

- format
LABEL ECB PFIRST, ,ARGDISP, NARGS, SFSIZE,KEYS
where

PFIRST - pointer to first executable statement

ARGDISP - displacement in the stack frame of the
argument list (default is “12)

NARGS - number of arguments to be passed

SFSIZE - stack frame size, the default is given
by the DYMN

KEYS - keys, the default is 64V

19.4 5 - 7 June, 1985

CEO810 -

Rev.

19.4

PRIMOS

(=}

— N OL P W -

- O

17

THE ENTRY CONTROL BLOCK

POINTER TO FIRST
EXECUTABLE STATEMENT
OF THE CALLED PROGRAM

SIZE OF STACK FRAME

STACK ROOT SEGMENT NO.

ARGUMENT DISPLACEMENT

NUMBER OF ARGUMENTS

LINKAGE BASE ADDRESS OF
THE CALLED PROGRAM

KEYS FOR THE CALLED PROGRAM

RESERVED
MUST BE ZERO

Procedure

June,

1985

CE0810 -

Rev.

19.4

PRIMOS

STACK

HEADER AND PCL STACK FRAME FORMAT

[P N =

~N~N o bbb wbh KO

10

12

POINTER TO THE NEXT
FREE FRAME

POINTER TO THE
EXTENSION SEGMENT

FLAGS -

STACK ROOT SEGMENT NUMBER

RETURN
POINTER

CALLER”S STACK
BASE

CALLER”S LINK
BASE

CALLER”S KEYS

WORD NUMBER AFTER PCL

POINTERS TO ARGUMENTS
(3 WORD INDIRECT ADDRESSES)

AND
DYNAMIC

VARIABLES

5 - 9

Procedure

June,

1985

CE0810 - PRIMOS Procedure

THE PCL MECHANISM

CALLING CALLING CALLED CALLED
PROCEDURE LINK LINK PROCEDURE
FRAME FRAME FRAME FRAME

—_—
Ecs
R SN |, P8 ARGT
L8 WN }

STACK SIZE

PeL T ~—a PIR _F 1 roor ses

” AP ARG. DISP

AP NO. ARGS.

LINK BASE
KEYS

STACK

FREE POINTER

EXTENSICN SEG

.
.-
.

FLAGS —-————— S8

STACK ROOT SEG. NO.

RETURN POINTER

CALLER’S S8

CALLER’S LB

CALLER’'S KEYS
WORD AFTER PCL

3 WORD INDIRECT

i ADRESS’S ¢
{ ' " DYNAMIC
\ VARIABLES

NEXT STACK FRAME

—t b
— I

Rev. 19.4 5 - 10 June, 1985

CE0810 - PRIMOS Exceptions

Section 6 - Exception Handling

Objectives: The student will be able to

explain what a fault is and how it is handled.
describe the actions of ring0 fault handlers.
describe the actions of ring3 fault handlers.
explain how conditions are handled.

track, with VPSD, a dynamic link being snapped.
examine DMSTK output to track a particular sequence
of events.

0O 00 000

Rev. 19.4 6 - 1 June, 1985

CE0810 - PRIMOS Exceptions

FAULT

A FAULT is a condition which has been detected as a result of the
currently running software and which requires software intervention.
A FAULT may be handled by the current software though most frequently
common supervisor code will handle the FAULT (e.g. Page Fault).

FAULTs are CPU events which are synchronous with and caused by
software.

Two data areas are used:

1). PCB FAULT VECTORs and concealed stack pointers
2). the FAULT TABLEs pointed to by the PCB vectors.

Therefore each process can define its own fault handlers and the
concealed stack allows FAULTS to be stacked. The PAGE FAULT has its

own vector and only one system-wide handler is used so all PAGE FAULT
vectors point to the same place.

Each FAULT TABLE entry consists of 4 words, of which the first 3 must
be a CALF instruction. The CALF (CALl Fault handler) instruction is
essentially a PCL (Procedure CaLl) instruction for the various Fault
handling routines. The PB and KEYS from the concealed stack are
placed in the Fault Handler”s stack frame along with other base
registers. The Fault Code and Fault Address are placed in words
‘12,713, “14 of the Fault Handler”s stack. The first word of the
new stack frame is set to a value of 1. This is to distinguish the
CALF stack frame from the normal PCL stack frame. The ECB (Entry
Control Block) addressed by the CALF must not specify any arguments.,
Return from the fault handler is by normal PRTN instruction.

Rev., 19.4 6 - 2 June, 1985

CE0810 - PRIMOS Exceptions
FAULT PROCESSING

TYPE OFFSET RING SAVED PB FCODE FADDR
RESTRICTED 0 CURRENT BACKED -- --
INSTRUCTLION
PROCESS 4 0 CURRENT ABORT --

FLAGS
PAGE 10 0 BACKED -- ADDRESS
SvC 14 CURRENT CURRENT -- --
UNIMPLEMENTED| 20 CURRENT BACKED CURRENT P EFF ADDRESS
INSTRUCTION COUNTER
SEMAPHORE 24 0 BACKED under = $0 SEMAPHORE
OVERFLOW] over = §1 ADDRESS
ILLEGAL 40 CURRENT BACKED CURRENT P EFF ADDRESS
INSTRUCTION COUNTER
ACCESS 44 0 BACKED -- ADDRESS
VIOLATION
ARITHMETIC 50 CURRENT CURRENT EXCEPTION OPERAND
EXCEPTION CODE ADDRESS
STACK 54 0 BACKED -- LAST STACK
OVERFLOW SEGMENT
SEGMENT 60 0 BACKED # too large ADDRESS
or Fault Bit
POINTER 64 CURRENT BACKED PTR 1lst ADDRESS OF
word PTR

Rev. 19.4 6 - 3 June, 1985

CE0810 - PRIMOS Exceptions

FAULT HANDLING
FAULT OPERATION

(EG. UII in Ring 3)

RING 3
rco FAULT TADLE
— FAULT
T—UANDLER
120 cont

FAULT VICTOR ¢

VAULCT VIiCT0I 1

RESTRVED

UAULT VECTOR 3

FIRST

NEXT

1LAST

"y

KLYS

FCONT

FADDR

CALF

ECD
T TN
SPp—y FLAGS
PR
KEYS
'12 FCONE
'13 :
i1 FADDR

Rev.

19.4

June,

1985

CE0810 - PRIMOS

THE FAULT FRAME HEADER

FFH

Exceptions

When a hardware fault occurs, a stack frame is created by the CALF

instruction for the fault handler.

dcl 1 £fh based, /*
2 flags,
3 backup inh bit(l), /*
3 cond_fr bit(1l), /*
3 cleanup_done bit(l),
3 efh_present bit(1l), /*
3 user proc bit(l), /*
3 stk_cbits bit(l), /*
3 1ib_proc bit(l), /*
3 ecb_cbits bit(l), /*
3 mbz bit(6),
3 fault_fr bit(2), /*
2 root,

3 mbz bit(4),
3 seg_nmo bit(12),
ret_pb ptr,
ret_sb ptr,
ret 1lb ptr,
ret_keys bit(1l6) aligned,
fault_type fixed bin,
fault code fixed bin,
fault addr ptr,
hdr reserved(7) fixed bin,
regs,
3 save_mask bit(l6) aligned,
3 fac_1(2) fixed bin(31),
3 fac_0(2) fixed bin(31l),
3 genr(0:7) fixed bin(31),
3 xb_reg ptr,
saved_cleanup_pb ptr,
2 pad fixed bin;

DO

N

Rev. 19.4 6 -

standard fault frame header */

will
will

will
will
will
will
will

will

be
be

be
be
be
be
be

be

’o’b */
’o’ */

rd P

\
\

\
\

\
(e«

)
ocoocuovoT

»

~

\

“10°b or

“01°b */

June,

1985

CE0O810 - PRIMOS Exceptions

RING 0 FAULT HANDLERS

The Fault Vector in the user”s PCB for RING 0O points to a fault table
called FAULT in segment 6. The fault table is defined in
PRIMOS>KS>ROFALT.PMA.

The following Fault Handlers exist in Segmment 6:
PROCESS FAULT
PAGE FAULT
UILI (UnImplemented Instruction)
ACCESS VIOLATION
STACK OVERFLOW
SEGMENT FAULT
POINTER FAULT

Any other Fault occurring in RING 0 (e.g. SVC, restricted instruction)
will cause the system to HALT. o

Rev., 19.4 6 -~ 6 June, 1985

CE0810 - PRIMOS Exceptions

PROCESS FAULT

1. Check Abort Flags
2. If any Abort Flag is set and aborts are enabled, call PABORT.

SYSTEM ABORT FLAGS - User 1

1 MINALM, ONE MINUTE (MINABT)
Dump any entries in LOGBUF to LOGREC
Update all disk buffers
Decrement auto-logout clocks and logout any USERs out of time.
Process USER 1 message buffer

2 SMLALM, SMLC (SMLCEX) Process SMLC requests

3 NETALM, NETWORK Process network requests (NETUSR at Revision 19)

4 LGIALM, LOGIN (WIRSTK) Lock USER stack, notify user (LOGLCK)

5 WRMALM, WARM START (WRMABT)
Initialize MPC, VERSATEC, and Magnetic Tape
Initialize network and AMLCs.

6 MSGALM, SUPERVISOR MESSAGE (Tl0U) Process USER 1 message buffer.

7 CHKALM, Sensor check has occurred.
Turn off como, turm on TTY
Print “PRIMOS SHUTTING DOWN DUE TO SENSOR CHECK” at comnsole
Print “NO COMMANDS ACCEPTED” at console
Dump any entries in LOGBUF to LOGREC
Flush LOCATE buffers
Logout all users except user 1, NETMAN, and FAM
Shut down disks
Print “SHUTDOWN COMPLETE” at console
Halt system

8 Not used

Rev. 19.4 6 - 7 June, 1985

CEG810 - PRIMOS Exceptions

PROCESS FAULT

USER ABORT FLAGS

16 TSEALM, TIME SLICE END (SCHED)
Place process on low priority or eligibility queue

14 TMOALM, FORCED LOGOUT (LOGABT)
Output message “TIMEOUT”, Signal “LOGOUTS$”

13 DISALM, AMLC DISCONNECT LOGOUT OR OPERATOR LOGOUT (LOGABT)
Output message “FORCE LOGOUT”, Signal “LOGOUTS$”

10 I0ALM, I/0 ALARM Call MTDONE

9 SWIALM, SOFTWARE INTERRUPT (SW$ABT) (formerly QUTALM)

15,12,11 Not Used

Rev, 19.4 6 ~ 8 June, 1985

—

CE0810 - PRIMOS Exceptions

SOFTWARE INTERRUPT HANDLING

MOTIVATION

Due to increased frequency of asynch events at rev 19; more
pressure on quit mechanism.

Ring 0 code had to explicitly inhibit process aborts.
Unexpected exit from many ring 0 routines before completion

produces non-reliable results.

Inhibiting quits would disable multiple process abort events.

IMPLEMENTATION

Rev.

BREAKS$ code reduced to only handle QUITS.
SoftWare Interrupt modules for rest of process aborts.
SWITYP flag word defines which event.

New mechanism defaults to inhibiting process aborts in ring 0.
Enabling quits in ring 0 must now be explicitly performed.

19.4 6 - 9 June, 1985

CE0O810 - PRIMOS Exceptions

SOFTWARE INTERRUPT HANDLING - Routines and Variables

BREAK$ - enable/disable QUITS aborts in ring 0
SWS$INT - process abort interrupt enable/disable control
SETSWI - store event bit in PUDCOM.SWITYP

SETABT - set user”s abort flags
SWSABT - fault handler for process aBorts

SWFIM_ - handles deferred ring 0 aborts on return to outer ring

SWSRST =~ called by SWFIM_ to reset ROSWIN, ROQUIT

Variables: SWITYp -

QUTINT EQU “100000 QUILT

CPUINT EQU “40000 CPU TIME WATCHDOG

TIMINT EQU “20000 REAL TIME WATCHDOG

LOGINT EQU -10000 FORCED LOGOUT

LONINT EQU ~4000 LOGOUT NOTIFICATION

CPSINT EQU ~2000 CROSS PROCESS SIGNALLING
IPCMWI EQU ~1000 IPC MESSAGE WAITING

WRMINT EQU “400 WARMSTART SOFTWARE INTERRUPT

ROSWIN - ring 0 software interrupt enable word
ROQUIT - ring 0 quit enable counter

Rev, 19.4 6 - 10 June, 1985

CE0810 - PRIMOS Exceptions

PROCESS ABORT HANDLING

RING 0, INTERRUPT DISABLED

RING O RING 3

1)
2)
3)
4)
5)

6)

Rev. 19.4 6 - 11 June, 1985

CE0810

PRIMOS

OTHER RING O FAULTS

Exceptions

UIL FAULT in ring 0 will HALT the machine except when operating
on a P400/350 using XVRY, ZMV, ZMVD, ZFIL, and ZCM which
simulated in a routine called ROUII in segment 6.

are

SEMAPHORE FAULT Save semaphore status information and HALT the

system,

ACCESS VIOLATION call SIGNAL$ called to output the message

"ACCESS VIOLATION RAISED AT"

STACK OVERFLOW call STKOVF,

"STACK-OVFS RAISED AT"

SEGMENT

SIGNAL$ “STACK_OVF$“, message

FAULT call GETSEG to either allocate a segment or call

SIGNALS

to output the message "ILLEGAL SEGNO$ RAISED AT

POINTER FAULT - Ring 0

1).
2).
3).
4).
5).
6).
7).
8).

Save user state

Pick up faulting pointer

Return if pointer is greater or equal 0

Erase fault bit

Error message if pointer is equal 0, or invalid
Call SNAP$3 to get new pointer

Snap link

If not found error message

POINTER FAULT outputs the message "POINTER-FAULT$ RAISED AT"

Rev. 19.4 6 - 12

June, 1985

CE0810 - PRIMOS Exceptions

RING 3 FAULTS

The fault vector in the user”s PCB for ring 3 points to a fault table
called R3FALT in segment 13.

