* 43‘:%#

SYSTEM OVERVIEW

OPERATING SYSTEMS BOOKS

Madnick, S.E. and Donovan, J.J.

Operating Systems, McGraw Hill, 1974

‘u cw L-‘i.’}bnf(u‘ul ﬁﬁ&jﬂakm Cn & &u&t '\'vtéf'bb\iv} Ao & d—)u AGA wxmﬂc g ! B

Brinch Hansen, P. Operating System Principles,

Prentice-Hall, 1973

"N_B\,Q tﬁw ,rﬂL-UU--Q(.Q t.u*’uutl- d(f. Olrj/l_tﬁ,&&&-j '\,«43—’{ l)\f»d *\—LLJ SHL

Organick, E.I., The Multics System: An Examination of

its Structure MIT Press, 1972

pj'\moj ;_,f) ‘/Q\(]‘_M{c s \%LL&M] (=8 250—(’7; Lp..m’t’fl C o tﬂ-’L M..!_c,[[(EEN
W\,L’tﬁ:’?u RIS S | Loyl K oA :,_MK :

MULTICS TECHNICAL REPORTS

MAC-TR-123 Introduction to Multics

2 oo
% MAC TR - Se hedaders
FROM:
Laboratory for Computer Sciences “m“w
MIT I.-"; |
545 Technology Sq. Ceann c)gk fat) Q(JJA, 2 @Ag
; | £ j

Cambridge, MA 02139 Lok . onee & LXQNV 6’

(617) 253-5894 - Lk s e, ks

PRIME 350-750

SYSTEM ARCHITECTURE

The Prime 350-750 system embodies a number of
novel architectural concepts which form the
foundation for an efficient, powerful operating
system: recursive/rentrant instruction set,
firmware process dispatching, paged/segmented
virtual memory, firmware stack management, and
protection rings. Understanding these concepts
and the way the software utilizes them is pre-
requisite to understanding Prime's product line

today.

NON-EMBEDDED OPFRATING SYSTEM
(PRIMOS III, 0S/360)

user address space another user address space

S et et Sy e g,

. -'h._—_-‘_-
.
L] %
L]
-

|

/

EV2EDDED OPEZRATING SYSTZM

(PRIMOS IV, MULTICS)

enother
user address space user address space
e — P — — P ol B R e
'3 =) !
: ! ; \
G gI8 " { :
\ (SUPERCALIFOOBR) l
. 4 = o il |
{ ee e ([tc @ l
[| i |
\ 2z { T
G DOSSUB '
£ COMANL] i,
s 1 R
! l
i sa l { |

'lh--—u._—.—h-ll-ﬂ

M%?ﬁ%U

-. .

=

[~

ADVARTAGES OF

AW EVBEDDED OPERATING SYSTEM

Efficient argument passing to the supervisor.

Reenirant supervisor versus serizlly-reusable
supervisorT.

User replaceability of supervisor components.

WY NOT EVoED

Protection hardware is inadequate.
Instruction set is not reentrant. ¢

Address space is inadequate for sharing.

"

PLGIXG .versus SECMENTATION

PAGING is wholesaling of the physiczl address

_ space.

¢ Pages are uniform in size.

e Pzging solves the mazin-memory
plzcement problem for the
operating systen.

¢ Feaging benefits the operating
system, and is usuzlly invisitle
to the user.

SEGMENTATION is wholesaling of the virtual

.
address space.
-

e Segments are variable in size.

¢ Segments hold nodules (prograns
or data).

e Segments facilitate address-space
management (variable-sized modulesj

sharing).

e Segments facilitate access control
(sharing; protected subsystems).

e Implied segment numbers shorten

address fiers_and_ailﬁﬂaﬁncmp

(2 - wioda s

e Segmentation benefits and is
visible to the user.

PAGING and SEGMENTATION czn be combined in a
system, to gain the benefits of both.

SEGMENTS ARE DIVIDED INTC U Groups ofF 1924 ('293))

- DESCRIFTOR TABLE ADDRESS RER

(pTAR 0-3)
SEGMENT
NO PRIVATE TO
USER DTAR3
'E'JU:] (ULjL(g bg.’ C)pzro-'h% qu‘f‘u-\
PRIVATE TO
USZR DTARZ
'1,009
SYARED BY
ALL USERS DTAR]
*2000
USED BY
OPERATING SYSTEM ' DTARD
0
DTAR) - USED BY OPERATING SYSTEM -
DTARl] - SHARED BY ALL USERS
DTAR2§
DTARZ) - PRIVATE TO USER

h-! .__ - i A ..__ a 2 ’ =

A USER'S VIRTUAL MEMORY

SEGMENT
NUMBER
(OCTAL)
\
g7777
Rey. 11
e ; NOT USED ;. £y
koo ‘egpd | NG 3 Stdck ABRLLEVIATIONS
! Vg DATA SPACE FOR SHARED LIB
'6000 PUDCOM RING@ STACK =
'47g0 NOT USED
+
S EG-
{EL,——e—~ UTSEG™
'40@1
' 4390 R-MODE
NOT USED
la050 2087
SHARED PROGRAMS
‘30\1 12000
NOT USED
114
PRIMOS
)

{

I.,t]
|

f}

-

L]

FROTECTION RIWCS

¢ Fierzrchical domeins of successively more

restricted privilege.

ezst privilezed;
ost restricted

most bprivilegeds;
least restricted

ki i intermediate
(operating system)

_ (protected subsystems)

¢ Fodules live in rings, and processes visit them.,

e Your vprivilege is determined by who you are
(what sezment table you'use) and by what ring

you are in (what module you are executing).

¢ Segment descriptor (32 bits)rs

i 3 3 3 22
e L] o P
F segment fault if set

physical zddress of page table (22 bits)
access allowed from ring 1l: execute/rezd/write

(reserved for access allowed from ring 2)

G W » w

access 21lowed from ring 3; executie/rezd/write

(211 zccess is 2llowed from ring O)

3 B VS SESSSSFESSSEEESYS

YVZAXENING

. The ring-from which a2ccess is mzde is carried

along with every effective address computatlion..

Space is provided for the ring-of-access in 211
base registers, in the field address registers,
znd in indirect words.

The ring-of-zccess begins with the ring in
which the process is executing (the ring field
of the RP).

The ring-of-access is then weziened by the

ring field in any base register, field-zaddress
register, or indirect word used in the effectiv

28dress calculation.

The final wezkened ring number is then used
to select the allowed access privileges from
the segment descriptor.

]
'
]

MULTICS SYSTEM-PROGRAMERS' MANUAL SECTION BD.9 PAGE 1

Draft for approval
Published: 1/23/66
Ma jor Revision

Idéntifica:ion | H/lb/\’ﬂ?ﬁ ;5'/,—;/ G?J}?
(b-uf_ md'.j be Q.‘ (‘7/ 20 .

#)

Protection of the Supervisor
R. Montrose Graham

Purpose . }

It is essential that certain supervisor procedures and data bases be
totally inaccessable to a user. However, the supervisor must be call-
able by a user; and, when called, it must be able to access those pro-
tected segments which it needs to perform its function. Hence, a method
of controlled entry to the supervisor is required, one which removes
access restrictions for a group of segments as control passes to the
supervisor. Further, it is desirable that the supervisor be protected
from itself. Some segments of the Supervisor are more sensitive than .
the others. Access to these segments by the rest of the supervisor
should be controlled in the same manner a4s user access to the supervisor,
This minimizes the chance of disaster in the event of minor machine
errors and bugs in the supervisor itself. 1In addition, it aids in test-
ing new supervisor modules. Finally, the same protection mechanism
should be extendable for use by the users in such situations as an
instructor's grading program and a student's solution, where the relation
between programs is analogous to the supervisor-user relationship.

The following paragraphs describe a framework in which all of these
goals can be achieved.

Domains of Access, Rings, Lalls

The segments of a process are divided into a number of mutually exclusive
subsets, called rings., A segment 2>, is in one andg only oae ring,

If we write {a) ¢R(3) we mean that <a2> is in ring 3. It is helpful
to.view these rings as annuli with the innermost ring being the hard
core supervisor (see figure 1). The lines between rings are walls.

The domain of access or segment Ja> , D(a), is the union of the ring
which contains <a> and all outer rings, In figure 1, D(a)=R(3) U R(4)
(1.e., the union of ring 3 and ring 4). D(a) is the set of all-segments
which <a>> may access. The complement of D(a), R(2) U R(1) in figure 1,
is the set of segments to which <a> is denied any access. The hard

core supervisor has access to all segments of the process. As control
passes outward, access is denied for more and more segments, i.e., the
domain of access gets smaller. When control is in R(i) we will say

that the segments which are accessable are unlocked and those which are
inaccessable are locked. Whenever control crosses a wall, the domain
of access changes. Hence, when control passes from R(i) to R(i+l)

all the segments in R(1) have to be locked and when control passes from
R(i+l) to R(i) all the segments in R(i+l) have to be unlocked. Since

heable 1(1:- PEIME S

— - —— e

MULTICS SYSTEM-PROGRAMMERS ' MANUAL SECTION BD.9S PAGE 2
\ s

all segments within a ring have the same domain of access, procedures
in the same rinz may treely call each other. In figure 1, <a? may call
 and <y> . On the other hand, we want controlled entry to R(1)
from R(i+l). There are & number of entry points to procedures 1in R(1),
callea gates, to which a procedure in an. outer Ting may legally transfer
control. When control crosses the wall between R(i) and R(i+l) the
segments of R(i) must be locked or unlocked depending upon the direction’
of crossing. 1In figure 1, suppose <aj | [ea] is a gate of X(3)s: 1T
<£d> calls -(a'."l[ea] the segments <a> ,.<bY ,eee) <x> , and <y7”
have to be unlocked. If <a> then calls <h> the segments LA e
LB savayRyand <yyhave to be locked since they are not in the
domain of access of <h> . Thus, if the locking and unlocking is to
be achieved automnatically, crossing a wall in either.direction must
be detected. The procedure segments in each ring are, in general,
normal slave procedufes which use a stack. The contents of this stack
needs to be protected in outer rings. Hence, each ring has its own
stack segment which is a member of the ring. When a wall is crossed
stacks must be switched, i.e., as control passes through a wall into
ring i, the stack pointer is changed to point to the stack associate&
with ring i. In summary, when a wall is crossed, 1) the crossing has
to be validated, 2) a number of segments have to be locked or unlocked,
and 3) the stack has to be switched.