The following fault handlers exist in segment 13:
RESTRICTED INSTRUCTION FAULT
SVC FAULT
UII FAULT
ILLEGAL INSTRUCTION FAULT
ARITHMETIC FAULT
STACK OVERFLOW FAULT
POINTER FAULT

Any other fault occuring in ring 3 is handled by the

ring 0 fau

RESTRICTED

1t handlers.

INSTRUCTION FAULT

Call PTRAP
l)o
2)-

3).

Svc
Entexr SVC

UII FAULT
Enter UIIL

in ring O
Read violating instruction and analyze.
If illegal or HALT instruction call SIGNALS$
to output the message “PROGRAM HALT AT°~
Simulate trapped I/0 instructions for

System console, CRTs

Paper tape reader/punch

Card reader

Control panel

fault handler to initiate SVC and pass arguments.

routine in segment 13 to software emulate the instruction.

ILLEGAL INSTRUCTION FAULT

Enter illegal instruction fault handler which signals “ILLEGAL-INST$.

ARITHMETIC FAULT

Enter arithmetic fault handler which signals ARITH$ condition.

Rev. 19.4

6 - 13 June, 1985

CEO08

STAC

10 - PRIMOS Exceptions

RING 3 FAULTS -

K OVERFLOW FAULT -

Call

STKOVF, (Automatic Ring 3 Stack Extension)

Examine stack frame prior to fault frame and determine stack root
segment.

It root is “6002 themn STK EX is called.

Otherwise condition 'STACE_OVF$' is signalled as before.

STK_EX .
Attempts to get a DTAR 2 dynamic segment.
If not possible calls FATALS.

Otherwise fixes up stack extension ptr to point to new segment, —
and returns.

POINTER FAULT -

Rev.

1). Save user state
2). Clear fault bit
3). 1If bad pointer - signal POINTER-FAULTS
4). Call LN_SLIB to initiate the search to snap the link:
a) Call SNAPSO to check if the routine is a RO gate routine,
and if it is, return ECB address.
b) Call SNAP$3 to check if the routine is an “All Rings
Callable” routine, and if it is, return ECB address. -
¢) Call LN EPF or LN STAT based on user”s search list, to
check if the routine is in an EPF library or a static mode

library, and if it is, return ECB address.

5). If ECB address found, replace faulty pointer (i.e., snap the
link) and execute the PCL again.

If ECB address not found, signal LINKAGE_FAULTS.

If an error occurred while attempting to resolve the faulty —
reference, signal LINKAGE_ERRORS.

CE0O810 - PRIMOS Exceptions

DIRECT ENTRANCE CALLS

The direct entrance call (DEC) mechanism provides a form of dynamic
linking using the standard Procedure CaLl (PCL) instruction (V-mode
only) and the indirect memory address pointer. The purpose of the

DEC is to provide an efficient mechanism for application and system
programs to call procedures that are part of the operating system or
shared libraries. The DEC provides a mechanism to share a single

copy of a procedure among all users on the system. These procedures
do not have to be relinked for a different revision of PRIMOS, since
the address linkage to the procedure is not made until execution time.

A special form of object module, called a DYNT, is created by
assembling a PMA program that has the form:

SEG
SYML

DYNT procedure_name
END

When the SEG or BIND loaders encounter this structure they put an
indirect pointer in the link frame of the calling procedure that has
the fault bit set which points to a location in the procedure area

where SEG or BIND has put the name of the direct entrance call and
the length of the name.

At execution time when the call is made, the fault bit causes the
hardware to detect a pointer fault and enter the pointer fault
handler. The pointer fault handler attempts to resolve the address
linkage to the called procedure by searching lists of ECBs (entry
points) to the direct entrance callable routines. If the ECB is
found, the address pointer to the procedure is stored back in the
pointer that originally caused the fault, the fault bit is erased and
the call is reexecuted (without the fault).

Rev. 19.4 6 - 15 June, 1985

CE0810 - PRIMOS Exceptions

VITAL STATS FOR DIRECT ENTRANCE CALLS IN RING 3

Ring 0
Hash Table Generator - PRIMOS>HASH>GENERATE HASH TABLE.SPL
Hash Table Entry Names - PRIMOS>KS>GATE TABLE HASH
Hash Table - PRIMOS>KS>GATE HTB.PMA
Routines - PRIMOS>R3S>R3FALT.PMA (pointer fault
handler)
- PRIMOS>R3S>LN SLIB.PLP
- PRIMOS>KS>SNAP$0.PLP
- PRIMOS>R3S>SEARCH_HASH_TABLE$.PLP
(SRCHS$HTB)
- PRIMOS>R3S>FIND$BKT.PLP
- PRIMOS>R3S>HASH UID.PLP
Memory Location - Segment 5 -

All Rings Callable

Hash Table Gemerator - PRIMOS>HASH>GENERATE_HASH_TABLE.SPL

Hash Table Entry Names -~ PRIMOS>R3S>RING3_ENTRY_TABLE_HASH

Hash Table - PRIMOS>R3S>R3ENTS.PMA

Routines - PRIMOS>R3S>R3FALT.PMA (pointer fault
handler)

- PRIMOS>R3S>LN_SLIB.PLP
- PRIMOS>R3S>SNAP$3.PMA
- PRIMOS>R3S>SEARCH HASH_TABLE$.PLP
(SRCH$HTB) -
- PRIMOS>R3S>FINDS$BKT.PLP
- PRIMOS>R3S>HASH_UID.PLP
Memory Location - Segment 13

Static Mode Libraries

Hash Table Generator - DIRECV>HASHER.FTN

Hash Table Entry Names - HTAB (Each library that is to be shared
has a table called HTAB in its source
file UFD.)

Hash Table - HTAB (DIRECV>R3POFH.PMA -- There will

be a copy of this procedure, each with
its own HTAB for each shared library
installed.)
Routines - PRIMOS>R3S>R3FALT.PMA (pointer fault
handler)
- PRIMOS>R3S>LN_SLIB.PLP
- PRIMOS>R3S>LN_STAT.PLP (LIBTBL)
DIRECV>R3POFH.PMA (HTAB)
Memory Location - Segment 2xxXx

Rev. 19.4 6 - 16 August, 1985

CE0O810 - PRIMOS Exceptions

VITAL STATS FOR DIRECT ENTRANCE CALLS (CONT”D)

EPF Libraries

Hash Table Generator - BIND loader

Hash Table Entry Names - Input to the BIND loader

Hash Table - Internal to Library

Routines - PRIMOS>R3S>R3FALT.PMA (pointer fault
handler)

- PRIMOS>R3S>LN SLIB.PLP
- PRIMOS>R3S>LN EPF.PLP
- PRIMOS>R3S>EPF SRCH.PLP
- PRIMOS>R3S>KTRANS.PMA
Memory Location - Segment 4xxx

Rev. 19.4 6 - 17 June, 1985

CEO810 -

PRIMOS

ENTRY FORMAT ------

Rev.

19.4

PRIMOS HASH TABLE FORMAT

e A R R I I T T T T T T i

POLNTER TO FIRST NAME IN
NAME TABLE

| POINTER TO |
| NAME |

el A A R R R R et T T T T T T T
L i I R R R I el e T N i,

| POINTER TO |
| DATA (e.g., ECB ADDRESS) [

Exceptions

June,

1985

CE0810 - PRIMOS Exceptions

STATIC MODE LIBRARIES - LIBTBL

LIBTBL is a table that contains address pointers to the search
routines for the various static mode libraries. Entries in LIBTBL
are generally made according to the package number.

LIBTBL -=> =~c-ccmemcccccccrccccrccncnccnna-
A(ECB) FOR THE R3POFH
FOR PACKAGE #1

A(ECB) FOR THE R3POFH
FOR PACKAGE #2

| A(ECB FOR THE R3POFH
| FOR PACKAGE #32

Rev. 19.4 6 - 19 June, 1985

CE0810 - PRIMOS

CONDITION MECHANISM

MOTIVATION

-~ system software error handling
-~ manage reentrant/recursive command environment
- user program error (and event) handling

-~ support ANSI PL/l condition mechanism

IMPLEMENTATION

Rev.

- extended stack header

- on-unit descriptor block (on stack)

- condition frame header (on stack)
- fault frame header (on stack)
19.4 6 - 20

Exceptions

June,

1985

CE0810 -~ PRIMOS Exceptions

CONDITION MECHANISM - DEFINITIONS

CONDITION - an unscheduled event

ON-UNIT - a procedure to handle an event

MAKE ON-UNIT - turn on event handler for this activation

REVERT ON-UNIT - turn off event handler for this activation

SIGNAL - telling the world the event happened
RAISE - procedure which searches the stack for the ON-UNIT
CRAWL__ - procedure which switches from inner ring to ring 3 stack

NON-LOCAL-GOTO - a goto to a predefined label not in this activation

DEFAULT ON-UNIT - one example of system use of conditiom mech.

CEO810 -

PRIMOS

Exceptions

THE EXTENDED STACK FRAME HEADER - EFH

Any procedure which is to create one or more on-units must reserve

space in its stack frame for an extension that contains descriptive
information about those on-units.

Most of the compilers that support

the condition mechanism will automatically allocate this extra space.

decl 1 sfh based, /*

2 flags,

3 backup_inh bit(1l), /*

3 cond fr bit(l), :

3 cleanup dome bit(l),

3 efh_pregent bit(1l), /*

3 user_proc bit(1l),

3 stk_cbits bit(l), /*

3 1ib_proc bit(l), /*

3 ecb_cbits bit(l), /*

3 mbz bit(6),

3 fault_fr bit(2), /*
2 root,

3 mbz bit(4),

3 seg_mno bit(l2), /*
2 ret_pb ptr, /*
2 ret_sb ptr, /*
2 ret_1b ptr, /*
2 ret_keys bit(l6) aligned, /*
2 after pcl fixed bin, /*
2 hdr_reserved(8) fixed bin,
2 owner_ptr ptr, /*
2 tempsc(8) fixed bin, /*
2 onunit_ptr ptr, /*
2 cleanup onunit ptr ptr, /*
2 next_efF ptr, /*
2 spl_1lib_scratch(6) fixed bin,
2 cond_bits bit(l6) aligned; /*

Rev.

19.4

stack frame header */

inhibit crawlout-backup of pb */

extension to frame is here */

stack has valid cond bits =*/
is a library procedure */
ecb has valid cond bits */

“00°b -> pcl frame */

seg number of root of stack
caller”s return point */
caller”s stack frame */
caller”s link frame */
caller”s keys */

relp to <pcl_imstr> + 2 */

*/

ptr to ecb that created frame */

standard shortcall temps */
first ODB on the chain */

null if no cleanup onunit */
points to next exten headers

PL1 condition enable bits */

June,

*/

1985

CEQ0810 - PRIMOS

THE ON-UNIT DESCRIPTOR BLOCK - ODB

Exceptions

Each on-unit created by an activation is described to the comndition

mechanism by a descriptor block (except for CLEANUPS).

These

descriptor blocks for a given activation are chained together in a
simple linked list.

dcl 1 onub based,

Rev.

2 ecb_ptr ptr,
2 next ptr ptr,
2 flags,
3 not reverted bit(l),
3 is_proc bit(l),
3 specify bit(l),
3 snap bit(l),
3 mbz bit(1l2),
2 pad fixed bin,
2 cond name ptr ptr,
2 spec?fier_ptr;

19.4

/*
/*
/*

/*
/*
/*
/*

/*

standard onunit block */
ecb to call on invocation */
next ODB in this activation ¥/

ignore if “0°b */
“0"b->is begin block(pll onunit) */
check onub.specifier if omn */
snap option requested */

must

be 0 */

/* ptr to char(32) var cond name */

/*

ecgo

23

file desc ptr for

“"endfile"

June,

*/

1985

CE0810 - PRIMOS

Exceptions

THE CONDITION FRAME HEADER - CFH

SIGNL$ takes its own standard PCL stack frame and turns it into a
condition frame for the condition being signalled.

dcl 1 c¢fh based,
2 flags,

3 backup_inh bit(l),
cond_fr bit(l),
cleanup_done bit(l),
efh present bit(l),
user_proc bit(l),
stk_cbits bit(l),
lib_proc bit(l),
ecb cbits bit(l),
mbz bit(6),
fault fr bit(2),

2 root, -
3 mbz bit(4),
3 seg_no bit(1l2),
ret_pb ptr,
ret sb ptr,
ret 1b ptr,

LWLWbwbwwowLww

after_pcl fixed bin,

owner_ptr ptr,

cflags,

crawlout bit(l),
continue sw bit(l),
return_o? bit(l),
inaction_ok bit(l),
specifier bit(l),
ring limit bit (2),

DRI DNDNN

W wwwww

3 sou_crash bit (1),

/*

/*
/*

/*
/*
/*
/*
/*

/*

ret:keys bit(l6) aligned,

hdr_reserved(8) fixed bin,

3 sou comp hndld bit (1),

3 mbz bit(7),
version fixed bin,
cond_name_ptr ptr,

info_ptr ptr,

ms_len fixed bin,
info len fixed bin,
saveE_cleanup_pb ptr;

OSBRI S S S

Rev. 19.4 6

stand

will
will

will
will
will
will
will

will

/*0
1
2
3
/*sou
/*sou

[. |

/* in

24

ard condition frame header */
be “0°b */
be “1°b */
be “0°b */
be “0°b =*/
be “0°b */
be “0°b */
be “0°b */

be “00°b */

no ring limit

ring 1 limit

ring 0 limit

ring 3 limit for signals*/
crash indicator¥*/

hndld not to df unit*/

it(l) =/

ms_ptr ptr, /* machine state at time of signal */

June, 1985

CEO810

OK, seg
This 1is
This is

OK, seg
This 1is

QUIT.