Crossing a Wall

Crossing a wall in either direction is detected by a fault. There is

a distinct descriptor segment, D(i), associatea with each ring, R(i).

The contents of all the descriptor segments &are jdentical, except possibly
the access control bits, i.e., the kth descriptor in each D(i) refers

to the same segment. When -oatrol is in R(i) the descriptor base register
, DBR, points to D(i). The domain of access of a segment in RJi) is
defined by the access ‘control bits of the descriptors im D(i). Figure

2 shows the access control of the D(i) for the example in figure 1. :
Wnen control is in R(i) only those procedures which are in R(i) are mark-
ed procedure in D(i). Any attempt to transfer control to a procedure

sot in R(i) results in a fault. 1In this fashion 211 crossings of a

wall are detected. There are four different crossing situations:

1. Inward call; e.g., Zd> calls La) 'J?"# £ ‘&:*6“‘ L{ 000[1& dj_{EOU5
2. Outward return; €.g., < ay>returns to £ day .CG‘“ m{wm{(b-t n

3. OQutward call; e.g., <a> calls £h% ‘_A;h{,_n mward |

4. Inward return; €.8., zhyreturns to Za> .

Inward crossings are detected by a directed fault and outward crossings
are detected by an attempt-to-execute-data fault. When a wall is crossed
and control passes to R(i) the stack is switched and the DBR is set to
point to D(i). This changing of effective descriptor segment accomplishes
the locking or unlocking of the appropriate segments. Each of the four
crossing situations is described in detail below.

|

Al TR S S RS

v 2i RATR, ER YRR RN, 2T R

FEFT T T s

-F o,

. 3

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BD.9S PAGE 3

Inward Call

1f a directed fault occurs. and the instruction which caused the fault
is a transter type (tra, tze, ... but not rtd) then an inward call is
being attempted. An inward call is legal only if the location to which
control is being transferred is a gate. "The processor status when the
fault occurs gives the number of the calling segment (e.g-» d?) -and

.the segment number and address of the entry point, (e.g., a:=|ea).

From this informztion it is determined to what rings d:* and a i# belong
(in figure 1, d*=< R(4) and a:< R(3)). Associated with each ring,
R(i), is a gate list,, G(i) (which can be hash coded). The gate list

for R(i) contains a list of all gates to R(i) and the ring from which
each gate may be entered. In the example, if the pair (a7 | ea,q)

is on G(3) then Ld) may call <a>| [ea). When it has been deternmined
that this is a valid inward call to R(i), the stack is switched and

the DBR is set to point to D(i). Execution of the faulting imstruction

is then completed.

Outward Return

1f an attempt-to-execute-data fault occurs and the instruction causing
the fault is an rtd, then an outward return is being attempted. The
number of the segment to which return is being attempted (e.g«> d#)
is obtained from the machine conditions at the time of the fault. The
ring number, R(i), of this segment is then determined. If the segment
descriptor in G(i) is marked procedure, then the return is valid. 1In
the example ~<d> is in R(4) and its descriptor in D(4) is marked pro-
cedure. Recall that a procedure is marked procedure in the descriptor
segnent of the ring to which it belongs, marked data in tt.e descriptor
segment of all inner rings, and marked directed fault in the descriptor
segment of all outer rings. After it has been determined that this

is a valid outward return a flag is set in the stack which indicates
that control is passing outward from this ring via an outward return.
Then the stack is switched and the DBR is set to point to D(i).
Execution of the faulting instruction is then completed.

Qutward Call

An outward call 1s being attempte& when an attempt-to-execute-data fault
occurs and the instruction causing the fault is a transfer type (tra,
tze, .., but not rtd). The outward call is validated in the same manner
as the outward return. However, before the call can be cozpleted, 5

the calling sequence includes arguments, the arguments must be moved

into an area that is accessible by the procedure in the outer ring.
Without making the rule that all arguments to an outward call must lie

in an outer ring, which is undesirable, the caller may have indicated

as an argument some location' in a segment in the ring of the caller.

MULTICS SYSTEM-PROGRAMMER'S MANUAL SECTION BD.9 PAGE 4

For example, if < a>> calls <h> with two arguments one being in <y?>
and the second being in < z > then the argument in <y must be moved
to some segment which <h> may access. Therefore, before the call

is completed all arguments which are not accessible by the called
procedure will be moved into the stack belonging to the ring of the
called procedure. Since there are a number of different types of arguments
there are a number of different actions which may be required. The
standard call provides ftor type information to be stored in the argument
pointer (See Section BD.7.02). If the type code is 0, it is assumed

that the argumznt pointer is pointing to one word of information.

If the type code is non-zero it indicates the structure of the argument.
The number of different types which will be handled properly on an
outward call is restricted to those which are defined as part of the
standard system module interfaces (See Section BB.2). Any of the data,
specitiers, or dope for any of the arguments which lie in a segment which
is not accessible to the called procedure will be moved into the stack
corresponding to the ring ot the called procedure. A new argument list
will be constructed in which the argument pointers will point to the
appropriate new location of all data. Tnis argument list will also

be placed in the stack of the called procedure. The location of the
original argument list is saved in the stack of the caller for use when
the called procedure returns (see below). In addition, the normal return
point for this call is also saved for use in validating the return.

A flag is set in the stack indicating that control is passing outward
from this ring via an outward call. After this has bean done the stack
i1s switched, the DBR is properly set, and the faulting instruction is
then completed. e

Inward Retdrn

1f a directed fault occurs and the instruction which caused the fault

is an rtd then an inward return is being attempted. The stack is

switched first sincze it contains information which 1s needed to validate

the inward return. The inward return is validated in the following

fashion. The contents ot the stack are examined to se2 1f the last

outwara transter of control trom this ring was a call rather than a

return. If it was a call the address to which control is now attempting

to transfer 1s compared with the normal return point tor the previous

call. If they match the inward return is valid. If they do not match

a check is made to see if any.of the arguments of the call were label

data. Any arguments which were label data represent possible zlternate
return points. These addresses are compared with the address to which
control 1s now attempting to transter. If a match is found then this

is a valid inward return. If no match is found the return is invalid

and appropriate error action 1s taken. When 1t 1s founa that the inward
return 1s valia, all arguments ot the original outward call which had to

be moved into the stack for accessibility are checked to see 1l they

have been changed. Any arguments which have been changed by the called
procedure must be moved back to their original position. If the original
location ot any of these arguments was in a read-only procedure a tault wall
occur during this process. This fault indicates the caller violated the reaoc:
only restriction ot the argument and appropriate error action is taken at this
point.

MULTICS SYSTEH-PROGRAMIERS' MANUAL _SECTION BD.9

. R4RING 4

USER

R3RING 3

R2 RING 2 -

R; RING 1
HARD CORE
SUPERVISOR

(STACK >

(d>

feTACK 4y

-

FIGURE 1: 'DIVISION OF THE SEGMENTS IN A
'PROCESS INTO SUBSETS, CALLED
RINGS. - :

'PAGE 5

(zd ¢

(hd

U

P

—_—— —_—

st | oo | e | —

MULTICS SYSTEM-PROGRAMMERS' MANUAL

SECTION BD.9

1
; D(4) D(3)] D(2)
proc data data
£d> slave access s;ave access slave access
proc data data
R(4) I<:h> ‘slave access slave access slave ‘access
data data data
<z) slave access slave access slave access
proc data
<a) | directed slave access slave access
fault
"4&b> | directed _proc data
fault slave access slave accessi
R(3) Cy» | master data data i
access only slave access slave access
111 R B
<X | master data data
i access only : slave access slave access |
R(2) . <g> | directed directed i proc
i fault fault | slave access

Figure 2: 'Access Controls in the D(i) for figure 1.

PAGE 6

g §

Opcrating B. Randell
Systems Editor

The Multics
Virtual Memory:
Concepts and
Design

A Bensoussan, C.T. Clingen
Honeywell Information Systems, Inc.*
and

R.C. Daley -
Massachusetts Institute of. Technology

As experience with use of on-line operating
systems has grown, the need to share information
among system users has become increasingly apparent.
Many contemporary systems permit some degree of
sharing. Usually, sharing is accomplished by allowing
several users to share data via input and output of
information stored in files kept in secondary storage.
Through the use of segmentation, however, Multics
provides direct hardware addressing by user and system
programs of all infor mation, independent of its ph vsical
storage location. Information is stored in segments each
of which is potentially sharable and carries its own
independent attributes of size and access privilege.