0K,

DMSTK

PRIMOS

sleep
SLEEP.FTN,
SLEEP.FTN,

sleep
SLEEP.FTN,

DMSTK OUTPUT

going to sleep for
finished sleeping,

one minute
exiting

going to sleep for one minute

-ALL -ON UNITS

Backward trace of stack from frame 1 at 6002(3)/7756.

STACK SEGMENT IS 6002.

(1) 007756:
Called from 13(3)/110567;

(2)

(3)

(4)

(5)

(6)

(7)

(8)

Rev.

006700:
Called from 13(3)/107765;

004440
Called from 13(3)/10516;

003706:
Called
Onunit
Onunit
Onunit

003370:
Called
Onunit
Onunit
Onunit
Onunit
Onunit

003344
Called

002560:
Called from 13(3)/52601;

002460
Called from 13(3)/51651;

19.4

Owner= (LB= 13(0)/13540).

returns to 13(3)/110573.

Owner= (LB= 13(0)/112404).

returns to 13(3)/107771.

Owner= (LB= 13(0)/112404).

returns to 13(3)/10536.

Owner= (LB= 13(0)/13540).

from 13(3)/3123; returns to 13(3)/3135.
for "CLEANUPS$" is 13(3)/1l4541.

for "STOPS$" is 13(3)/14341.

for "SUBSYS_ERR$" is 13(3)/14361.

Owner= (LB= 13(0)/4162).

from 13(3)/104526; returns to 13(3)/104532.
for "CLEANUPS$" is 13(3)/4714.

for "ANYS$"™ is 13(3)/77424.

for "LISTENER_ORDER$" is 13(3)/4754.

for "“SETRCS$" is 13(3)/4734.

for “"REENTER$"™ is 13(3)/4774.

Owner= (LB= 13(0)/104142).

from 13(3)/63426; returns to 13(3)/63430.

Owner= (LB= 13(0)/66176).

returns to 13(3)/52605.

Owner= (LB= 13(0)/52316).

returns to 13(3)/51663.

25

/*
/*

/*
/*

/*
/*
/*

/*
/*
/*

/*

/*

Except

normal
execution

control P
typed

ions

STD$CP
(INTERNAL_
EXECUTER)

CP_ITER
(LIGASE)
CP_ITER

STD$CP

LISTEN_

/* COMLVS$

/* DF_UNIT_

/* RAISE_

June, 1985

CEO810 -

(9) 002332:

(10) 002130:
Called from 4001(3)/1043;

STACK SEGMENT IS 4001.

GRO
L,GR2

GR4

GR6
FARO 0(0)/0
FAR1 0(0)/0

QO OO

Owner=

(11) 001174:

STACK SEGMENT IS 4000.

Owner=

(12) 150062:
Called from 4000(3)/1723;
Proceed to this activation is prohibited.

(13) 150012:
Called from 4000(3)/1100;
Onunit for "CLEANUPS"

(14)

Rev,

150000:
Called from 0(0)/177776;

19.4

Owner=

Owner=

Owner=

DMSTK OUTPUT (CONT”D)

type

CoOooCo

(LB=

(LB=

"PROCESS"

0
0
0
0

CONDITION FRAME for "QUITS";
Condition raised at 6(0)/3421;

(Crawlout to 4001(3)/1043; LB= 4002(0)/177400.)
Inner ring fault:

Exceptions

returns to 13(3)/56625.

LB= 6(0)/3300,

(4); code=

000000

Registers at time of fault in inmner ring:

Save Mask= XB= 6(0)/1402

GR1

E,GR3
Y,GR5
X,GR7?

13(0)/56236).
returns to 4001(3)/1043.

(LB= 4000(0)/5064).
returns to 4000(3)/1102.
is 4000(3)/62470.

26

0 FRO
0 FR1

(LB= 4002(0)/177400).
Called from 4000(3)/61677;

(LB= 4000(0)/61364).

returns to 4000(3)/1725.

4002(0)/177400).
returns to 0(0)/0.

000200;

CcCocCo

/** CONTROL P TYPED HERE **/

014000

addr= 0(0)/0

[~ NNl e]
O OO

0.00000000E 00
0.00000000E 00

/* CRFIM_ -

/* SLEEP.FTN

returns to 4000(3)/61701.

/* SEG(VRUNIT) -

/* SEG(MAIN)

/* INVALID FRAME
/* SETUP BY SEG

June, 1985

CE0O810 - PRIMOS Exceptions

DMTSK OUTPUT (CONT”D)

STACK SEGMENT IS 6002.

(15) 001666: Owner= (LB= 13(3)/31746). /* INVKSH_
Called from 13(3)/13174; returns to 13(3)/13216.
Onunit for "CLEANUPS" is 13(3)/32433.
Onunit for "ANYS$" is 13(3)/32413.

(16) 001506: Owner= (LB= 13(0)/13540). /* STDS$CP
Called from 13(3)/12114; returns to 13(3)/12120. /* (SM_EXECUTER)

(17) 000764: Owner= (LB= 13(0)/13540). /* STDS$CP
Called from 13(3)/3123; returns to 13(3)/3135.
Onunit for "CLEANUPS$" is 13(3)/14541.
Onunit for "“STOPS$"™ is 13(3)/14341.
Onunit for "SUBSYS_ERR$" is 13(3)/14361.

(18) 000446: Owner= (LB= 13(0)/4162). /* LISTEN_
Called from 13(3)/152454; returns to 13(3)/152460.
Onunit for "CLEANUPS$" is 13(3)/4714.
Onunit for "ANYS$" is 13(3)/77424.
Onunit for "LISTENER ORDERS"™ is 13(3)/4754.
Onunit for "SETRCS$" is 13(3)/4734.
Onunit for "REENTERS$" is 13(3)/4774.

(19) 000440: Owner= (LB= 13(0)/152074). /* INFIM_
Called from 1(0)/152456; returmns to 1(0)/0.

Rev. 19.4 6 - 27 June, 1985

CE0O810 - PRIMOS Exceptions

SOFTWARE INTERRUPT HANDLING and CONDITIONS

RING 0, INTERRUPTS ENABLED

RING 0 RING 3
8 1
9 2
10 3
11 | 4
12/13 5
14 6
7
13
15
16
17
18
19
Rev. 19.4 6 - 28 June, 1985

CE0810 - PRIMOS Exceptions

SOFTWARE INTERRUPT HANDLING and CONDITIONS

RING 0, INTERRUPTS ENABLED

1) 8)
2) 9)
3) 10)
4) 11)
5) 12)
6) 13)
7) 14)

Rev. 19.4 6 - 29 June, 1985

CE0810 -

Rev.

15)

16)

17)

18)

19)

19.4

PRIMOS

SOFTWARE INTERRUPT HANDLING and CONDITIONS (CONT“D)

Exceptions

RING 0,

INTERRUPTS ENABLED

June,

1985

CE0810 - PRIMOS Exceptions

LOGOUT$ CONDITION

A forced logout will result in SETABT setting the DISALM PCB abort
flag or the TMOALM PCB abort flag. This will be intercepted by PABORT,
which in turm calls LOGABT.

There are five cases:

(1) forced logout (either by operator or AMLC disconnect)
(2) cpu time limit exceeded

(3) inactivity time limit exceeded

(4) login time limit exceeded

(5) grace period to process LOGOUT$ condition exceeded

When (1) - (4), LOGABT will

(a) inhibit process aborts

(b) set login time limit to (grace period)
(c) call SETSWI(LOGINT)

(d) call SETABT(SWIALM)

(e) enable process aborts

(f) call SW$SABT to signal LOGOUTS

When (5), log the process out immediately.

Rev. 19.4 6 - 31 June, 1985

CE0O810 - PRIMOS Exceptions

LOGOUT$ CONDITION - GRACE PERIOD

If the user process has a handler for LOGOUT$, then there will be
(grace_period) minutes left in which to tidy up the environment
before the final logout.

Otherwise, DF_UNIT_ will simply print the error message and call
LOGOUS.

when (login_limt)

call ioca$(“login time limit exceeded”)
when (cpu limit)

call_ioa$(’cpu time limit exceeded”)
when (timeout)

call ioca$(" maximum inactive time limit exceeded”)
otherwise

call ioa$(“forced logout”)
call logou$;

LOGOUS$ (LoGouT)
call internal routine LOGMSG to Print message to system comnsole
and user terminal.

If a phantom, queue Logout Notification (LON) message to spawner.

Rev. 19.4 6 - 32 June, 1985

CE0O810 - PRIMOS Exceptions

CRAWLOUT

Crawlout occurs when the end of an inner ring stack has been reached
by the condition mechanism without handling the condition.

Control always orginates in an outer ring, the end of an inner ring
stack is threaded to an outer ring stack. The condition mechanism
continues the stack search across the connection and back down the
outer ring stack. Crawlout is the mechanism which copies the
information describing the condition to the outer ring and resignals.

When RAISE reaches the end of the inner ring stack, it returns to
SIGNLS$ with the CRAWLOUT NEEDED flag set, a pointer to the last stack
frame on the inner ring (CRAWL FRAME) and a pointer to the most
recent inner ring stack frame in which the registers are saved.

SIGNL$ calls CRAWL defining the crawlout fault interceptor module
(CRFIM_). The stack frame on the outer ring is the target frame.

CRAWL_checks the space needed in the outer ring stack for the target
ring stack and copies the neccessary information into the target
stack. The return information in CRAWL FRAME is adjusted to appear as
though it was called from the target frame.

UNWIND is called to unwind the stacks. A procedure return is then
invoked to CRFIM .

CRFIM calls SIGNL$ to signal the condition in the outer ring and the
on-unit will invoke the next LISTEN_ level.

Rev. 19.4 6 - 33 June, 1985

CEO810 -

Rev.

19.4

PRIMOS

34

Exceptions

June, 1985

CE0810 - PRIMOS Command

Section 7 - Command Environment

Objectives: The student will be able to

o describe how a command is executed

Rev. 19.4 7 - 1 June, 1985

CE0810 - PRIMOS

EXTENDED FEATURES

Command

- Command processor enhanced to support following extended features:

simple iteration

wildcard expansion
treewalking

name generation

special reserved arguments

- All above are processed by c.p. itself.

Enabling of individual features may be selected in various ways:
CPL - defined to have c.p. do simple iteration only
Static Programs - all features enabled unless special names:

NW$ - no wildcard or equalname

NX$ - only simple iteration

EPF - enabled features specified at BIND time and stored in file

Internal Commands - enabled features specified in internal command

table

ReV. 1.9.4 7 - 2 June,

1985

CE0810 - PRIMOS

CP_ITER

Pass 1

Pass 11

Pass II11

ITR_WLDT

ITR_WLDC

EQUALSP

EQUALS

Rev. 19.4

EXTENDED FEATURES

Command

main routine which processes extended features
makes three passes over command line to verify

syntax, expand iteration, process options

parses command line into 2 level tree
each node represents a token
2nd level for simple iteration tokens

repeated while iteration in progress
convert tree into simple threaded list
expand dot products

call DCOD ITR to find type of token (e.g.
wildcard,—wildtree, control, equalname)

repeated while iteration in progress
verify only one wildcard/tree per line
find location of wild tokens

if wildtree call ITR WLDT

if wildcard call ITR WLDC

if no wilds call LIGASE

free all temporary storage

expands wild trees

uses control args if supplied
calls ITR WLDC if wildcards, or
“executer’ to execute each match
recurses when required

expands wild cards

uses control args if supplied

asks user for verificationmn if reqd
calls “executer” to execute each match

special routine for c.p.
splits pathnames into dir and entry
calls EQUALS to match names

parse generation pattern components
process “commands” in components
build generated name by concatenation

June,

1985

CE0810 - PRIMOS Command

EXTENDED FEATURES

LIGASE (internal to CP_ITER)
- follows assembled node list concatenating
tokens to form command line
- calls EQUAL$P to process name generation
- call “executer” routine to execute line

SM_EXECUTER (internal to STD$CP)

- executes static mode command
- calls INVKSM_

CPL_EXECUTER (internal to STD$CP)
- executes CPL command
- calls ICPL_

INTERNAL _EXECUTER (internal to STD$CP)
- executes an internal command
- calls appropriate routine directly

RUN_EXECUTER (internal to STDS$CP)
- executes an EPF
- calls EPF$MAP to map in procedure
EPFSALLC to allocate linkage
EPF$INIT to initialize linkage
EPFSINVK to execute EPF

Rev. 19.4 7 - 4 June, 1985

CE0O810 - PRIMOS Command

BUILDING THE COMMAND LINE

INFIM_

P R C L Em L tm e ¢ eI CeE B se e e CEEE e el s e teee Wt s e soe s mese:

CALL CLSGET

CALL C1INS

yes

N ENOTIFY i

ABBREVIATION
CPL
PREPROCESSING |

i . DF-UN] T- Q--;---s-.-'-.-o.-n

CaLL
STDsCP

Rev. 19.4 7 - 5 June, 1985

CEQO81C - PRTMOS

Command

"COMMAND LINE DATA - CLDATA

This situuie structure defines the current state of a process” ring3
coumand epvironment. The location of this static data block is
defileed in Lith the ring0 and ring3 operating system loads.