Here, the design and implementation considerations
of segmentation and sharing in Multics are first
discussed under the assumption that all information
resides in a large, scgmented main memory. Since the
size of main memory on contemporary systems is rather
limited, it is then shown how the Multics software
achicves the effect of a large segmented main memory
through the use of the Honeywell 645 segmentation and
paging hardware.

Key Words and Phrases: operating system, Multics,
virtual memory, segmentation, information sharing,
paging, memory mana gement, memory hierarchy

CR Categories: 4.30, 4.31, 4.32

Copynght € 1972, Association for Computing Machmery, Inc.

General permission to republish, but nat for profit, all or pan
of this material is granted, provided that reference 1S made to this
publication, 1o its date of issue, and to the fact that reprinting
privaleges were grantec by permission of the Association for Com-

puting Machinery.

1. Introduction

In the past few years several well-known systems
have implemented large virtual memories which permit
the execution of programs exceeding the size of available
core memory. These implementations have been
achieved by demand paging in the Atlas computer [11],
allowing a program to be divided physically into pages
only some of which need reside in core storage at any
one time. by segmentation in the B5000 computer |15},
allowing a program O be divided logically into scg-
ments, only some of which need be in core, and by a
combination of both segmentation and paging in the
Honeywell 645 [3, 12] and the 18M 360 67 (2] for which
only a few pages of a few segments need be available in
core while a program is running.

As experience has been gained with remote-accsss,
multiprogrammed systems, however, it has become
apparent that, in addition to being able to take ad-
vantage of the direct addressibility of large amounts of
information made possible by large virtual memories,
many applications also require the rapid but controlled
sharing of information stored on-line at the central
facility. In Multics (Mulriplexed Information and
Computing Service) scgmentation provides a gener-
alized basis for the direct accessing and sharing of on-
line information by satisfying two design goals: (1) 1t
must be possible for all on-line information stored in

Minor revision of a paper-presenied at an ACM Symposium
on Operating System principles, Princeton University, October
20-22, 1969. Work reporied herein was supported (in part! by
Project MAC, an MIT rescarch program sponsored by the Ad-
vanced Research Projects Agency, Bgprariment of Defense, under
Office of Naval Rescarch Contract Na@mber Nonr-4102(1). *Honey-
well Information Systems, Inc., Cambridge, MA 02142 {Cam-
bridge, MA 02142 4

3

Communications May 1972
of Volume 15
the ACM Numbser 5

-

™™ el Te T CTEY M . —y i, el e BB ki B

the system to be addressed directly by a processor and
heywe referenced directly by any computation; (2) it
i webe possible 1O control access, at each reference, tO
8, ~line information in the system.

The fundamental advantage of direct addressibility
hat - information copying is no longer mandatory.
¢ all instructions and data items in the system are
proccssor-addrcssiblc, duplication of procedures and
defy is unnecessary. This means, for example, that core
’ ges of programs need not be prepared by loading
and binding together copies of procedures before
ution; instead, the original procedures may be used
% cctly in a computation. Also, partial copies of data
Ls need not be read, yia requests to an 1/0 system,
into core buffers for subsequent use and then returned,
d. means of another 1/0 request, to their original
J-ations; instead the central processor executing a
computation can directly address just those required
ita items in the original version of the file. This kind
* access to information promises a very attractive
reduction in program complexity for the programmer.
g If all on-line information in the system may be
J‘ jdressed directly by any computation, it becomes
\mperative to be able to limit or control access 10 this
information both for the self-protection of a computa-
. -’ 5n from its own mishaps, and for the mutual protec-
% § on of computations using the same system hardware
facilities. Thus it becomes desirable to compartmentalize
package all information in a directly-addressible
s g1emory and 1o attach access attributes tO these in-
formation packages describing the fashion in which
ach user may reference the contained data and pro-
d Lqures. Since all such information is processor-
addressible, the access attributes of the referencing
wser must be enforced upon each processor reference
> any information package.

Given the ability to directly address all on-line
information in the system, thereby eliminating the
jeed for copying data and procedures, and given the
bility to control access to this information, controlled
| sharing among several computations then follows as a

jatural consequence.
In Multics, segments are packages of information
i which are directly addressed and which are accessed in

1 controlled fashion. Associated with each segment is
L set of access attributes for each user who may access
the segment. These attributes are checked b hardware
upon each segment reference by any USEr. Furthermore
1l on-line information in 2 Multics installation can b
Jirectly referenced as segments while in other systems
most on-line information is referenced as fl¢
is paper discusses the properties of an “jdealized”
Vfultics memory comprised entirely of segments
“erenced by symbolic name, and describes the simula-
-ion of this idealized memory through the use of both
;pecialized hardware and system software. The result of
this simulation is referred to as the Multics virtual
memory. Although the Multics virtual memory has

,09

2-19
been discussed elsewhere (3, 6, 7] at the conceptual
level or in its earlier forms, the implementation pre-
sentcd here represents 2 mechanism resulting from
several consecutive implementations leading to an
effective realization of the design goals.

2. Segmentation

A basic motivation behind segmentation is the

- desire to permit information sharing in a more auto-

matic and general manner than provided by non-
segmented systems. Sharing must be accomplished
without duplication of information and access to the
shared information must be controlled not only in
secondary memory but also in main memory.

In most existing systems that provide for informa-
tion sharing, the two requirements mentioned above are
not met. For example, in the CTSS system (5], informa-
tion to be shared is contained in files. In order for
several users to access the information recorded in a
file, a copy of the desired information is placed in a
buffer in each user’s core image. This requires an
explicit, programmer-conlrolled 1/0 request to the file
system, at which time the file system checks whether
the user has appropriate access to the file. During
execution, the user program manipulates this copy and
ot the file. Any modification or updating is done on
the copy and can be reflected in the original file only by
an explicit 1/0 request to the file system, at which time
the file system determines whether the user has the
right to change the file.

In nonsegmented systems, the use of core images
makes it nearly impossible to control access to shared
information in core. Each program in execution is
assigned a logically contiguous, bounded portion of
core memory or paged virtual memory. Even il the
nontrivial problem of addressing the shared intormation
in core were solved, access 10 this information could
not be controlled without additional hardware as-
sistance. Each core image consists of a succession of
anonymous words that cannot be decomposed into the
original elementary parts from which the core image
was synthetized. These different parts are indistinguish-
able in the core image; they have lost their identity and
thereby have lost all their attributes, such as length,
access rights, and name. As a consequence, NONseg-
mented hardware is inadequate for controlled sharing
in core memory. Although attempts 10 share informa-
tion in core memory have been made with nonseg:-
mented hardware, they have resulted in each instance
being a special case which must be preplanned at the
supervisory level. For example, if all users are to share
a compiler in main memory, it is imperative that none
of them be able to alter the part of main memory \ here

the compiler resides. The hardware *privileged” .aode
used by the supervisor is often the only means of pro-
tecting shared information in main me¢mory. In order

May 1972
Volume 15
Number §

Communications

of
the ACM

]

s el i il o O i

i

S

2-20

to protect the shared compiler, it is made accessible
only in this privileged mode. The compiler can no
longer be regarded as a user procedure; it has to be
accessed through a supervisor call like any other part
of the supervisor, and must be coded to respect any
conventions which may have been established for the
supervisor.

In segmented systems, hardware segmentation can
be used to divide a core image into several parts, or
segments [10]. Each segment is accessed by the hardware
through a segment descriptor containing the segment’s
attributes. Among these attributes are access rights that
the hardware interprets on each program reference to
the segment for a specific user. The absolute core loca-
tion of the beginning of a segment and its length are

~also attributes interpreted by the hardware at each

reference, allowing the segment 1o be relocated any-
where in core and to grow and shrink independently of
other segments. As a result of hardware checking of
access rights, protection of a shared compiler, for
example, becomes trivial since the compiler can reside
in a segment with only the “execute” attribute, thus
permitting users to execute the compiler but not to
change it.

In most segmented systems, @ user program must
first call the supervisor to associate a segment descriptor
with a specific file before the program can directly
access the information in the file. If the number of files
the user program must reference exceeds the number
of segment descriptors available to the user, the user
program is forced to call the supervisor again to free
segment descriptors currently in use so that they can
be reused to access other information. Furthermore,
if the number of segment descriptors is insufficient to
provide simultaneous direct access to each distinct file
required by this program, the user must then provide
for some means of buffering this information. Buffering,
of course, requires that information from more than on¢
file be copied and coalesced with other distinctly differ-
ent information having potentially different attributes.

'Once the information is copied and merged, the

identity of the original information is lost, thus making
it impossible for the information to be shared with
other user programs. In addition, this form of user-
controlled segment descriptor allocation and buffering
of information requires a significant amount of pre-
planning by the user.

In Multics, the number of segment descriptors
avajlable to each computation is sufficiently large to
provide a segment descriptor for each file that the user
program needs to reference in most applications. The
availability of a large number of segment descriptors to
cach computation makes it practical for the Multics
supervisor to associate segment descriptors with files
upon first reference to the information by a user pro-
gram, relieving the user from the responsibility of
allocating and deallocating segment descriptors. In
addition, the relatively large number of segment

310

descriptors eliminates the nced for buffering, allowing
the user program to opcrate directly on the original
information rather than on a copy of the information.
In this way, all information retains its identity and
independent attributes of length and access privilege
regardless of its physical location in main memory or on
secondary storage. As a result, the Multics user no
longer uses files; instead he references all information
as segments, which are directly accessible to his pro-
grams.

To Multics users, all memory appears to be com-
posed of a large number of independent linear core
memories, each associated with a descriptor. A user
program can create a segment by issuing a call to the
supervisor, giving, as arguments, the appropriate
attributes such as symbolic segment name, name of each
user allowed to access the segment with his respective
access rights, etc. The supervisor then finds an unused
descriptor where it stores the segment attributes. The
segment having been created, the user program can
now address any word of the corresponding linear
memory by the pair (name, i) where “name” is the
symbolic name of the segment and “i” is the word
number ‘in the linear memory. Furthermore, any
other user can reference word number i of this segment
also by the pair (name, i) but he can access it only
according to the access rights he was given by the
creator and which are recorded in the descriptor.
Combinations of the ‘“read,” “write,” ‘“‘execute’” and
“append” access rights [6] are available in Multics.

A simple representation of this memory, referred to
as the Multics idealized memory, is shown in Figure 1.

3. Paging

In a system in which the maximum size of any seg-
ment was very small compared to the size of the entire
core memory, the “swapping” of complete segments
into and out of core would be feasible. Even in such a
system, if all segments did not have the same maximum
size, or had the same maximum size but were allowed to
grow from initially smaller sizes, there remains the
difficult core management problem of providing space
for segments of different sizes. Multics, however,
provides for segments of sufficient maximum size sO
that only a few can be entirely core-resident at any one
time. Also, these segments can grow from any initial
size smaller than the maximum permissible size.

By breaking segments into equal-size parts called
pages and providing for the transportation of 1n-
dividual pages to and from core as demand dictates,
the disadvantages of fragmentation are incurred, as
explained by Denning [9]. However, several practical
problems encountered in the implementation of a
segmented virtual memory are solved.

First, since pagss are all of equal size, space alloca-
tion is immenscly simplified. The problems of “com-

Communications May 1972
of Volume 15
the ACM Number §

0 B

\

1. Multics idealized memory.
i
s g

R

Hi

=5

(S50 S VR S G S oo O o Y 00 " i Y e ' o < T ' .

bed bl el el kel

L_L______l___l—_l___

pacting” information in core and on secondary storage,
characteristic of systems dealing with variable-sized
segments or pages, are thereby eliminated.

Second, since only the referenced page of a segment
need be in core at any one instant, segments need not be
small compared to core memory.

Third, *‘demand paging” permits advantage 10 be
taken of any locality of reference peculiar to a program
Ly transporting to core only those pages of segments
Jhich are currently needed. Any additional overhead
associated with demand paging should” of course be
weighed against the alternative inefficiencies associated
with dedicating core to entire segments which must be
swapped into core but which may be only partly ref-
erenced.

Finally, demand paging allows the user a greater

degree of machine independence in that. a large pro-
to run well in a large core memory con-

gram designed
duced performance

figuration will continue to run at re
on smaller configurations.

4. The Multics Virtual Memory

Multics simulates the idealized memory, represented
in Figure 1, using the segmentation and paging features
of the 645 assisted by the appropriate software features.
The result of the simulation is referred to as the *Multics
Virtual Memory.” The user can keep a large number of
segments in this memory and reference them by sy mbolic
name; upon first reference 10 2 segment, the supervisor
automatically transforms the symbelic name into the
appropriate hardware address which is directly used
by the processor for subsequent references.

The remainder of this paper explains the addressing
mechanism in the 645 and describes how the M ultics su-
pervisor simulates the Multics idealized memory.

i

5. The Honeywell 645 Processor

The features of the 645 processor which are of in-
terest for the implementation of the Multics virtual
memory are segmentation and paging.

5.1 Segmentation

Any address in the 645 processor consists of a
pair of integers [s, i) s is called the segment number;
“i” the index within the segment. The range of “*s" and
% is 0 to 2® — 1. Word [s, i] is accessed through a
hardware register which is the sth word in a table called
a descriptor segment (ps). The descriptor segment is in
core memory and its absolute address is recorded in 2
processor register called 2 descriptor base register
(pBR). Each word of the ps is called a segment descriptor
word (sDW); the sth SDW will be referred to as sow(s).

See Figure 2.

The DBR contains the values:

pBR -core which is the absolute core address of the DS.
pBR - L which is the length of the DS.

Segment descriptor word number ‘s contains the

values:
SDW

the segment 5.
spw(s)-L which is the length of the segment 5.

spw(s)-acc which describes the access rights for

(s)-core which is the absolute core address of

the segment.
spw(s) - F which is the “missing segment”’ switch.

A simplified version of the algorithm used by the

processor to access the word whose address is [s, fl

follows (see Figure 2):

If DBR-L < s, generate a trap, or *fault” to the

supervisor.
Access SDW(s) at absolute location psRr-core + .

If spw(s)-F = ON, generate a missing segment fault.

If spw(s)-L < i, generate 2 fault.
If spw(s)-acc is incompatible with the requested

operation, generate a fault.
Access the word whose absolute address is spw(s)-

core + .

5.2 Paging
The above description assumes that segments are

in fact, paging is implemented in the
in the Multics implementation. all
age size is always 1.024

not paged;
645 hardware.
segments are paged and the p
words.

Element “i"
p page of the segment, "'

of a segment is the wh word of the
" and “p’’ being defined by

w = i mod 1,024
p = (i— w)/1,024

Each segment is referenced

puge table (PT). The pT of a segment is an array of

Communications May 1972
of Volume 15
the ACM Number §

by a processor through a

P ety ttn Al bl M e Nt R B RV R Y

:

j..

b b

W‘"m

-

222

Fig. 2. Hardware segmentation in the Honeywell 645.
o8R

DS
— =1

Sow (5]

-
-

SEGMENT "S™

Coult.]nu F

- -

woRD [+.i]

physically contiguous words in core memory. Each
element of this array is called a page table word (PTW).
Page table word number p contains:
PTW(p)-core which is the absolute core address of
page number p.
pTW(p)-F which is the “missing page” switch.
The meaning of DBR-core and SDW(s)-core is now:
DBR-core = Absolute core address of the PT of the

descriptor segment.
spw(s)-core = Absolute core address of the pT of

segment number s.

A simplified version of the algorithm used by the
processor to access the word whose address is [s,] is
as follows (see Figure 3):

If pBR-L < s, generate a fault.

Split s into the page number s, and word number 5. .

Access PTW(s,) at absolute location

DBR-cOre + Sp .
If pPTW(s,;)-F = ON, generate a missing page faull.
Access sDw(s) at absolute location

PTW(s,)-core + S. -

If sow(s)-F = ON, generate a missing segment fault.

If sow(s)-L < i, generate a fault.

If spw(s)-acc is incompatible with the requested

operation, generate a fault.

Split i into the page number i; and word number i, .

Access PTW(i,) at absolute location

spw(s)-core + i, .
If PTW(i,)-F = ON, generate a missing page fault.
Access the word whose absolute location is
PTW(i,) -core + i, .

In order to reduce the number of processor refer-
ences 1o core storage while performing this algorithm,
cach processor has a small, high-speed associative
memory [12] automatically maintained so as to always
contain the PTW’s and sDW’s most recently used by the
processor.\The associative memory significantly reduces

e STLR o Prime

Fig. 3. Hardware segmentatic * and paging in the Honeywell 645.

PT o105 0B8R
g g g e 13
PaG "S,el OS rrwis s
— —iceec] !
T of :
SEGMENT is
gt sowi(s) i .
PAGE "i " of T Cora i |oec]r
SEGMENT °S" i) ia,
! Cars [F
.
woRD [1..] i

the number of additional memory requests required
during address preparations.

6. Multics Processes and the Multics Supervisor

A process is generally understood as being a program
in execution. A process is characterized by its state-
word defining, at any given instant, the history resulting
from the execution of the program. It is also charac-
terized by its address space. The address space of a
process is the set of processor addresses that the process
can use to reference information in memory. In Multics,
any information that a process can reference by an
address of the form (segment number, word number) is
said to be in the address space of the process. There 1sa
one-to-one correspondence between Multics processes
and address spaces. Each process is provided with a
private descriptor segment which maps segment num-
bers into core memory addresses and with a private
table which maps symbolic segment names into seg-
ment numbers. This table is called the Known Segment
Table (KST).

The Multics supervisor could have been written so
as not to use segment addressing of course; but organiz-
ing the supervisor into procedures and data segments
permits one to use, in the supervisor, the same conven-
tions that are used in user programs. For instance, the
call-save-return conventions [7] made for user pro-
grams can be used by the supervisor; the standard way
to manufacture pure procedures in a user program 1s
also used extensively in the supecrvisor. A less visible
advantage of segmentation of the supervisor is that
some supervisory facilitics provided for the management
of user scgments can also be applied to supervisor
segments; for example, the demand paging facility
designed to automatically load pages of user segments

Communications May 1972
of Volume 15
the ACM Number §

4

;
.
[]
[]
[]
(]

]

can also be used to load pages of supervisor segments.

s a result, a large portion of the supervisor need not
'i de pcrmanemly in core.