QCO?W(L

del 1 clasva a2zt static, ! /* command loop data */
2 axii sb ptr options(short), /* to find stack 3 at exit

from SM procs, PUSHED */
2 »x?i 1b ptr options(short), /* to find stack_3 at exit
: from SM procs, PUSHED =/

2 uwse: number fixed bin(1l5), . /* system user id */
4 svesw bit(1l6) aligned, /* virtual svc control */
2 fiags,
3 veady_omn bit(l), /* enable ready msgs */
4 Lﬁady br bit(l), /* short ready msgs */
1 dbg_mode bit(l), /* “1°b->debugger in use */
3 abbrev_on bit(l), /* “1°b->use abbrev cmd proc */
3 sm_used bit(l), /* “1°b->SM used at this lvl %/
3 ~bhrev_ver bit(l), /* “1°b->print expand cmd ln */
3 mdz bit(l0),
2 ¢om iine char(160) var, /* command line buffer %/
2 cow line _8ize fixed bin(1l5), /* (size(com_line)-1)%2) =/
2 com,~arse data fixed bin(15), /* parse data for SM rdtk$$ w/
? preg session_depth fixed bin(15),/* breadth of command env. */
7 sm tault fr ptr options(short), /* to SM ffh at this lvl =/
2 pr«v smff ptr options(short), /* to SM ffh of prev lvl =/
2 lave?! fixed bin(15), /* current cmd lvl,PUSHED */
7 vvee, /* the sm state vector */

1 svart_addr fixed bin(l5),

! eand addr fixed bin(15),

3 keys bit(1l6) aligned,

2 n: ptr options(short),

¢ ptr options(short),

15 ptr options(short),

3 cags, , /* in rsav format =/
4 save mask bit(1l6) aligned,
4 facl(2) fixed bin(31),

fac0(2) fixed bin(31),

% genr(0:7) fixed bin(31),
% xb ptr options(short),

5 s g

Reve 19.4 ' 7 - 6 June, 1985

CE0O810 - PRIMOS Command

/*

/*

/*

/*

COMMAND LINE DATA - CLDATA (CONT”D)

2 abbrev, /* data for the abbrev c.p. */
3 segptr ptr options(short), /* ptr to live abbrev tbl seg */
3 treename char(80) var, /* abbrev file */

2 sm_err_code fixed bin(l5), /* for static mode */

2 cpu secs fixed bin(15), /* cpu meter, seconds */

2 cpu ticks fixed bin(1l5), /* cpu meter, secs/330 */

2 io secs fixed bin(1l5), /* io meter, seconds */

2 io:ticks fixed bin(1l5), /* io meter, secs/330 */

Command processor to call upon. Must agree with DCL for
entry variable STDSCP in the routine INITS$3. */

2 command_processor entry (char(*) var, fixed bin(15),
fixed bin(15), 1, 2 bit(l) aligned, 2 bit(l), 2 bit(la),
ptr options(short), ptr options(short)) variable,

Command line reader to call upon. Must agree with DCL for
entry variable CL$GET in the routine INITS$3. */

2 command_line_reader entry (char(*) var, fixed bin,
fixed bin) returns (bit(l6) aligned) variable,

Command prompt routine to call upon. Must agree with DCL for
entry variable READY$ in the routine INITS$3. */

2 command_prompt entry (bit(lé6) aligned, fixed bin) variable,

ready like ready message, /* Ready msg information */
warning like ready message, /* Warning msg information */
error like ready_stsage, /* Same for errors */
static_on_units (10), /* list of 10 sous*/

3 sou_ecb ptr options(short), /* ptr to ecb*/

3 sou_status fixed bin(l5), /* sou_status and cntr*/

search list ptr ptr options(short), /* search list head ptr */
smt__ list pt? ptr options(short),/*ptr to list of active EPFs*/
epf cache _hd_ptr ptr options(short), /* EPF cache head ptr */
epf_ “cache tl _ptr ptr options(short), /* EPF cache tail ptr */
epf_cache_count fixed bin(1l5), /* EPF cache counter */

~ o~

NN

[SCR U SR S

~ o~

The first stack frame beginneth here. */

2 first _fr fixed bin(1l5);

Rev. 19.4 7 - 7 June, 1985

CE0810 -

Rev.

PRIMOS

STANDARD COMMAND PROCESSOR STDS$CP

Command

MAKE ON-UNITS
HANDLE SYNTAX SUPRESSOR
HANDLE MWULTIPLE COMMANDS

REMOVE NMALL STRINGS
PARSE

EVALUATE VARIABLES, FUNCTIONS

.__

1 | o 1
CALL EPFSMAP
TURN OFF WILDC. IF NEEDED,CP_ITER CK FOR NWS, NXS
IF NEEDED,CP_ITER EPFSALLC IF NEEDED,CP_ITER
CALL ICPL EPFSINIT CALL INVKSH_
EPF S INWK
SELECT

(SUFFIX USED)

19.4

June,

1985

CE0810 - PRIMOS

Section 8 - Executable Program Format Files

Objectives: The student will be able to

o name the data structures created by BIND

describe the phases in the life of am EPF

o explain how the BIND-created data structures are used in EPF
startup ’

o explain the data structures built by PRIMOS to manage EPFs

©

Rev. 19.4 8 - 1 August,

EPFs

1985

CE0O810 - PRIMOS

STATIC VS DYNAMIC RUNFILES

EPFs

STATIC

DYNAMIC

+.SEG, .SAVE

.RUN

SEG or LOAD loaders

BIND loader

Uses the same static segments
for every invocation as
assigned by SEG/LOAD

Uses available dynamic segments
for every invocation as assigned
by PRIMOS

Contains virtual addresses

Contain EPF Relocatable Pointers
ERPs

Contains procedure and linkage

images

Contains procedure image and a

Entire runfile is read into
memory and paging space
allocated

description of the linkage area(s)
Procedure images mapped to memory
via VMFA, required linkage is
built, and paging space

allocated for linkage; procedure
read into memory as needed

User manages address space

PRIMOS manages address space

Limited restartability of
command environment

Full restartability of
command environment

Uses private stack (4xxx)

Uses command processor stack

Must be explicitly shared

Are implicitly shared

Rev. 19.4

2 August, 1985

CE0810 - PRIMOS EPFs

EXECUTABLE PROGRAM FORMAT - EPF

The Executable Program Format (EPF) implements a new program object
representation for V-mode programs. EPFs, unlike static mode runfiles
which have their virtual addresses assigned by the loader/linker, are
not associated with virtual addresses until runtime. Therefore, the
format of a .RUN file as well as the steps taken to execute it

greatly differ from its static mode counterpart.

+ +
1. VCIB EPF identifier
size of this file
size of linkage to build
ERP (rel ptr) to CIB

+ +
2., PROCEDURE IMAGE procedure image 1
procedure image n
+ +
3. CIB ERPs to rest of the EPF

file structure :

* linkage description
* library info block
* DBG info block

* misc., info blocks

+ +
4. LINKAGE DESCRIPTION |LTDl =--> lte list
-=-> dtb list

LTDn --> lte list
-=-> dtb list

+ +

5. LIBRARY INFORMATION |search type

size of table

ent pt table ptr

entries in table

+ +
6. MISC. INFO command line options
comments
etc.
+ +
7. DBG INFO | |
+ +

Rev. 19.4 8 - 3 August, 1985

- 1MOS

s o m em . m owe s

S e W e

s o e mm oo

EPF LOGICAL STRUCTURE

| lte | | 1lte |
| dtb | | dtb |
| 1lte |
| ded |

8 - 4

August,

EPFs

1985

CE0810 - PRIMOS EPFs

THE VERY CRITICAL INFORMATION BLOCK - VCIB

The information stored by BIND in the VCIB is critical to PRIMOS
in the initial phase of EPF invocation. Hence, the VCIB comes
first in the EPF runfile.

1 7 8 16
| STARTING ADDRESS | ----> always -1 for an EPF
| ENDING ADDRESS | ----> always 0 for an EPF
| TYPE | VERSION # | =----> types:
1 = prog_always_reinit
| # SEGS NEEDED FOR RESUME | 3 = process class library

4 = program:classzlibrary

| # OF LINKAGE AREAS |

| # SEGS NEEDED FOR DBG |

| CIB

| ERP

Rev. 19.4 8§ - 5 August, 1985

CEO810 -

PRIMOS

THE CRITICAL INFORMATION BLOCK

CIB

EPFs

The information stored in the CIB by BIND allows PRIMOS to access the
many elements,

contained within the EPF runfile.

such as the starting ECB and the linkage descriptors
The CIB is accessed during the

various phases of EPF startup.

Rev.

19.4

VERSION OF CIB |

STARTING

ECB ERP

ERP TO

LTDS LIST

LIBRARY ENTRY

POINT TABLE ERP

DBG INFORMATION

ERP |

~ o~ ~ e~

| CMD PROC FEATURES FLAGS |

L A
| |

| ADDITIONAL INFORMATION |

| ERP

August,

1985

CE0810 - PRIMOS EPFs

THE LINKAGE DESCRIPTION

The linkage area(s) of an EPF are constructed at runtime from a
“description” created by BIND. The description consists of three
types of data structures: LTDs, LTEs, and DTBs.

Linkage Template Descriptor (LTD)

o Describes a linkage area

o Contains the following information:
o Size of the linkage area
o ERP to its list of LTEs
o ERP to its list of DTBs

Linkage Template Entry (LTE)

o Describes one type of data
o Types of data include:
o ECBs
IPs
Faulted IPs
Static data
Repeated data

o O © ©O

Data Template Block (DTB)
o Contains the actual data described
by a corresponding LTE

Rev. 19.4 8§ - 7 August, 1985

CEO810 -

PRIMOS EPFs

THE LIFE OF AN EPF

The life of an EPF can be viewed in phases:

Rev.

o

o

19.4

Mapping the procedure segment(s) to memory (EPF$MAP).
Allocating the necessary memory for linkage (EPF$ALLC).

Initializing the linkage area(s) and relocating all addresses
(EPF$INIT).

Invoking the EPF (EPF$INVK).

Deleting the EPF from memofy (EPF$DEL).

8 - 8 August, 1985

CE0810 - PRIMOS EPFs

THE ACTIVE SEGMENT TABLE - AST

In order to keep track of the EPF procedure segments currently in
memory, PRIMOS maintains the Active Segment Table (AST). The AST
consists of entries (ASTEs), one for each EPF procedure segment
currently in memory. The number of ASTEs is determined by the
setting of the config directive, NVMFS. The AST resides in segment
l4. Following is the format of an ASTE.

1 7 8 ' 16

ADDRESS OF PAGE
MAP

|DEVICE NUMBER|HI-ORD 8B BRA |

| LOW ORDER 16 BITS BRA |

| PREV RA | NEXT RA |

ILOW 16 BITS - PREDECESSOR RAI

| LOW 16 BITS - SUCCESSOR RA |

| # WINDOW INTO VMFA FILE |

| # ACTIVE PAGES IN SEGMENT |

| # READERS | # WRITERS |

| CONCURRENCY |

Rev. 19.4 8§ - 9 August, 1985

CE0810 - PRIMOS EPFs

THE EPF MAPPING PHASE - EPF$SMAP.PLP

When an EPF is RESUMEd, EPF$MAP calls VINITS$ to map each of the
procedure segments of the EPF into memory. EPF$MAP must access the
VCIB, which resides in the first procedure segment in order to tell
VINIT$ how many more procedure segments are to be mapped into memory.

For each procedure segment, VINIT$ performs the following steps:

o If the procedure segment is already mapped into memory for a
process other than the requesting process, VINITS$ finds an
unused dynamic segment (i.e., SDW) in the process” DTAR2,
increments the ASTE readers count, and returns the segment
number to EPF$MAP.,

o If the procedure segment is already mapped into memory for the
requesting process, VINIT$ returns the number of the segment
that”s already mapped into the user”s address space to
EPF$MAP.

o If the procedure segment is not mapped into memory at all,
VINITS$ finds an unused dynamic segment (i.e. SDW) in the
process” DTAR2, initializes a new ASTE, and returns the
segment number to EPF$MAP.

o If the EPF is on a remote disk, VINIT$ finds a free dynamic
segment (i.e., SDW) in the process” DTAR2 , calls PRWF$$ to
copy the data into the segment, and returms its number to
EPF$MAP. That is, it is not handled like a local EPF,.

Rev. 19.4 8§ - 10 August, 1985

CE0810 - PRIMOS EPFs

THE SEGMENT MAPPING TABLE - SMT

Each process using an EPF must keep track of the status and virtual
mapping for its use of that EPF. The table dynamically created by
EPF$MAP is called a Segment Mapping Table (SMT). There is one

SMT for each EPF that a process has mapped into memory, and they are
linked together (head of list pointer in CLDATA). There are four
pieces to the SMT:

o SMT.STABLE ENT contains information about the EPF, derived
from both the VCIB and the CIB, that will not change regardless
of the number of invocations.

o SMT.ACTIVE_ENT contains the volatile information including
the current status.

o SMT.SEGS(n) is the SMT address table that keeps track of the
virtual addresses assigned to this invocation of the EPF.

o SMT.EPF_PATHNAME contains the character count and full pathname
of the EPF.

Rev. 19.4 8§ - 11 August, 1985

CE0810 - PRIMOS

Rev.

STABLE ENTRY

-->

SMT FORMAT

|# procedure segments |

|# linkage area |

|origin ptr (2 words) |

|EPF pathname ptr (2 words)|

|next SMT ptr |

|lib.search_type |

|Llib.ent_tbl ptr (2 words) |

|lib.ent_tbl_size |

|lib.ent_num |

|lib.link_ref _ctr (2 words)|

|epf type | epf version |

|flags : dbg,cache,init ...|

ACTIVE ENTRY -->|command level |

|flags: link init and alloc|

|prev act_ent ptr (2 wrds) |

SMT ADDR TABLE -->|seg no. for last linkage |

ORIGIN PTR =-->

EPF PATHNAME

19.4

-->

| seg mo. for first proc

|length of pathname |

| pathname |

August,

EPFs

1985

CE0810 - PRIMOS EPFs

SMT ADDRESS TABLE

The SMT address table keeps track of the virtual addresses that are
assigned to the EPF procedure segments and linkage areas. Each entry
will eventually hold the 2-word virtual address assigned to that
procedure segment or linkage area to be used as the base address for
the relocation of ERPs. The index into the table is the relative
segment number portionm of amn ERP. A sample address table is shown
below.