»Unlike most supervisors, the Multics supervisor does
sot operate in 2 dedicated process or address space.
Instead, the supervisor procedure and data segments
are shared among all Multics processes. Whenever 2
new proccss?is created, its descriptor segment is ini-
tialized with-descriptors for all supervisor segments
allowing thérprocess 10 perform all of the basic super-
visory functions for itself. The execution of the super-
visor in the address space of each process facilitates
. communication between user procedures and supervisor
proccdurcs. For example, the user can call 2 supervisor
procedure as if he were calling 2 normal user procedure.
Also, the sharing of the Multics supervisor facilitates
simultaneous execution, by several processes, of super-
visory functions, just as the sharing of user procedures
facilitates the simultaneous execution of functions
written by users.

Since supervisor segments are in the address space
of each process, they must be protected against un-
authorized references by user programs. Multics pro-
vides the user with a ring protection mechanism [13]
which segregates the segments in his address space into
several sets with different access privileges. The Multics
supervisor takes advantage of the existence of this

<¥ nechanism and uses it, rather than some other special

'f""}

» mechanism to protect itself.

7. Segment Attributes

7.1 Directory Hierarchy

The name of a segment and its attributes are asso-
ciated in a catalogue. Conceptually this catalogue con-
sists of a table with one entry for each segment in the
system. An enry contains the name of the segment and
all its attributes: length, memory address, list of users
allowed to use the segment with their respective access
rights, date and time the segment was created, etc.

In Multics, this catalogue is implemented as several
segments, called directories, organized into 2 tree
structure. A segment name is a list of subnames reflect-
ing the position of the entry in the tree structure, with
respect to the beginning, or root directory (rooT) of
the tree. By convention, subnames are separated by the
character>". Each subname is called an entryname
and the ifist of entrynames is called a pathname. An
entryname is unique in 2 given directory and a path-
name is unique in the entire directory hierarchy. Be-
cause of its property of uniquely identifying 2 segment
in the directory hierarchy, the pathname has been
chosen as the symbolic name by which the Multics user
must reference a segment. There are two types of direc-
tory entries, branches and links. A branch is a directory
entry which contains all attributes of a segment while a
link is a dircctory entry which contains the pathname of

313

- - -

another directory entry. A more detailed description of
the directory hierarchy and of the use of links is given
by Daley and Neumann [6].

7.2 Operations on Segment Attributes

- Supervisor primitives perform all operations on
segment attributes. There is a set of primntives available
to the user which allow him, for examyle, to create 2
segment, delete 2 segment, change the €atryname of a
directory entry, change the access rights-of a segment,
list the segment attributes contained in a directory, etc.

Creating a segment whose pathname is ROOT
>A>B>C (see Figure 4) consists basically of the fol-
lowing steps: :

Check that entryname C does not already exist in
the directory ROOT > A > B.

Allocate space for a new branch in directory ROOT
> A > B

Store in the branch the following items:

The entry name C.

The segment length, initialized to zero.

The access list, given by the creator.

The segment map, consisting of an array of second-
ary memory addresses, one for each page of the segment.
The maximum length of a segment in Multics being 64
pages, the segment map for any segment contains 64
entries. Since the segment length is stull zero, each
entry of the segment map is initialized with a *null"”
address, showing that no secondary memory has been
assigned to any potential page of the segment.

The segment status “inactive,”’ meaning that there
is no page table for this segment. The segment status,
which may be either “active” or “inactive” is indicated
by the active switch. '

Fig. 4. Directory hierarchy.

~ICTear@sl

ROOT sDsb>f

- SdedEs PR BRI SRATES

o femdnw el A B

Communicalians \as 1972
ol volume 15
the ACM Number §

LT AT

8. Scgment Accessing

Although the creation of a segment initializes its
attributes, additional supervisor support is required to
make the segment accessible to the processor when a
user program references the segment by symbolic name.

8.1 Symbolic Addressing Conventions

The pathname is the only symbolic name by which
a segment can be uniquely identified in the directory
hierarchy. However, for user convenience, the system
proxides a facility whereby a user can reference a seg-
ment from his program using only the last entryname of
the segment’s pathname and supplying the rest of the
pathname according to system conventions. This last
entry name is called the reference name.

When a process executes an instruction which
attempts 1o access a segment by means of its reference
name, the Multics dynamic linking facility [7] is auto-
matically invoked. The dynamic linker determines the
missing part of the pathname according to the above-
mentioned system conventions. These conventions are
called search rules and may be regarded as a list of
directories to be searched for an entryname matching
the specified reference name. When this entryname is
found in a directory, the directory pathname is prefixed
to the reference name yielding the required pathname.
The dynamic linker, using the “Make Known" module
(Section 8.2), then obtains a segment number by which
the referenced segment will be accessed. Finally it trans-
forms the reference name into this segment number so
that all subsequent executions of the instruction in this
process access the segment directly by segment number.
Further details are given by Daley and Dennis [7].

8.2 Making a Segment Known to a Process

Each time a segment is referenced in a process by its
pathname, either explicitly or as the result of the evalua-
tion of a reference name by the dynamic linking facility,
the pathname must be translated into a segment number
in order to permit the processor to address the segment
for this process. This translation is done by the super-
visor using the KsT associated with the process. The
KsT is an array organized such that entry number “s”,
KSTE(s), contains the pathname associated with segment
number “s”. See Figure 5. :

If the association (pathname, segment number) is
found in the ksT of the process, the segment is said to be
known to the process and the segment number can be
used to reference the segment.

If the association (pathname, segment number) is
not found in the KsT, this is the first reference to the
segment in the process and the segment must be made
known. A segment is made known by assigning an
unused scgment number “s” in the process and by
recording the pathname in KSTE(s) to establish the pair
(pathname, segment number) in the KsT of the process.
The directory hierarchy is also searched for this path-

314

Fig. 5. Basic tables used to implement the Multics virtual memory.

ey e L remees i 215

——ft e masy g
————— - apyeny ~eesed W Sy § femp—— g
— gt ey

MOTE - The pops 'esia of Whu Sasropier Segmest —
e Tha sase W Empy

name and a pointer to the corresponding branch is
entered in KsTE(s) for later use (Section 8.3.).

The per-process association of pathname and seg-
ment number is used in the Multics system because it
is impossible to assign 2 unique segment number to
each segment. The reason is that the number of seg-
ments in the system will nearly always be larger than
the number of segment numbers available in the
processor.

When a segment is made known to a process by
segment number “s,” its attributes are not placed in
spw(s) of the descriptor segment of that process.
spw(s) having been initialized with the missing segment
switch ON, the first reference in this process to that
segment by segment nu mber “s’’ will cause the processor
to generate a trap. In Multics this trap is called 2
“missing segment fault” and transfers control to a
supervisor module called the segment fault handler.

8.3 The Segment Fault Handler

When a missing segment fault occurs, control is
passed to the segment fault handler to store the proper
segment attributes in the appropriate sow and set the
missing segment switch OFF in the SDW.

These attributes, as shown in Figure 3, consist of
the page table address, the length of the segment, and
the access rights of the user with respect to the scgment.
The information initially available to the supervisor
upon occurrence of a missing segment fault is the seg-
ment number *‘s.”

The only place where the needed attributes can be
found is in the branch of the segment. Using the segment
number *s”, the supervisor can locate the KST entry
associated with the faulting segment; it can then find the
required branch since a pointer to the branch has been
stored in the KST entry when the sezment was made
known to this process (Section 8.2).

Communications May 1972
of Volume 15
the ACM Number 5

PR

Using the active switch (Figure 5) in the branch, the

o pervisor Jetermines whether there is a page table

ﬂ' this segment. Recall that this switch was initialized
., 2 branch at segment creation time. If there is no
ge table, onc must be constructed. A portion of core
ﬂlmury is permanently reserved for page tables. All
page tables are of the same length and the number of
_gage tables is determined at system initialization. ;

The supervisor divides page tables into two lists:
e used Nst and the free list. Manufacturing a page
table (pT) for a segment could consist only of selecting

‘2 pr from the free list, putting its absolute address in
Hhc branch and moving it from the free to the used list.
If this were actually done, however, the servicing of each
—gnissing page fault would require access to a branch
ince the segment map containing secondary storage
addresses is kept there (Figure 5). Since it is impractical
or all directories to permanently reside in core, page
ault handling could thereby require 2 secondary
torage access in addition to the read request required
to transport the page itsell into core. Although this
ﬂmechanism works, efficiency considerations have led
to the “activation” convention between the segment
fault handler and the page fault handler.

Activation. A portion of core memory is permanently
reserved for recording attributes needed by the page
fault handler, i.e. the segment map and the segment
* agth. This portion of core is referred to as the active
_gment table (asT). There is only one AST in the system

&4 . 4 it is shared by all processes. The AST contains one
entry (ASTE) for each PT. A PT IS always associated with
an ASTE, the address of one implying the address of the
other. They may be regarded as 2 single entity and will
be referred to as the (PT, ASTE) of a segment. The used
list and free list mentioned above are referred to as the

. § (pT, ASTE) free Jist and the (PT, ASTE) used list.

A segment which has a (PT, ASTE) IS said to be
active. Being active or not active is an attribute of the

ﬂ segment and is recorded in the branch using the active

4
(]
]
4

-

.

switch.

When the active switch is oN, both the segment map
and the segment length are no longer in the branch but
are to be found in the segment’s (PT, AsTE) whose
add ess was recorded in the branch during “activation”
of . e segment.

' o activate a segment, the supervisor must:

Find a free (pT, ASTE). (Assume temporarily that at
least one is available).

Move the segment map and the segment length from
the branch into the ASTE.

set the active switch ON in

ecord the pointer to (PT, ASTE) in the branch.

By pairing ar ASTE with a pT in core, the segment
faurt handler has guaranteed that all segment attributes
nee ded by the -age fault handler are core-resident,
pe nitting more SMicient page fault servicing,

Corncction. .« mee the sezment is active, the corre:
sponding sDW must be <eonnected” to the segment. To

the branch.

315

2-25
connect the sDW to the segment the supervisor must:

Get the absolute address of the PT, using the (PT,
ASTE) pointer keot in the branch, and store it in SDW.

Get the segment length from the ASTE and store it
in the sDW.

Get the access rights for the user from the branch
and store them in the SDW.

Turn off the missing segment switch in the SDW.

Having defined activation and connection, segment
fault handling can now be summarized as:

Use the segment number s tO access the KST entry.

Use the KsT entry to locate the branch.

If the active switch in the branch is OFF, activate the
segment.

Connect the SDW. .

Note that the active switch and the (PT, ASTE)
pointer in the segment branch “automatically’ guar-
antee segment sharing in core since all spw's describ-
ing a given segment will point to the same PT.

Once the segment and its sow have been connected,
the hardware can access the appropriate page table
word. If the page is no in core, a missing page fault
occurs, transferring control to the supervisor module
called the page fault handler.

8.4 The Page Fault Handler

When a page fault occurs the page fault handler is
given control with the pT address and the page number
of the faulting page. The information needed to bring
the page into core memory is the address of a free block
of core memory into which the page can be moved and
the address of the page in secondary memory. The
term page frame is also used to denote a block of core
memory which holds a page of information [9].

A free block of core must be found. This is done by
using a data base called the core map. The core map is
an array of elements called core map entries (CME).
The nt" entry contains information about the n*" block
of core (the size of all blocks is 1,024 words). The
supervisor divides this core map into two lists; the core
map used list and the core map free list.

The job of the page fault handler consists
following steps:

Find a free block of core and remove its core map
entry from the free list. (Assume temporarily that the
free list is not empty.)

Access the ASTE associated with the PT and find the
address in secondary memory of the missing page.

If this address is 2 wnull” address, initialize the
block of core with zeros and update the segment length
in the AsTE; this action is only taken the first time the
page is ceferenced since the segment was created and
provides for the automatic growing of segments. Other-
wise issue an 1 O request to move the page from second-
ary memory into the free block of core and want for
completion of the request via call to the “trallic
controller” [14] which is responsible for processor
multiplexing.

of the

Commuainications May 1972
of volume 13
- Number §

ey

2-26
Store the core address in the pTW, remove the fault
ffm the pTW, and place thc core map entry in the used list.

8.5 Page Multiplexing

There are many more pages in virtual memory than
there are blocks of core in the real memory; therefore,
these blocks must be multiplexed among all pages. In
the description of page fault handling it was assumed
that a free block of core was always available. In order
to insure that this is nearly always true, the page fault
handler, upon removing a free block from the core map
free list, examines the number of remaining free list
entries; if this number is less than a preset minimum
value, a page removal mechanism is invoked a2 sufficient
number of times to ensure a nonempty core map free
list in all but the most unusual cases. A nonempty core
map free list eliminates waiting for page removal during
the handling of a missing page fault.

To get a free block of core, the page removal mech-
anism may have to move a page from core to secondary
memory. This requires: (a) an algorithm to select a
page to be removed; (b) the address of the pTW which
holds the address of the selected page, in order to set a
fault in it; and (c) a place to put the page in secondary
memory.

The selection algorithm is based upon page usage.
It is a particularly easy-to-implement version [4] of the
«least-recently-used” algorithm (1, 8]. The hardware
provides valuable assistance by, each time a page Is
referenced, setting ON 2 bit, called the used bit, in the
corresponding PTW. The selection algorithm will not be
described in detail here. However, it should be noted
that candidates for removal are those pages described
in the core map used list; therefore, each core map
entry which appears in the used list must contain a
pointer to the associated pTw (Figure 5) in order to
permit examination of the used bit. The action of storing
the pPTW pointer in the core map entry must be added
to the list of actions taken by the page fault handler
when a page is moved into core (Section 8.4.).

Once the supervisor has selected the page to be
removed, it takes the following steps:

Set the missing page switch ON in the PTW.

If no secondary memory has been assigned yet for
this page, i.e. the segment map entry for this page holds
a “null” address, assign a block of secondary memory
and store its address in the segment map entry.
-=~1ssue an 170 request 10 move the page to secondary
storage.

Upon completion of the 1/0 request, move the core
map entry describing the freed block of core from the
core map used list to the core map free list. This may be
done in another process upon noticing the completion

of the 1,0 request.
8.6 (PT, ASTE) Aultiplexing
Core blocks can be multiplexed only among pages

of active segments. The number of concurrently active

316

Fig. 6. Supervisor functional modules and data bases.

D er=E
5

segments is limited to the number of (PT, ASTE) pairs,
which is, by far, smaller than the total number of
segments in the virtual memory. Therefore (PT, ASTE)
pairs must be multiplexed among all segments in the
virtual memory.

When segment activation was described, a (PT,
ASTE) pair was assumed available for assignment. In
fact, this is not always the case. Making one segment
active may imply making another segment inactive,
thereby disassociating this other segment from its
(PT, ASTE). Since all processes sharing the same segment
will have the address of the PT in an spw, it is essential to
invalidate this address in all SDW’s containing it before
removing the page table.

This operation requires: (a) an algorithm to select
a segment to be deactivated; (b) knowing all spw’s that
contain the address of the page table of the selected
segment, in order 10 invalidate this address; (c) moving
the cttributes contained in the ASTE back to the branch;
and (d) changing the status of the segment from active
to inactive in the branch.

The selection algorithm for deactivation, like the
selection algorithm for page removal, is based on
usage. When the last page of a segment is removed from
core, the segment becomes a candidate for deactivation.
The algorithm selects for deactivation the segment
which has had no pages in core for the longest period of
time, i.e. the segment which has been least recently used.
Since the number of (PT, ASTE) pairs substantially
exceeds the number of pageable blocks of core, it is
always possible to find an active segment with no pages
in core. y

The AsTE must provide all the information needed
for deactivating a scgment. This mcans that during
activation and connection, this information must be
made available. During activation, a pointer to the
branch must be placed in the AsTE; during connection,
a pointer to the SDW must be placed in the ASTE. Since
more than one SDW is connected 10 the same PT when
the segment is shared by scveral processes, the super-
visor must maintain a list of pointers to all connected
spw’s. This list is called a connection list. See Figure 5.

After the sclection alzorithm chooses a (PT, ASTE)
to be freed. the disassociation of the segment {rom 1ts

Communicalions May 1972
of Volume 15
the ACM Number §

N . 5 .
PT, ASTE) done in two steps: disconnection and

R rivatiot
H ‘sconmection consists of storing a segment fault
ne spw whose address appears in the connection
-o ifi the ASTE. Deactivation consists of moving the
ent map and the segment length from the ASTE
k to the branch, resetting the active switch in the
ranch, and putting the (PT, ASTE) in the free list.

"5

. Structure of the Supervisor

o

H Up to now supervisor functions have been described,

Ut not the supervisor structure. In this section, the

different components of the supervisor are presented
the ability of portions of the supervisor to utilize
yvirtual memory is discussed.

B Functional Modules
Three functional modules can be identified in the

supervisor described in Section 8; they are called
seectory control (DC), segment control (sc), and
ge control (pC).
pc performs all operations on segment attributes;
it also maps pathnames into segment numbers in the
T of the executing process. Data bases used by 2
ess executing DC procedures are the directories and
th= xsT of the process (Figure 6).
ﬁ - performs segment fault handling. Data bases used
)y a process executing sC procedures are directories,
the kst of the process, descriptor segments and (PT,
TE) pairs.
pc performs page fault handling. Data bases used by
a process executing PC procedures are (PT, ASTE) pairs
E]ﬂd the core map. '
2 Use of PC in the Supervisor
One can observe that the page fault handler need not
[Inow if a missing page belongs to a user segment or to
supervisor segment; it only expects 10 find the in-
formation it requires in the (PT, AsTE) of the segment
o which the missing page belongs. Therefore, if all
!]cgments used in sc and DC are always active, then their
pages need not be in core since PC can load them when
hey are referenced. .
In order to make use of PC in the rest of the super-
isor the following (temporary) assumption must be
made.

E]&ssumption 1

(a) All segments used in pc are always in core and are
onnected to the descriptor segment of each process.
ﬁh) All segments used in sC and DC are always active
i | are connected to the descriptor segment of each

bl

OLess.

g).:& Use of SC in the Superyisor
Assumption | is satisfactory in the Multics imple-

ﬂmcntuliu n except for directories.