SMT.ACTIVE_ENT.SEGS -=> =n*2 relocation address

for nth linkage area

-2 relocation address

for first linkage area

SMT.STABLE_ENT.ORIGIN -=-> 0 relocation address

for first procedure segment

2 relocation address

for second procedure segment

4 relocation address

for third procedure segment

CE0810 - PRIMOS EPFs

THE ALLOCATION PHASE - EPF$ALLC.PLP

Once the procedure image is mapped into memory via VMFA, the memory
for the linkage area(s) can be allocated and their address(es) stored
off in the SMT address table. In order to perform the linkage
allocation phase, EPFSALLC examines the LTDs for the sizes of the
linkage areas.

CIB
B LTDs
LTD LIST ERP |--------- >
SIZE
SIZE

Rev. 19.4 8§ - 14 August, 1985

CE0810 - PRIMOS EPFs

THE INITIALIZATION PHASE - EPF$INIT.PLP

Once the linkage has been allocated, EPF$INIT performs the
initialization phase. The following table lists the types of data and
the initialization steps.

DATA TYPE ACTIONS
| STATIC | COPIED FROM DTB |
| UNINITIALIZED | NO ACTION |
REPEATED COPIED FROM DTB &
EXPANDED
| ECB(S) | COPIED FROM DTB &
| | RELOCATE PB, LB
| INDIRECT POINTERS | RELOCATE |
| FAULTED INDIRECT | RELOCATE & SET |
| POINTERS [FAULT BIT |
STATIC INDIRECT | COPIED FROM DTB |
POINTERS | NOT RELOCATED [

Rev. 19.4 8 - 15 August, 1985

CE0810 - PRIMOS EPFs

THE INVOCATION PHASE -~ EPF$INVK.PLP

To invoke the EPF, EPF$INVK creates an EPF cache entry and inserts it
at the head of the process” cache list, and then calls the EPF. When
the EPF returmns, its cache entry is left threaded onto the cache list,
but its SMT is marked as being inactive. Another invocation of

the EPF, while its cache entry is still threaded on the cache list,

will only have to go through a partial initialization (i.e., static
data and faulted IPs) of the linkage area.

An EPF”s cache entry will remain on the cache list until it is removed
because

(1) the cache list has become full, and it is the least recently
used entry, :

(2) it has been explicitly removed with the Remove Epf command,

(3) the user”s ring 3 environment has been reinitialized, or

(4) a new command level is pushed (see next page).

Removal of a cache entry will cause EPF$DEL to be called
to remove the SMT from the process” SMT list (CLDATA.SMT LIST PTR) and

delete the SMT from memory. A subsequent invocation of the EPF must
then go through all phases.

CLDATA.EPF_CACHE_HD_PR CLDATA.EPF_CACHE_TL_PTR
| I

I I

v v

--- |-~

| A(NEXT ENT) | <-- | A(NEXT ENT) | <--- | A(NEXT ENT) |

| ACPREV ENT) | | A(PREV ENT) | | A(PREV ENT) |[--> null
| A(SMT) | | A(SMT) | | A(SMT) |

Rev. 19.4 8 - 16 August, 1985

CE0810 - PRIMOS EPFs

MOVING BETWEEN COMMAND LEVELS

If an EPF is broken out of (i.e., "P was typed during execution), a
new command level is pushed. Before the new command level is
initialized, the previous command level is “cleaned up”. Cache
entries in the previous command level cache list representing inactive
EPFs are popped from the list. Hence, only active EPFs are “carried
forward” to the new command level.

1f an already active EPF were to be reinvoked at the new command
level, the linkage area assignments for both the original invocation
and the new invocation must be preserved. To ensure this, a copy (in
the diagram called PREV ACTIVE ENT) is made of the SMT.ACTIVE_ ENT for
the original invocation., SMT.ACTIVE ENT is then initialized to show
that a new command has been pushed, and the addresses for the linkage
areas are set to null. These addresses will then be filled in upon
reinvocation of that EPF.

COMMAND LEVEL X: SMT
STABLE
ACTIVE
Id
COMMAND LEVEL X+1:
STABLE
ACTLIVE
-------- >
PREV
ACTIVE
ENT |

Rev. 19.4 8 - 17 August, 1985

CEO810 -

Rev.

19.4

PRIMOS

18

August,

EPFs

1985

CE0810 - PRIMOS File System

Section 9 - File System

Objectives: The student will be able to

describe physical disk data structure formats
describe the various file types and their advantages
describe ACL data structures

explain how the LOCATE mechanism works
describe unit table data structures

o o0 0 0 O

Rev. 19.4 9 - 1 June, 1985

CEQ810 - PRIMOS

File Systenm

PHYSICAL DISK STRUCTURES

A disk drive is divided into one or more partitions where a partition
is one or more pairs of heads. Each partition must contain:

1). MFD

2). DSKRAT

3). BOOT

4). UFD DOS
5). UFD CMDNCO

6). BADSPT

(Master file directory)

(Disk record availability table)

(For initial loading)

(Initially empty - not actually required)
(Initiallf empty)

(If badspots on the disk)

Each partition is divided into 1040 word records.

The record header is 16 words for storage modules devices.

The remainder of the record holds data (1024 words).

Rev. 19.4

HEADER
1040
total
words
DATA Total

9 - 2 June, 1985

CE0810 - PRIMOS File System

RECORD HEADER FORMAT - 1040 WORD

0

1 TREKCRA RECORD ADDRESS OF THIS RECORD

2

3 TREKPOP RA OF DIRECTORY ENTRY OF THIS RECORD
4 REKDCT NUMBER OF DATA WORDS IN RECORD

5 REKTYP TYPE OF FILE (Only on first record)
6

7 TREKFPT RA OF NEXT SEQUENTIAL RECORD

8

9 TREKBPT RA OF PREVIOUS RECORD

10 REKLVL INDEX LEVEL FOR DAM FILES

11

12

13

14 Reserved

15

Rev. 19.4 9 - 3 June, 1985

CE0810 - PRIMOS

File System

DSKRAT FORMAT

dcl 1 disk rat based,

Rev.

len fixed bin,

rec_size fixed bin,
disk_size fixed bin(31),
heads fixed bin,
spec_bits,

3 dummy bit(l4),

3 crash bit(l),

3 dos bit(l),
2 cyls fixed bin,
rev_num fixed bin,

LS SR S I

[N]

/*
/*
/*
/*
/*

/*
/*
/*
/*

Usually found in LOCATE buffer =*/
no. of words in DSKRAT header */
phys. record size (448 or 1040)*/
number of records in partition */
number of heads in partition */

improperly shut down last time */

DOS modified or perm. broken */
number of cylinders (tracks) */
Rev. number =*/

2 rat(0:1015) bit (16) aligned; /* The RAT itself */

19.4

4 June, 1985

CE0810 - PRIMOS

BADSPOT FILE FORMAT - Data Structures

- BADSPT file header:

dcl 1 badspt_file_ header,

2 bad_blk_off fixed bin,
MBZ fixed bin,
file size fixed bin,
reserve(5) fixed bin;

[\ SS I)

- Badspot entry:

dcl 1 badspt_blk header,
2 bew, - /*
3 type bit(4), /*
3 length bit(12), /=*

3 sector bit(8), /* sector number+l,
/* head number

3 head bit(8);

- Remapped badspot entry:
dcl 1 eqv_blk_header,
2 bcew,
3 type bit(4),

3 length bit(l2),

File System

/* offset of the lst badspt blk
/* must be zero

/*

size of the badspt file

block control word
block type (badspt blk type =
length of this block
2 badspt blk((badspt blk header.bcw.length-1)/2)
3 track fixed bin, /* track number

/*
/*

/*

block control word
type of this block
(eqv blk type = 1)
length of this block

2 eqv_blk((eqv_blk header.bcw.length-1)/2)

bad_track fixed bin,
bad sector bit(8),
bad_head bit(8),
eqv_track fixed bin,
eqv sector bit(8),
eqv:head bit(8);

Wwwwhkw

Rev. 19.4

/*
/*
/*
/*
/*
/*

bad track number

bad sector number+l

bad head number

equivliant track number
equivlant sector number+l
equivlant head number

0)

*/

*/
*/

*/
*/
*/
*/
*/
*/

*/
*/
*/

*/
*/
*/

*/

0 for whole track*/

*/

June,

1985

CE0810 - PRIMOS File Systenm

DIRECTORY STRUCTURE

- A directory is a header followed by a bunch of entries.

Directory Header

File
Entry

ACL

hole

Directory
Entry

- Note, ACLs are embedded in the directory itself.
A UFD is a SAM file. Max size is <=64KW.

Rev. 19.4 9 - 6 June, 1985

CEO0810

PRIMOS

File System

DIRECTORY STRUCTURE

dcl 1 dir hdr based,

2

[N SR S S AU SR L U

ecw like ecw,

owner_password char(6),

non owner password char(6),
spa?el fixed bin,

max quota fixed bin (31),
dir_used fixed bin (31),
tree_used fixed bin (31),
rec_time_prod fixed bim (31),
prod _dtm like fsdate,
spare2(5) fixed bin;

dcl 1 ecw based,
2 type bit(8),
2 len bit(8);

replace dir hdr ecwt by “017b4,
vacZnt_;cwt by “02°b4,
file ecwt by “037ba4,
acc_cat_ecwt by “047b4,
acl_ecwt by “057b4;

Rev. 19.4 9 -

/*

/*
/*

/*
/*
/*
/*
/*

/*
/*
/*

/*

/*
/*

dir header entry structure */
Owner password */
Nonowner password */
Max Quota */
Quota used in this dir * /

Quota used in whole subtree*/
Record/time product */
DTM of record/time product */

Entry control word *x/
Type of entry */
Length of entry * /

ECW types: directory header*/

vacant entry * [
file entry */
access category */
ACL itself */
June, 1985

Re~w .,

A N

FRIMOS

SAM FILES

First rec;;g:—\------—ss\\\L

File System

=

0

Last record

June,

1985

CE0810 - PRIMOS File System

DAM FILES
RECORD 0 DATA
RECORD 1
. Address of
Record 1 "‘7>>[AAAA/VA~/\A~J
UFD Address of
Record 2
Entry
Address of
Record 3 DATA
RECORD 2
DATA
RECORD 3
Rev. 19.4 9 - 9

June, 1985

GEO8LY - PREIMOS

(i)

FMIRY

MULTILEVEL DAM FILES

LEVEL 2

ADDRESS_OF

RECORD 1

I

| ADDRESS OF
RECORD 2

19. 4

LEVEL 1
RECORD 1

RECORD

Almmzrssslol;l,,/’7

ADDRESS OF
RECORD 2

ETC

JW.\/\A
{
!
]
¥

LEVEL 1
RECORD 2

]

ADDRESS OF
RECORD N

| ADDRESS OF

RECORD N +I‘\\\

A~
' |
1
]
N

10

File Systenm

DATA LEVEL -
RECORD 1

S et e

DATA LEVEL
RECORD 2

DATA LEVEL
RECORD N

o~

DATA LEVEL
RECORD N +1

e g W NS

i

!

'
/4

June, 1985

CEO810 -

Rev.

19.4

PRIMOS File System
SEGMENT DIRECTORY FORMAT

0 BRA 0 Beginning record address

1 of first file in directory

2 BRA 1 Beginning record address

3 of second file in directory

4 0 Null entry

5

2n BRA n Beginning record address

2n+1l of last file in directory

9 - 11 June, 1985

CEO810

PRIMOS

File System

DIRECTORY STRUCTURE - NORMAL ENTRY

- Normal entry for a file or directory:

del 1 file ent based,

Rev.,

2

[ACT SC (U VRN N

[\ 8]

ecw like ecw,

bra fixed bim (31),
log_type fixed bin,
dtb like fsdate,
protec bit (1l6),
acl _pos fixed bin,

dtm like fsdate,
file_info,
long_rat_hdr bit
dumped bit (1),
dos_mod bit (1),
special bit (1),
rwlock bit (2),
trunc bit (1),
spare bit (1),
type bit (8),
scw fixed bin,
name char (32);

WWwWwWwwwww

19.4

(1),

/* Structure of file entry

/* bra of file

/* logical type attribute

/* Date/time last backed up

/* Protection keys

/* Position of ACL, assumes
dir <= 64k

/* “8000°b4: file is a long RAT
/* “4000°b4: has been backed up
/* “2000°b4: modified under DOS
/* “1000°b4: Special file

/* Bits 5-6: Concurrency lock
/* Bit 7: truncated by FIX_DISK
/* Bit 8: Unused

/* Bits 9-16: File type

/* Length of name subentry

/* Name of object

- 12 June,

*/
*/
*/
*/
*/

*/

1985

CE0810 - PRIMOS File System

DIRECTORY STRUCTURE - ACL POSITION

- ACL_POS

Position in the directory of the ACL protecting this object.
if specific protection then pointer is to am ACL.
if category protection then pointer is to access category.
if default protection then pointer is zero.

Directory Header

a.file = |------ l

--- notes.ufd |

|
| |
private.acat (omana- |

--> ACL '
I
I

ACL ==

b.file -===>0

- Note, the ACL protecting this directory lives in the parent directory
along with the entry describing this directory.

Rev. 19.4 9 - 13 June, 1985

CEO810 - PRIMOS File System

DIRECTORY STRUCTURE - ACL ENTRY

- Directory entry for an ACL:

dcl 1 acl_ent based, /* Dir entry for an ACL *x/
2 ecw like ecw, /* See above * /
2 user count fixed bin, /* Number of user entries *x/
2 group count fixed bin, /* Number of group entries *x/
2 version fixed bin, /* Version number of structure */
2 sparel fixed bin,

2 group offset fixed bin, /* Relative position of first

- group entry */
2 rest_accesses like accesses, /* Rights for $REST */
2 owner_pos fixed bin, /* Position of owner in dir */
2 dtm like fsdate, /* Date/time last modified %/
2 spare2 fixed bin,
2 entry like coded_access; /* See below */

- Format of a single access pair:

dcl 1 coded_access based, /* Entry in an ACL *x/
2 scw fixed binm, /* Length only */
2 access like accesses, /* <access> */
2 spare(2) fixed bin,
2 id char(32) var; /* <id> */

dcl 1 accesses based, /* A 16-bit access word */

2 ringl like acc_bits,
2 ring3 like acc_bits;

dcl 1 acc_bits based, /* Access bit definition %/
2 protect bit(l), /* Directory accesses -- Protect */
2 delete bit(l), /* Delete */
2 add bit(l), /* Add * /
2 list bit(l), /* List */
2 use bit(l), /* Use */
2 execute bit(l), /* File accesses =-=- Execute */
2 write bit(l), /* Write */
2 read bit(l); /* Read */

Rev. 19.4 9 - 14 June, 1985

CE0810 - PRIMOS File System

DIRECTORY STRUCTURE - ACCESS CATEGORY ENTRY

- An access category is a named ACL.

-~ It is a pointer to an ACL entry.

- Each file system object protected by the category points to the
access category entry, not the ACL itself.

- The name field of an access category is always padded to 32
characters in order to reduce directory fragmentation.

dcl 1 acc_cat_ent based, /* access category directory entry * /
2 ecw like ecw,
2 sparel(3) fixed bin,
2 dtls like fsdate, /* Date/time last saved */
2 spare2(l) fixed bin,
2 acl_pos fixed bin, /* Position of ACL itself *x/
2 dtm like fsdate, /* Date/time last modified * /
2 file type fixed bin, /* For compatibility with normal entry */
2 scw fixed bin, /* Length of name subentry *x/
2 name char (32); /* Name of object (padded to 32 chars) */

Rev. 19.4 9 - 15 June, 1985

CEO810 -

Rev.

19.4

PRIMOS

16

File System

June, 1985

CE0810 - PRIMOS File System

THE LOCATE MECHANISM

R/W
4
1 4
PRWFSS
A :
BCB's ——— LOCATE BUFFERS
2
Y '
yavd
s '
LoCcATEF”
RREC NOTIFY pISK
WREC [€-~————~— 5 CONTROLLER
Rev. 19.4 9 - 17 June, 1985

CE0810 - PRIMOS

Rev.

BUFFER CONTROL BLOCK

HASH THREAD
Logical dev | Record 1
ADDRESS
1 BRA of file record is in 1
Process no. Hash index
User count Flag bits
4 N
. —L.‘
4 —
4 —
1 ADDRESS OF PTW 1
FOR BUFFER
1 LRU THREAD FOR 1
UNUSED BUFFERS

FLAG BITS 16
15
14

BUFFER MODIFIED

UPDATE MISSED

19.4 9 -

18

BUFLNK
BUFRA

BUFBRA
BUFUSR
BUFLAG
REKCRA
REKPOP
REKDCT
REKTYP
REKFPT
REKBPT

REKLVL
BUFPMP

BUFTHD

BUFFER IN TRANSITION

disk
record
header

File System

June,

1985

CEO810 -

BCBs are:

A chart:

on the
Unused
list?

Rev. 19.4

PRIMOS

on the "unu

MANAGING BCBs

sed list"

in the Hash Table

or in both

places

In the Hash Table?

no

yes

yes

June,

File System

1985

CEQ0810 -

PRIMOS

LOCATE.PMA

File System

FCRM RACEY

BZ33ur2A
ZRADSV
?

D

SAG

0O &= QUFNEW

ot
[SY V7 Y S tay;

S _COUNT

h—

FIND 1t BCB
ON UNUSED LIST
€ UNTHREAD IT

IF UPDATE
MISSED , WRITE
OUT RECORD

I

3

THREAS
BC8 ONTO
UNus=p LisT

UNHASH FRCH
HASH TABLE

I

WIRE PAGE

CNT S=T SUSNEW

WRITE OUT
C.D Reczcz
IF NECESSARY

LeoaTE USAG:W

IN HASH
TABLE AT HASH
ADORESS

UNUSED

UNTHREAD
FRCM

LIST

Rev.

R=LD IN
! lolald
NEH RELSRD UPDATE usics
) NT SET BUSNEW
- "UNWIRE PAGE |
PRTN HASH BCB
19 - 4 9 - 2 o

June, 1985

CE0810 - PRIMOS File System

ASSOCIATIVE BUFFERS - CONFIG DIRECTIVE

Previously- there were always 64 associative buffers which resided
in segment 1.

Now there can be any where from 8 to 256 associative buffers.

New CONFIG directive: NLBUF n
where n = the octal number of LOCATE buffers to use.

The buffers will reside in segments 50 - 53.

The 22 word Buffer Control Block (BCB) is wired at cold start.
The LOCATE buffer is only wired when it is in use.

The optimal number of associative buffers depends on the system.
If the LOCATE miss rate is greater than 10 percent,
NLBUF should be increased until %MISS is less than 10%
However, if PF/S is greater thanm 10, do not increase NLBUF.

Be sure that LM/S is high enough to make %MISS meaningful.

Rev. 19.4 9 - 21 June, 1985

CE0810 - PRIMOS File System

Rev. 19.4 9 - 22 June, 1985

CE0810 - PRIMOS File System

UNIT TABLES - Definitions

- A unit table (ut) is a list of pointers to unit table entries.

A hash table is a set of pointers to linked lists of unit
table entries.

- A unit table entry (ute) desribes a file system object that is
currently in use via the file system.

A file system object is a data file,'directory or access category.
These objects may reside on a local or a remote system.

Rev. 19.4 9 - 23 June, 1985

CE0810 - PRIMOS File System

UNIT TABLES

OLD METHOD

- Per-User unit tables allocated/deallocated dynamically.

- Constrains working set of unit table databases to what is
actually being used.

- Vital statistics:

3247 file units available per system
guaranteed per user (defauLt)
system unit per user (unit #0)

attach points (home,current,initial) per user
maximum “usable” file units per user

~N W = 0

12

NEW METHOD

- Per-user unit tables allocated/deallocated dynamically.

- Maximum of 32768 units per user.

Unit table dynamically grows as more file units are requested.
- Initially, get 38 file units:

-5 temporary attach
-4 como
-3 IAP
-2 home
-1 current
0 system
1-32 available for user

Rev. 19.4 9 - 24 June, 1985

CE0O810 - PRIMOS File System

UNIT TABLE

pudcom.utblptr =-=--> ---cc-eccecrccccccecccr e

| rfu |
| temporary attach |
o ;TE-po;nt;r o
"""""" como |
o GTE-po;nt;r o
""" initial attach point |
)) GTE-po;nt;r o
"""" home attach point |
- GTE-po;nt;r o
| curremt attach point |
o GTE-po;nt;r o
"""""" system |
)) GTE-po;nt;r))
"""" file wait 1 |
© UTE pointer

| file unit 32

UTE pointer

Rev. 19.4 9 - 25 June, 1985

CE0810 - PRIMOS File System

A NON-ATTACH POINT UTE

Dcl 1 utcme based, /* File/Directory Unit Table Entry */
2 vstat like status_bits, /* See below */
2 bra fixed binmn (31), /* BRA of file */
2 cur ra fixed bin (31), /* current r.a. in file * /
2 ldevno fixed bin, /* logical device number */
2 rel wordno fixed bin, /* position within current record*/
2 rel recno fixed bin (31), /* ordinal record no. in file * /
2 rwlock bit(8), /* Read/write concurrency lock */
2 access like access bits, /* Accesses allowed on file */
2 pos_in_parent fixed bin, /* position in parent */
2 parent bra fixed bin (31), /* BRA of parent directory */
2 hash_ thread fixed bin, /* hash thread */
2 quota blk ptr fixed bin, /* Quota block pointer */
2 dir blk ptr fixed bin, /* Directory block pointer */
2 dam idx ra fixed bin (31), /* current r.a. in DAM index */
2 spare fixed bin;

dcl 1 status_bits based, /* VSTAT definition %/
2 modified bit (1), /* modified */
2 sysuse bit (1), /* open for system use */
2 shtbit bit (1), /* device shut down */
2 no_close bit (1), /* special file, not closed by C -ALL */
2 disk error bit (1), /* disk error occurred */
2 file_type bit (3), /* Defined below *x/
2 open_mode bit (8); /* Accesses which file is opened with */
file type:

sam ftype by 0, /* File types: SAM file */
dam ftype by 1, /* DAM file */
samseg ftype by 2, /* SAM segment directory */
damseg:ftype by 3, /* DAM segment directory */
dir ftype by 4, /* Directory */
acl:dir_ftype by 5, /* ACL directory */
acc_cat_ftype by 6; /* Access category */

Rev. 19.4 9 - 26 June, 1985

CE0810 - PRIMOS

File System

AN ATTACH POINT UTE

attach point Unit Table Entry */
See definition below %/
BRA */
current r.a. in file */
Logical device number * /
position within current record#*/
ordinal record no. in file */
Access rights */

in ring 1 */

and ring 3 */
position in parent */
BRA of parent directory */
hash thread */
Quota block pointer */

Quota directory block pointer */

/* BRA of directory containing ACL */

dcl 1 dir_utcme based, /*
2 vstat like status_bits, /*
2 bra fixed bin(31), /*
2 cur ra fixed bin(31), /*
2 ldevno fixed bin, /*
2 rel_wordno fixed bin, /*
2 rel recno fixed bin(31l), /*
2 access, /*
3 ringl like access bits, /*
3 ring3 like access bits, /*
2 pos in parent fixed bin, /*
2 parzn{:bra fixed bin (31), /*
2 hash thread fixed bin, /*
2 quota_blk_ptr fixed bin, /%
2 dir_blk_ptr fixed bin, /*
2 acl_bra fixed bin (31),
2 acl _pos fixed bin, /* P
2 spare fixed binj

Rev.

19.4 9

osition of default acl in dir */

27 June, 1985

LR R CRAFOS File System

9 - 28 June, 1985

CE0O810 - PRIMOS

File System

FLOW OF CONTROL IN THE FILE SYSTEM

Following this page
made to file system

o CALL SRCHSS

o CALL PRWFSS

Rev. 19.4

is pseudo-code illustrating the sequence of calls
routines to create and write data to a file.

to create (and open) the file.

to write data to the newly created file.

9 - 29 June, 1985

CEO810 -

Rev. 19.4

PRIMOS

30

File System

June, 1985

CE0810 - PRIMOS File System

OVERVIEW OF FILE SYSTEM ROUTINES

Before covering the specifics of the file system routines called to
create a file and write data to that file, a general description of
each of the routines is presented below:

Rev.

SRCHS$S -
FIL-OP -
SGD$OP -
ADD-ENT -
ALC-REC -
GETREC -
PRWFS$ -
LOCATE -

19.4

opens, closes, deletes, and checks the existence of
files

opens a file and sets up the UTE after the initial
record(s) for the file are allocated and the directory
entry is created on disk

opens a segment directory subfile

adds a new entry to a directory omnce the initial
record(s) for the file are allocated

allocates initial record(s) for a new file (or
directory) and adjusts record pointers, as necessary

gets a free record in a logical partition by searching
the DSKRAT

moves data to and from files as well as performing file
positioning

keeps copies of disk records in memory inm order to
minimize disk operations

9 - 31 June, 1985

CE0810 - PRIMOS File System

CREATING A FILE

SRCH§S:
Call FIL_OP to create the file

FIL-0OP:
If (caller supplied unit number)
Then do
If (unit number invalid)
Then return (ESBUNT)
If (unit in use)

Then return (E$UIUS)
End

Take FSLOK for reading
Take UFDLOK for writing
Call ADD_ENT to create the file (entry)

ADD-ENT:
If (user does not have add rights)
Then return (ES$NRIT)
Call ALC REC to allocate disk record(s)

ALC-REC:
Call GETREC to get a disk record

GETREC:
Take RATLOK for writing
Hint = RAT word containing bit for UFD record
If (RAT bit representing hint >= RAT bit
representing the first available record on that
partition)
Then
If (free bit in RAT word holding hint bit)
Then do
Calculate RA
Call LOCATE to write modified RAT record
Release RATLOK
Return (RA)
End
Else
If (free bit in RAT record holding hint bit)
Then do
Calculate RA
Call LOCATE to write modified RAT record
Release RATLOK
Return (RA)
End

Rev. 19.4 9 - 32 June, 1985

CE0810 - PRIMOS File System

CREATING A FILE (CONT”D)

GETREC (cont”d):
If (an available record somewhere in that partition)
Then do
Calculate RA
Call LOCATE to write modified RAT record
Calculate new first available record im partition
Release RATLOK
Return (RA)
End
Release RATLOK
Return (E$DISK_FULL)

ALC-REC (cont”d):
Call LOCATE to acquire buffer for new record
Initialize the record header in the BCB
1f (DAM or SEGDAM)
Then do
Call GETREC to get the first data record
Call LOCATE to get the index record
Set DAM index to point to new data record
Call LOCATE to acquire buffer for new data record
Initialize the record header imn BCB
End
Return (new RA)

ADD-ENT (cont”d):
Build memory image of file entry
Write new file entry to UFD record on disk
Update DTM of parent
Return (BRA)

FIL-OP (cont”d):
Set RWLOCK
Build memory image of UTE
If (DAM or SEGDAM)
Then (set first data record address as UTE.CUR _RA and lowest
level index record address as UTE.DAM_IDX_RA)
Allocate a UTE
Copy UTE image to UTE
Release UFDLOK and FSLOK
Return {(unit)

SRCHSS (cont”d):
If (user did not supplied unit number)
Then (return (unit))
Return

Rev. 19.4 9 - 33 August, 1985

CE0810 - PRIMOS File System

CREATING A SEGMENT DIRECTORY SUBFILE

SRCH$S .
Call SGD$SOP to create segment directory subfile
SGD$OP:
If (caller supplied unit number)
Then