37

2-21

The number of directory segments in the system may
be very large and keeping them always active is not a
realistic approach, since a large number of (PT, ASTE)
pairs would have to be permanently assigned to them.
It would be desirable to use SC to activate and coanect
directory segments only as needed.

A necessary condition for handling a segment fault
for segment x in @ process is that segment x be known
to that process. Assuming that all directories are known
to all processes, but not necessarily active, reference to
a directory x may cause a segment fault. When handling
this fault, the segment fault handler must reference the
parent directory of segment x, where the branch for x
is located. This reference to the parent of x could, in
turn, cause a recursive invocation ol the segment fault
handler. These recursive invocations can propagate
from directory to parent directory up to the root. If the
root directory is always active and connected 10 each
process, then the recursion is guaranteed to be finite and
a segment fault for any directory can be handled.

The first assumption can be replaced by the follow-
ing more satisfactory assumption (again temporary).

Assumption 2
(a) All segments used in PC are always in core and are

connected to the descriptor segment of each process.
(b) All nondirectory segments used in SC and DC are
always active and are connected to the descriptor seg-
ment of each process.

(c) The root directory is always active and connected

to each process.
(d) All directories are always known to each process.

9.4 Use of the Make Known Facility in the Supervisor

However, it is unsatisfactory to keep all directories
known to all processes because of the space that would
be required in each KST. It would be more attractive if
a directory could be made known to a process only
when needed by the process.

Making a segment X known implies searching for its
pathname in the KST. If not found, the parent of x must
first be made known and so on up to the root. If the
root directory is always known to all processes, then
any directory can be made known to a process by calling
recursively the Make Known facility of the supervisor.

Assumption 2 will now be replaced by the final

assumption:

Final Assumption

(a) All segments used in PC are always in core and are
connected to the descriptor segment of each process.
(b) All nondirectory segments use¢d “in sc and DC arc
always active and are connected to the descriptor seg-
ment of each process.

(¢) The root directory is always active and connected
to each process.

(d) The root directory is always known to cuch process.

Given the above assumption, supervisor segments, 4s
May 1972

volume 13
Number 5

Communications
of

A T ey J PV LR @ 4 v PSR e T

i Y| N AT T I

= =2 8 48

| 2
| S—

ace T

o

= O 3 &5

2-28
well as uscr segments, can pe stuled 1IN the vinudl
emory that the supervisor provides.

10. Summary

The most important points discussed in this paper
are summarized below. They are grouped into two
classes: the point of view of the user of the virtual
memory, and the point of view of the supervisor itself.

User Point of View

The Multics virtual memory can contain a very
large number of segments that are referenced by
symbolic names.

Segment attributes are stored in special segments
called directories, which are organized into a tree
structure; by a naming convention known to the user,
the symbolic name of a segment must be the pathname
of the segment in the directory tree structure.

Any operation on directory segments must be done
by calling the supervisor.

Any operation on a nondirectory segment can be
done directly in accordance with the access rights that
the user has for the segment; any word of any segment
which resides in the virtual memory can be referenced
with a pair (pathname, i) by the user.

Supervisor Point of View

The supervisor must simulate a large segmented
memory which is directly addressable by symbolic
name and such that any access to the memory is sub-
mitted to access rights checking.

The supervisor maintains a directory tree where it
stores all segment attributes. It can retrieve the attri-
butes of a segment, given the pathname of that segment.

The supervisor itsell is organized into segments
and runs in the address space of each user process.

Any segment, be it a directory or a nondirectory
segment, is identified by its pathname but can be ac-
cessed only using a segment number. For each segment
name the supervisor must assign a segment number by
which the processor will address the segment in the
process.

The processor accesses a word of a segment through
the appropriate sDW and PTW, subject to the access
rights recorded in the SDW.

A segment fault is generated by the processor when-
ever the page table address Or access rights are missing
in the sow. The supervisor then, using the KST entry as
a stepping stone, accesses the branch where it finds the
needed information. If a PT is 1o be assigned, the super-
visor may have to deactivate another segment.

A page fault is generated by the processor whenever
a pTw does rot contain a core address. The supervisor
then, using the ASTE associated with the pT, moves the
missing page from secondary storage L0 core. This may
require the removal of another page.

318

ACAIOWICAENICNES, 1 NIS PAper wowad v incomplete
without acknowledgment of the people who worked
so hard to build the virtual memory supervisor portion
of Multics. Special mention goes 10 G.F. Clancy, M.R.
Thompson, and S.H. Webber who, under the design
leadership of R.C. Daley, have been involved in a major
portion of the design and implementation effort. They
were aided in earlier designs amd-implementations by
C.A. Cushing, S.M. Jones, G.B. Krekeler, N.I. Morris,
P.G. Neumann, R.K. Rathbun, J.D. Van Hausan, M.R.

- Wagner, and L.D. Whitehead. Recent implementations

have also benefited from the -contributions of S.D.
Dunten and M.C. Turnquist. Contributions in the form
of analyses and discussions have been made by FJ.
Corbaté, E.L. Glaser, J.H. Saltzer, and V.A. Vys-

sotsky.
Finally, our thanks go to P.A. Belmont, M.A. Meer,

and D.L. Stone, who participated in studies leading to
this formalized description of the Multics virtual

memory.
Received April 1970; revised July 1971

References

1. Belady, L.A. A study of replacement algorithms for a virtual-
storage compuler. IBM Systems J.5. 2 (1966), 78-101.

2. Comfort, W.T. A compuling system design for user service.
Proc. AFIPS 1965 FICC, Vol. 27, Pt. 1, Spartan Books, New York,
pp. 619-628.

3. Corbatd, F.J., and Vyssotsky, V.A. Introduction and
overview of the Multics system. Proc. AFIPS 1965 FICC, Vol.
27, Pt. 1. Sparnan Books. New York, pp. 185-196.

4. Corbat6, F-J. A paging expeniment with the Multics system.
Included in a Festschrift published in honor of Prof. P.M.
Morse, MIT Press, Cambridge, Mass., 1969.

5. Crisman, P.A. Ed. The Compatible Time-Sharing System: A
Programmer's Guide, 2nd Ed., MIT Press, Cambridge, Mass.,
1965.

6. Daley, R.C., and Neumann, P.G. A general-purpose file
system for secondary storage. Proc. AFIPS 1965 FJCC, Vol. 27,
Pt. 1. Spartan Books, New York, pp. 213-229.

7. Daley, R.C., and Dennis, J.B. Virtual memory, processes,
and sharing in Maltics. Comm. ACM 11,5 (May 1963), 106-312.
8. Denning, P.J. The working set model fer program behavior.
Comm. ACM 11, 5 (May 1968), 323-333.

9. Denning, P. J. Virtual memory. Computing Surveys 23
(Sept. 1970), 153-189.

10. Dennis, J.B. Segmentation and the design of
multiprogrammed compuler systems. J.ACM 12, 4 (Oct. 1965),

589-602.

11. Fotheringham, J. Dynamic storage allocation in the Atlas
computer, including an automatic use of a backing store. Comm.
ACM 4,10 (Oct. 1961), 435-436.

12. Glaser,EL., Couleur, J.F., and Oliver, G.A. System design
of a computer for time sharing applications. Proc. AFIPS 1965,
FJCC, Vol. 27, Pt. 1. Spartan Books, New York, pp. 197-202.
13. Graham, R.M. Protection in an information processing
utility. Comm. ACM 11. 5 (May 1968), 365-1369.

14. Salizer, J. H. Traffic Control in a Multiplexed Computer
System. Tech. Rep. No. \{AC-TR-30 (Ph.D. Thesis), Project
MAC, MIT, Cambridge. Mass., 1964,

15. The Descriptor - A definition of the B500D Information
Processing System. Burroughs Corp., Detrait, Mich., 1961.

Communications May 1972
of Volume 15
the ACM Number §

..,llllllllllllll-‘..{

FAULTS:

1)

2)

3)

4)

Micro-code builds a concealed stack frame
"in" PCB

A) Concealed stack frame

[} RPH (seg#) see fault
1 RPL (word #) table #1
2 KEYS see fault
3 F-Code table #1
4 F-addr H see fault
5 F-addr L tabLe #1

B) Concealed stack is built at address

next in PCB

Micro-code set RP to the fault vector in PCB
plus fault offset. NOTE: Ring # is part of

vector
Micro-code sets keys to 64V

Fetch next instruction

P
/ j eG cAucT

(
~ —
N\ [Ge FHuc

@55){5 WEIER / Srig M2

.