If (not a valid unit number)
Then (return (E$BUNT))
If (unit is in use)
Then (return (E$UIUS))
Take FSLOK for reading
Take UFDLOK for reading
Take a SDLOK for writing
Call ALC_REC to allocate a disk record

ALC-REC:
Call GETREC to get a disk record

GETREC:

ALC-REC (cont”d):

return (BRA)

SGDSOP (cont”d):
Call SGD _WE to write the BRA into segment directory
Build the UTE image in memory
If (DAM subfile)
Then (set first data record address as UTE.CUR RA and lowest

level index record address as UTE.DAM_IDY_RA)
Allocate a UTE

Copy UTE image to UTE
Release SDLOK, UFDLOK and FSLOK
Return (unit)

SRCHS$S (cont”d):

If (user did not supplied unit number)
Then (return (unit))
Return

Rev. 19.4 9 - 34 June, 1985

CE0810 - PRIMOS File

WRITING DATA TO AN EMPTY FILE - PRWF$$

PRWFS$S:
Take FSLOK for reading
I1f (file not open)
Then (return (ESUNOP))
Take a TRNLK for writing
Pick up the number of words of data to be written
Set the LOCATE key to RCD MODIFIED
Position file to appropriZte record
Call LOCATE to read recora into LOCATE buffer

Do While (there is data to write)
If (enough room in data record for all the user”s data)
Then do i
Move the data from user”s buffer to the LOCATE buffer
Update UTE.REL WORDNO
End -
Else do
Move as much data as will fit into the LOCATE buffer
Call ADD_REC to extend the file
Call LOCATE to acquire buffer for new record
Update UTE.CUR_RA and UTE.REL_WORDNO
Update number of words of data left to write
End
End

Call LOCATE to “forget” the LOCATE buffer
Release all locks
Return

Systenm

Rev. 19.4 9 - 35 August, 1985

CEO810 - PRIMOS File System

CLOSING AND DELETING A FILE

Since many of the operations involved in closing and deleting a file

simply reverse opening and creating a file, only a list of the
routines is presented.

CLOSING
SRCH$$ calls either CLOSFN or CLOSFU:
o CLO$FN closes a file by name by calling CLOSE.
o CLO$FU closes a file by file udit by calling CLOSE.

o CLOSE closes either by name (ldev/BRA) or by unit number -

and, in both cases, nullifies the UTE pointer in the user”s
unit table.

DELETING

SRCH$$ calls FILSDL to delete a file or a directory or SGDS$DL to -
delete a segment directory subfile:

o FIL$DL attaches to the named object”s parent and searches for
the entry in the current directory. If the entry is found and
the user has delete rights, then the entry is removed from the
directory and all records associated with the entry are
released. Supporting routines called by FILS$DL are:

o ENTINDIR to attach to parent,
o FIND ENT to find the entry in the parent directory, -

o DEL_ ENT to delete the directory entry, and write out a
vacant entry.

o FREE REC to release each disk record, starting at the

BRA, and calling RTNREC to adjust the DSKRAT for each
freed record.

o SGD$DL reads the BRA of the entry, deletes the entry by -
clearing the BRA, and then releases all records associated with
the subfile. Supporting routines called by SGDS$DL are:

o SGD_RE to read in the subfile”s BRA,

o SGD_WR to write out the modified record containing the
cleared BRA of the subfile being deleted,

o FREE_REC to release the disk records.

Rev. 19.4 9 - 36 June, 1985

CE0810 - PRIMOS Segment Usage

Appendix A - Primos Segment Usage

Rev. 19.4 A - 1 June, 1985

$E0810 - PRIMOS

54
60
61
62
63
67
10
I

1o

Rev.

PRIMOS SEGMENTS - DTARO

T/0 map segment
L/0 map segment
moviity
movutu

Segment Usage

[KS>SEGO.PMA]

P1C, PCBs, fault handlers, checks, SEMCOM, vpsd [KS>SEG4.PMA]

ring 0 gate segment
ring @ kernel code and linkage

TFLIOB buffers (TFLSN1)
third segment for kermal code and linkage

file aystem code and linkage (LCSEGS$)
network system code and linkage. (NETSG$)

command loop segment 1

PAGCOM, HDRBUF, config, RSAV, FIGCOM, MMAP,
tape-dump, warm/cold start code

sccond segment for kernal code and linkage
comms code and linkage

DMQ buffers (DMQBUF)
Generval Event Monitor buffers

SMLC map segment

SMLC map segment

SMLC map segment

SMLC map segment

network buffers (NETBFS$)
network queues (NETBHS)
network, SNA code

command loop segment 2

MMAR

named semaphores data area

luogout notification queues, CPS

secand TFLIOB buffers (TFLSN2)
ACi, data area

Command Iloop segment 1

associacive buffers (BUFSEG)

associative buffers
asscciative buffers
associative buffers

“NA (interactive) data bases
TELLOR buffer segment #3
TFLIOB buffer segment #4
TFILLIOB baffer segment #5
T¥LIOB bhuffer segment #6

®JIK code and linkage

RJE cocde and linkage

RIE buifexs

LI/ A - 2

[SEG14.PMA]

June,

1985

CEO810 -

101
140
141
142
143

200
201

577
600
617
620

717

Rev.

19.4

PRIMOS

PRIMOS SEGMENTS - DTARO (continued)

32 network mapped segments

DPTX code and linkage
additional DPTX code and linkage

(DPTCOM)
DPTX buffers

(PUDCMS)
mapped per-process ring O stacks

HMAPs/LMAPs or PMTs

dynamically allocated by GETSNS$

Segment Usage

June,

1985

CE0O810 - PRIMOS Segment Usage

PRIMOS SEGMENTS - DTAR1

2000

. shared code

2577
2600
. dynamically allocated by GETSNS$

2677

Rev. 19.4 A - 4 June, 1985

CE0O810 - PRIMOS

4000

471717

Rev.

PRIMOS SEGMENTS - DTAR2

user procedure and linkage,

19.4 A -

dynamic memory

Segment Usage

June, 1985

CEO0810 -

6000

6001
6002
6003
6004
6005
6006
6007

6011
6012

6014

PRIMOS Segment Usage

PRIMOS SEGMENTS - DTAR3

user profile stuff, UPCOM, page fault (wired ring 0) stack,
SDTs for DTARS 2 and 3, mapped LOCATE buffer (“17600)
abbrevs, shared library linkage

CLDATA, ring 3 stack (PUSTAK)

unwired ring 0 stack

CPL work area

global variables

additional shared library linkage

(DYSNBG)
dynamically allocated by GETSNS

ROAM work area

dynamically allocated by GETSN$

Rev. 19.4 A - 6 June, 1985

CE0810 -

Rev.

19.4

PRIMOS

Appendix B

Lab Exercises

Exercises

June,

1985

CE0810 - PRIMOS

Directions:

EXERCISE 1

Exercises

Answer the following questions using VPSD, source code,

the Ring0 or Ring3 load maps, and what you have learned about Primos.

1)

2)

3)

4)

5)

Rev.

What is the name of the variable whose value
number of virtual segments available for the
this variable”s value in memory.

How many DTARO segments are enabled for this
(HINT: locate DTAR in the map).

How many DTAR1l segments are enabled for this

indicates the maximum
entire system? Locate

revision of Primos?

revision of Primos?

To which segments from 0 to 50 in DTARO do you as a ring3 user
have access rights? If you do, what are the access rights?
(HINT: Locate SDWO in the map - this is the live SDT for DTARO).

What is done to the STLB before a page-out?

19.4 B - 2

Why?

June, 1985

CEO8

Dire

10 - PRIMOS Exercises

EXERCISE 2

ctions: Answer the following questions using VPSD, source code,

the

1)

2)

3)

4)

5)

6)

7)

8)

Rev.

Ring0 or Ring3 load maps, and what you have learned about Primos.

How many DTAR2 segments are enabled for your process at this
revision of Primos? Can you access all those segments?

How many DTAR3 segments are enabled at this revision of Primos?

Locate and dump the Ready List in‘memory.
a) Who is on the Ready List?
b) Dump your level on the Ready List until you see your PCB. How

many processes are also on your level?

Chap your process down a level by changing the priority level in
your PCB. What happens, and why?

Ask the instructor to spawn the CPL program EXERCISE.2.5.CPL
from PI>CLASS as a phantom. Note the user number.
a) Locate the HOLD state semaphores in memory.

b) Monitor the queues and watch to see if the phantom process
appears on any of the queues.

¢) Based on what you saw or didn“t see, what can you conclude
about your phantom process?

Spawn the program, PI>CLASS>EXERCISE.2.5.CPL, as a phantom from
your process. Access the phantom”“s PCB abort flags and change
the value to 4. What happens?

Locate MAXSCH in memory. What is its value?

Locate your PCB in memory. Access the abort flags and change
the value to 10. What happens?

19.4 B - 3 June, 1985

CE0810 - PRIMOS

Exercises

EXERCISE 3

Directions: Answer the following questions using VPSD, source code,

the

1)

2)

3)

Rev.

Ring0 or Ring3 load maps, and what you have learned about Primos.
Locate you process” IRB and ORB in memory.
Are any processes currently waiting for queue request blocks?

You are having a problem with loss of terminal data on input and
are unsure as to whether the problem is with your IRB or the tumble
tables. There is a counter that keeps track of the number of times
the tumble tables have overflowed since coldstart. Normally, the
counter is zero (i.e., no tumble table overflow). If the counter
is zero, then the problem is the IRB. If the counter is non-zero,
then you have a problem with the tumble tables, and possibly, with
your IRB as well. But, if the tumble table problem was eliminated
and the problem persisted, then it”s probably the IRB.

QUESTION: What is the name of this counter?

CE0810 - PRIMOS

Exercises

EXERCISE 4

Directions: Answer the following questions using VPSD, source code,

the

1)

Rev.

Ring0 or Ring3 load maps, and what you have learned about Primos.

Copy the program EXERCISE.4.1.FTN from PI>CLASS to your directory.
EXERCISE.4.1.FTN does a call to TNOU to print out “HELLO” at the
terminal and then calls EXIT. You are going to verify that the
link to TNOU is dynamically snapped at runtime. Compile
EXERCISE.4.1.FTN with -64V and -EXPLIST. EXPLIST will generate an
expanded listing of the FTN statements and the PMA instructions
generated by each one. Do a normal load, but be sure to get a map.
Spool off both EXERCLSE.4.1.LIST and the runfile map. Then invoke

the runfile by typing SEG EXERCISE.4.1 1/1. This causes VPSD to be
loaded with your runfile, as well.

a) What is the offset in EXERCISE.4.1”°S link base to which the
2-word PCL instruction, generated by the call to TNOU, is
pointing.

b) What is the contents of the LB location you found in (a)? This
will be a 2-word address so make sure you get both the segment
number and the word offset.

¢) Go to the address you found in (b) and display its contents
and the contents of the next couple of locations. What are
you looking at?

d) Set a breakpoint on the PCL instruction for the CALL EXIT
statement at location 1006 in the PB. Then execute the program.

e) You will see HELLO and on the next line, an indication that the
breakpoint at 1006 has been reached (i.e., you have executed
the PCL for TNOU and are “waiting” on the PCL instructionm for
the call to EXIT. Now, go back into the link base and access
the same location you accessed in (b). What is the address you

see now? What has happened?

£) Continue execution of EXERCISE.4.1.

EXERCISE 4 IS CONTINUED ON THE NEXT PAGE,

19.4 B - 5 June, 1985

CEO08

2)

Rev.

10 - PRIMOS Exercises

EXERCISE 4 (continued)

Copy the file EXERCISE.4.2.CPL from PI>CLASS to your directory.
EXERCISE.4.2.CPL compiles and loads EXERCISE.4.2.F77. When
EXERCISE.4.2.CPL terminates execution, issue a RLS -ALL command

to make sure you clean up your ring3 stack. Then execute
EXERCISE.4.2.8EG. Open up a como file and issue the DMSTK command,
specifying -ALL and -ON UNITS as arguments. Then close and spool
your como file. -

a) Using the RING3 and RINGO maps, determine which routines are
represented by the stack frames in the DMSTK output in
your como file. :

b) Based on (a), what sequence of events occurred?

c) To check your answer to (b), copy EXERCISE.4.2.F77 and
FAKE.PMA from PI>CLASS to your directory. Examine.

19.4 B - 6 June, 1985

CE0810 - PRIMOS Exercises

EXERCISE 5

l. Execute the RLS -ALL command. Then execute the LD command on a
directory of your choice.

a) Locate the starting address of CLDATA in the ring 3 map.

b) Copy CLDATA.INS.PMA to your own directory. Remove the NLST
pseudo-op (about the fifth line), save and assemble. Examine
CLDATA.INS.LIST and locate the offset from the beginning of
CLDATA to SMTLPT(2). Add that offset to the address of
CLDATA found in (a) above. This is the address of your
process” first SMT block.

¢c) Find the SMT for LD. (Hint: look at the pathname field).

d) How many DTAR2 segments are used for LD”s procedure code and
linkage?

e) Where in DTAR2 is LD”s procedure and linkage?
f) Verify your answers by executing LE LD.RUN -DET.
Extra
Execute LD on a large directory such as PRIMOS>KS. Hit “P.

Execute the LD command again.

a) Determine the DTAR2 segment(s) used for the second
invocation”s linkage.

b) Locate the first invocation”s saved linkage segment number

(Hint: look at the layout of SMT_ACTIVE_ENT in
PRIMOS>INSERT>EPFFMT.INS.PLP).

Rev. 19.4 B -~ 7 August, 1985

CE0810 -

Rev. 19.4

PRIMOS

Exercises

August, 1985

CE0810 - PRIMOS Miscellaneous

Appendix C - Miscellaneous

Rev. 19.4 c - 1 June, 1985

CEO810 -

PPNLST
NSEG
PAGCOM
NUSEG
PFSW
USRLEV

PAS$SET
PABORT
PAGSFS

Rev. 19.4

PRIMOS Miscellaneous
READING THE SYSTEM LOAD MAPS
seg seg
num offset
| |
v \
0014 000567 OTHER
0014 000614 COMMON
0014 000614 COMMON
0014 000615 COMMON

0014 000616 OTHER
0014 000625 OTHER

A(ECB) STARTING NUM OF NUM OF LB

| PB WORDS OF WORDS OF SETTING

| | STACK LINKAGE

I I I I

v v v v v
0011 123732 0011 120732 002534 000212 0011 123312
0006 040744 0006 037672 000040 000222 0006 040322
0006 033403 0006 033242 000102 000041 0006 033000

c - 2 June, 1985

CE0810 - PRIMOS

SN segment-number

A [:format-symbol]

[value]

VPSD COMMAND SUMMARY

sets segment number

[:new-format-symbol]

terminator

accesses a location relative to current segment

format-symbol

D start-offset ending-offset [:new format

s A ASCII
:B Binary
:D Decimal
:H Hexadecimal
:0 Octal
: S Symbolic
Q --

|
I
I
l

value

absolute |
current
relative
relative |

quit from VPSD and return to command

terminator

Miscellaneous

CR *4]1

, *41

A *o1

.nCR *+4+n

.-nCR *-n

/ return, remember *

? return, remember ¥

! return, forget *
level

locations relative to current segment

B offset -- set a breakpoint at specified

segment

EX -

PR -

Rev.

execute a runfile from the start

proceed with execution from current

19.4

offset relative

breakpoint

symbol] -- dump a block of

to current

June,

1985

CEQO810

PRIMOS

Miscellaneous

VPSD DEMONSTRATION

OK, FTN HELLO -64V -EXPLIST
0000 ERRORS [<.MAIN.>FTN-REV19.2.2]

OK, SEG -LOAD
LSEG rev 19.2.2]
$ LO HELLO
$ LI
LOAD COMPLETE
$ SA
$ MA HELLO.MAP
$Q
OK, SEG HELLO 1/1 /* “1/1° LOADS IN VPSD
/* “$~ 1S VPSD”S PROMPT

$SN 4001 C/R /* SN = SET THE SEGMENT NUMBER TO 4001
$A 1000 C/R /* A = ACCESS LOCATION 4001/1000
4001/ 1000 PCL% LB%+ 422,* C/R /* THE DEFAULT DISPLAY MODE IS SYMBOLIC
4001/ 1002 AP 1010,S C/R° /* TO DISPLAY THE NEXT LOCATION, SIMPLY
4001/ 1004 AP LB%Z+ 400,SL C/R /* TYPE A CARRIAGE RETURN.VPSD DOES NOT
4001/ 1006 PCLY% LBY%+ 424,* C/R /* UNDERSTAND THE “ERASE- CHARACTER AND
4001/ 1010 LDA# 305,*X C/R° /* WILL GIVE YOU AN ERROR (“E”) AND
4001/ 1011 ANA# 314,*X C/R /* THE PROMPT. YOU MUST RETYPE THE LINE
4001/ 1012 ANA# 653,*X C/R
4001/ 1013 JST# 240, — =~ /* TO ACCESS THE PREVIOUS LOCATION,TYPE
4001/ 1012 ANA# 653,*X =~ /* THE CAROT (~) CHARACTER INSTEAD OF A
4001/ 1011 ANA# 314,*Xx =~ /* CARRIAGE RETURN.
4001/ 1010 LDA# 305,*X =
4001/ 1007 DAC 424 -
4001/ 1006 PCL% LBZ+ 424,%* -
4001/ 1005 AP SB%Z+ 61432 °
4001/ 1004 AP LBZ+ 400,SL™ "
4001/ 1003 E321 ~ -
4001/ 1002 DAC 100 -
4001/ 1001 DAC 422 = /* TO CHANGE THE DISPLAY MODE FROM
4001/ 1000 PCLY% LBYZ+ 422,%* :0 C/* SYMBOLIC TO OCTAL, TYPE “:0”
4001/ 1002 100 :D C/R /* DECIMAL REPRESENTATION, TYPE ~:D~
4001/ 1003 00520 :H C/R /* HEX REPRESENTATION, TYPE “:H”
4001/ 1004 02CO0 :S5 C/R /* TO RETURN TO SYMBOLIC, TYPE ~:S~
4001/ 1005 DAC 400 / /* TO RETURN TO THE “$° PROMPT, TYPE

- /* /7 (WITH NO CARRIAGE RETURN).
Rev. 19.4 c - 4 June, 1985

CE0810 - PRIMO

$D 1000 1010 :0 C/R

S

/*
/*
/*
/*
/*

4001/ 1000

$SN 4002 C/R

$A 0 C/R
40027 0 5 C/R
4002/ 1 0 /7
$A 1 C/R
4002/ 1 0 1
4002/ 2 4001
4002/ 1 1
4002/ 2 4001 /

~

$SN 4001 C/R

$§B 1006 C/R

$EX C/R

HELLO

61432
4001/ 1010 144305

C/R

Miscellaneous

VPSD DEMONSTRATION (continued)

TO DUMP A SERIES OF LOCATIONS, ISSUE
THE “D” DIRECTIVE AND SPECIFY BOTH

THE STARTING
YOU CAN ALSO

AND ENDING LOCATIONS.
SPECIFY THE DISPLAY MODE.

8 LOCATIONS PER LINE IS DISPLAYED.

422 100 1010 1300 400 61432 424

/*
/*

/*
/*
/*
/*
/*
/*

/*

/*
/*
/*
/*
/*

/*

/*
/*
/*
/*

4001/ 1006: PCL%Z LB%+ 424,%

$PR C/R
0K,
Rev. 19.4

/*

SWITCH FROM SEGMENT 4001 TO 4002
ACCESS LOCATION 4002/0

TO CHANGE THE CONTENTS OF A LOCATION
SIMPLY ACCESS THE LOCATION. WHEN THE
LOCATION 1S DISPLAYED, TYPE IN THE NEW
VALUE. IN THE EXAMPLE, LOCATION

4002/1 WAS ACCESSED. ITS ORIGINAL
VALUE WAS 0. IT WAS CHANGED TO BE A 1.

SWITCH BACK TO SEGMENT 4001

SET A BREAKPOINT AT LOCATION
4001/1006. THE PURPOSE OF A
BREAKPOINT IS TO HALT PROGRAM
EXECUTION AT A PARTICULAR LOCATION
SO THAT MEMORY CAN BE EXAMINED.

TO START PROGRAM EXECUTION,TYPE “EX~

“HELLO” IS PRINTED OUT BY THE
PROGRAM. THE NEXT LINE TELLS US
THAT EXECUTION IS HALTED AT THE
BREAKPOINT WE SET ABOVE.

A=100000 B=212 X=0 K=14100 R=0 Y=26430

TO CONTINUE EXECUTION, TYPE “PR”

- 5 June, 1985

CEO810 -

Rev.

19.4

PRIMOS

Miscellaneous

June, 1985

CEO810

PRIMOS

Rev. 19.4

Appendix D -

Acronyms

Acroanyms

June, 1985

CE0810 -~

ACRONYM

ALU
AMLC
ARGT
AST
BMA
BMC
BMD
BPA
BPC
BPD
BRA
CALF
CF
CLB
CTI
DFU
DMA
DMC
DMQ
DMT
DP

DSKRAT

DTAR
DTB
EPF
FADDR
FF
FCODE
FIM
HMAP
ICS
IOTLB
IRB
LB
LDEV
LMAP
LTD
LTE
MMAP
MPC
ODB
ORB
PB

Rev.

19.4

PRIMOS

ACRONYMS

MEANING

Arithmetic Logic Unit
Asynchronous Multi-Line Controller
Argument Transfer

Assigned Segment Table

Bus Memory Address

Bus Memory Control

Bus Memory Data

Bus Peripheral Address

Bus Peripheral Control

Bus Peripheral Data

Beginning Record Address

Call Fault Handler

Condition Frame

Critical Information Block
Character Time Interrupt
Dynamic File Units

Direct Memory Access

Direct Memory Channel

Direct Memory Queue

Direct Memory Transfer
Diagnostic Processor

Disk Record Availability Table
Descriptor Table Address Register
Data Template Block

Executable program Format
Fault Address

Fault Frame

Fault Code

Fault Intercept Module
Hardware Map

Intelligent Controller Subsystem
I/0 Table Lookaside Buffer
Input Ring Buffer

Linkage Base

Logical Device Number

Logical Map

Linkage Template Descriptor
Linkage Template Entry

Memory Map

Micro Programmable Controller

On-Unit Descriptor Block

Output Ring Buffer
Procedure Base

Acronyms

SECTION COVERED

Hardware
Device
Procedure
EPFs
Hardware
Hardware
Hardware
Hardware
Hardware
Hardware
File System
Exceptions
Exceptions
EPFs
Device
File System
Device
Device
Device
Device
Hardware
File System
Memory
EPFs

EPFs
Exceptions
Exceptions
Exceptions
Exceptions
Memory
Device
Memory
Device
Procedure
File System
Memory
EPFs

EPFs
Memory
Hardware
Exceptions
Device
Procedure

June,

1985

CE0810

ACRONYM

PCB
P-ctr
PCL
PIC

PIO
PMT
PPA
PPB
PPN
PRTN
QRB

RA

RF
ROIPQNM
SB

SDT
SDW
SMT
socC
STLB
SWI
UART
U-CODE
URC
UTE
VCIB
VCP
VMFA

Rev.

19.4

PRIMOS

MEANING

Process Contro
Program Counte
Procedure Call
Phantom Interr

Programmable Interval Clock
Programmed Input/Output

Page Map Table
Pointer to Pro
Pointer to Pro
Physical Page

Procedure Retu

(Disk) Queue Request Block

Record Address
Register File

Stack Base

Segment Descriptor Table
Segment Descriptor Word

Segment Mappin

System Option Controller
Segment Table Lookaside Buffer

Software Inter

Acronyms

ACRONYMS (cont”d)
SECTION COVERED

1 Block Process

r Hardware
Procedure

upt Code Device
Device
Device
Memory

cess A Process

cess B Process

Number Memory

rn
Device
File System
Hardware

RO Input Queue Notification Mechanism Device

Procedure
Memory
Memory

g Table EPFs
Hardware
Memory

rupt Exceptions

Universal Asynchronous Receive Transmit Device
mware) Hardware

Microcode (fir

Unit Record Controller

Unit Table Ent

Very Critical Information Block

Virtual Contro

Virtual Memory File Access

ry

1l Panel

Hardware
File System
EPFs
Hardware
Memory

3 June, 1985

T
DR S e S

v - MOS

Acronyms

June, 1985

CE0810 - PRIMOS Reading

Appendix E - Reading List

Rev. 19.4 E - 1 June, 1985

CE0810 - PRIMOS

Reading
READING LIST
SG-194 Primos Student Guide
DOC9473-1PA System Architecture Reference Guide —
DOC3621-190P Subroutines Reference Guide
DOC6904-191P Prime 50 Series Technical Summary
Hardware Features DOC9473-1PA 1
DOC6904~-191P 2; 12:1-7
Memory Management DOC9473-1PA 2:1-7; 3:1-34;
4:1-25
DOC6904-~-191P 4:1-15 —
SG-194 2
Process Management DOC9473-1PA 9:1-30 _
DOC6904-~191P 3:1-10
SG-194 3
Device Management DOC9473-1PA 10:3-5; 11:1-17 -
DOC6904-191P 5; 10:4-5
SG-194 4
Procedure Management D0C9473-1PA 8:1-15 ;
D0C6904-191P 8:1-8
SG-194 5
Exception Handling DOC9473-1PA 10:6-16

DOC6904~-191P 8:7-10; 10:4
D0OC3621-190P 22:1-6,(7-15), -
16-24,25-43),43-53

SG-194 6

Command Environment DOC6904-191P 9:4-10, (11-12) -
SG-194 7

File System DOC3621-190P I:1-24 -
DOC6904-191P 6:1-9
SG-194 9

Rev. 19.4 E - 2 June, 1985

	Front cover
	Title page
	Copyright page
	i
	ii
	iii
	iv
	1-1
	1-2
	1-3
	1-4
	1-5
	1-6
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	2-8
	2-9
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	3-1
	3-2
	3-3
	3-4
	3-5
	3-6
	3-7
	3-8
	3-9
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	4-1
	4-2
	4-3
	4-4
	4-5
	4-6
	4-7
	4-8
	4-9
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	5-1
	5-2
	5-3
	5-4
	5-5
	5-6
	5-7
	5-8
	5-9
	5-10
	6-1
	6-2
	6-3
	6-4
	6-5
	6-6
	6-7
	6-8
	6-9
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	7-1
	7-2
	7-3
	7-4
	7-5
	7-6
	7-7
	7-8
	8-1
	8-2
	8-3
	8-4
	8-5
	8-6
	8-7
	8-8
	8-9
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	9-1
	9-2
	9-3
	9-4
	9-5
	9-6
	9-7
	9-8
	9-9
	9-10
	9-11
	9-12
	9-13
	9-14
	9-15
	9-16
	9-17
	9-18
	9-19
	9-20
	9-21
	9-22
	9-23
	9-24
	9-25
	9-26
	9-27
	9-28
	9-29
	9-30
	9-31
	9-32
	9-33
	9-34
	9-35
	9-36
	A-1
	A-2
	A-3
	A-4
	A-5
	A-6
	B-1
	B-2
	B-3
	B-4
	B-5
	B-6
	B-7
	B-8
	C-1
	C-2
	C-3
	C-4
	C-5
	C-6
	D-1
	D-2
	D-3
	D-4
	E-1
	E-2