DA™ poT 1M L Oucne S
MEHM. —
o

']

\
§ (M (a8 e oce v bs ll

I M 5E€

75 M IEC

Jp wagte

Fault Address

pu A & F-code F-addr Ring Saved RP R-Mode
NAME PCB-Vector + Offset (16 Bits) (32 Bits) Vector
Restrictor Vector of + @ - RP at time current backed 62
Instruction current of fault
RXM ring
Process FVO + '4 abort RP at time 0] current '63
flags of fault
PAGE PFV + 'ld - RP at time [0) backed '64
of fault
SVC Vector of + '14 - RP at time current current '65
current of fault
ring
UII Vector of + '2¢ RPL RP at time current backed '66
current of fault
ring
Illepal Vector of + '4¢ RPL RP at time current backed KT
Instruction current of fault
ILL ring
Acess Fvg + '44 111 RP at time 1, backed '73
Violation of fault
Arithmetic Vector of + '50¢ r12 RP at time current current V74
exception current of fault
ring
Stack Fvg # 154 h13 RP at time @ backed i
overflow of fault
Segment FV@ + 160 114 RP at time @ backed '76
of fault
Pointer Vector of + Y64 115 Address of current backed '77
current pointer
ring

L BEE . 4 .
TN N E O E E N N EEE EEE E

- e s SN SN

5)

The first instruction of a fault handler is

a CALF.

a PCL instruction except:

A CALF instruction is the same as

The stack frame built has additional inform-

ation (see *)

CALF Stack Frame Header

(V-Mode)

-l

(2 I\]

o b

10
11
12

13
14

- 15

1

STACK ROOT SEGMENT NUMBER

RETURN POINTER

CALLER'S SAVED STACK
BASE REGISTER

CALLER' SAVED LINK
BASE REGISTER

CALLER'S SAVED KEYS

LOCATION FOLLOWING CALL

FAULT CODE

FAULT ADDRESS

RESERVED

CALF
PCL

From

From

From

From

set to 1
set to @

concealed

concealed

conceal ed

concealed

Stack

stack

stack

stack

e

6)

7)

The CALF points to an ECB which descrijes the fault

handler.

At this point the fault handler is ent red and a
return information is in the current s:ack. The fault
handler is executed as a subroutine of the faulting

routine.

(@ %)

MY
.

. REFAULT MECHANISM
- APPROXIMATELY 600 WORDS FOR STACK ONLY
- VECHANISM FOR DEFERRING FAULTS UNTIL THE RETURN FROM PGESTK :
- REFALT MODIFIES THE RETURN PB IN A STACK FRAME AND PUSHES A

FRAVE IN THE CONCEALED STACK SO THAT A SIMULATED FAULT MAY BE
TAKEN WHEN LEAVING PGFSTK :

Proce;:\\\

fault?

no normal
code

increment
inkhibit countey

normal
code

Do we own locks?
Are Process faults
inhibkited?
urrently on PGFSTK?

ICALF PRFECB)]

|PCL entry,L

save registers,
update flags, etc.

OR fault code into
ABSAVE (PUDCOM)

decrement inhibit counter

Are we inhibited yes recurn
or do we own locks?

were we previously
on PGFSTK?

Is ist frame
fault frame?

e éEEE:E)

- save frame 2
return PBE in PUDCOM

(P&FSPB

replace return PB
with one pointing
to our ARGT . -

return

-

\

eXxecute our ARGT

Call Process-fault
| handler PCL entry

Return through
ved pointer +

<::have we already

D@th con

set r$€prn to our code

-~

create CNSTK entry
using original stack
information

=

\

Do CALF to Process-fault
handler on SUPSTK

X

Set up
fault frame

Czll PABORT

return either to
toriginal return point
or to our ARGT

=t B

ﬁ_r.v: i

L
R [ER

1t

u aweda,] ased

7 aweaq aded

[aureay aded

ANILOVd Aq A1pedtweudp pajeasd Arowasw ulew o] JUAW3Is

- -

utyiim a8ed jenjaia woa) surddew

935149 4q
paiedol(e pu

Kaowapw utep

—~

AIOWDW [BNIIIA

945139 £q A(jestweudp paieaad 23143p U §52201g
Suided o1 yuawdas teniaia j
wouy Surddew @ y
69 - £ z M
N el S iERPEIE 28eg afeq
[® 7
A'-Il-l.l...-lll.l-l-nlll..ll ._l..l_n.llr..llu.ll.ll..\\
S
S~
19
e e - s B asdeg 28ed
Nm $ 2o \-\

Aaowap 1eniaip

1.1B)S plod 1k
PR1Badd BJI® 3D1A3D

8uied uo sjuawidag

221A9(] Suided

g ssoa2014g
4
iniied B P ,.m.ml. \ - - - == .
D Juawdag \ ™ //
< R mmml mm_mm \ .., A
p £ z 1
: \ N N - adeg
q wawdoag o) bl STOMRSIR R .
~ 1 I....-f
¢ 1 RSO g e N
288] ofeg in /
e Juawgag <& z H
3 adeg odeg

Axowajy reniar

D
uawsdag

q
wawdag

q
awsag

e
Juspwdag

-

R B BN

SEGMENT
FAULT

U
GETSES

LOCK
GETSEG DATA
BASE

PSDW <~ SDWNDX (XUSR,XSEG)
GET INDEX OF SDW OF FAULTING
SEGMENT ;[s70re 0 5D

Sec# # 4000 <477/
AND
(0T SYS USER

CDW = Sta. Deect. Wb

EALL ERR RTN
ILLEGAL SEG
NO

JUNLOCK DATA

AND RETURN

\1/ LOCK FOR A FREE PAGE MAP

DO I = 1, NSEG

J

EALL ERRRTN
NO AVAILAB%E
SEGMENTS

L

MARK OWNER
PTUSEG(A:I-I) =XUSR
PTUSEG(Z2*]) =XSEG

GET VIRTUAL ADDR OF MAP

HVA = LOC (HMAP)
Hva = Hva + 128* (I-1)

i

= MAPNDX(cUsk.LoC(HMAP) + RS(HVA,10)
HP<- POINTER TO PAGE MAP THAT OWNS PAGE
MAP WE ARE ALLOCATING
PAGSEG(HP +6Y4) = RT(pAGSEG(HP +b4) +
: 4000
LOCK MAP IN MEMORY
1 = PAGSEG(HVA) FAULT PAGE IN

Lo

Y

SET UP SDW
PAGSEG(PSDW) = Ls(paGsec(H).10), 10) + rT(HvA.10)

pAGSEG(PsDW +1) = :000700 RrT(RS(PAGSEG(HP).6).b)

~ |

UNLOCK DATA
AND RETURN

w . L o) RAJ] i (] -

B GFTSFCy FRI4003KSy BLS,y 03/04/78 FAGE 0001 _
5 ,
| e
D jcvoc1y ¢ GETSEGe FRI4CO3KSy PLSy (2704778
beaga2y ACL A SFGMENT 10 A USER
A
D | ceeoan SUFRCULTINE CGETSEG(XUSR¢XSFC)
(IC05) INTFGFR XLSRyX¥SFG I3 SO
(OCOE) C TVMCCMy FRIGCOZINSERTy WP=-HLS-JFC-REG-GNS-RIN=-L.S-BEH-JCF-FVDy 12/02/718
D | (co0e) NOLIST
(£007) ¢ FUCCeFy FRIGCO, NIMy D4/C2/7E : R Ly
(0607) NCLIST
Dccor) SFCRT CaLL
| (0C0-) X LCCKRy LCCKke LALKANg LANLKF, ey
(000§) X LCCKFSy LKFSWe LNLKFSy GUITCN,
@ | cooon X FILFAGy INFBITy ENAELF
(0C0S) ¢ e e,
(0C1C) INTLCER 14FSCWgFVAGFF
Q|co011) ¢ :
(6012) ¢ I i
(GC13) CALL LCCKW(SEGLCK) /* LOCK GETSEG CATA
® | (o011 FSCh=SCUNDXCXLERGXSEE)
(0C15%) IF(PSDL.ECLD) GCTC SCO /+ NO SULCH SEGMENT oo
(001¢) IF(PAGSFC(IFSCWw+1)4CFs0) CCTC 250 /+ SEG ALREADY EXISTS!
9 |l o1 IFCAND(XSEC924C00)+ECoC +ANCo CLSR.NE.SUSR) GOTO 9CO
(001%)
(001¢) CO 110 J=14MNSEE /* LOCK FOR AVAILABLE FAGE=-NAF il
d|nczo IF(FTLSEG(Z+]1~-1)EG.0) ECIC 2CO
§0211. 11¢ CONTINLE ghtas
Ehtce) RGO 513 /+ NONE AVAILABLE
P |coe2zy ¢
(0Cz4) C (FCLAD AVAILAELE FAGE-NMAF)
[(0Cz5) ¢C LT
Jd|ccozey zoo FTLSEG(22]=1)=XUSR /+ PARK FAGE=MAP CWNEC FY (XLSR
(0g27) FTLSEG(2+1)=XSEG
TIE TR :
Y |recze) , FVAZLCC(FNMAF)
(0C20) FVASFVA4128%(1-1) /% VA OF MAF LS
(0C21) FE=FAFNDXCCLSR4LCCCFMAF))+RS(FVA+10) /* MAP PTR OF FVb
A locan FAGSECG(FP+E4)=RT(FAGSECC(FP+€4) y14)4240C0C /* WIRE MAP
(0C22) 1=FACSEG(FVR) /+ ERINC MAF TO MEMORY s YRR D
D

G GETSESs FRI4CO>DKSy ELSy 02/C4/78 PAGE 0002
{NCX4) C v
L(CQz2%) FAGSEG(PSCW)=LS(PACSFG(HF) y10)+RT(FVA410) /* SET SDW il i
NOLETS FAGSEG(PSCW+1)=:00C700+RT(RS(PAGSEC(FP)Y9€E)4E) /* PLUS ACCESS CCANTRCLS

(Uc27)y zco CALL UNLKNCSEGLCK) i

(ocze) RETURN

{OE25) C

(UC40) C TERRERS)

| (DC41) C

(0042) <00 CALL ERRRTNC)SEGy04*ILLECAL SECGNCY*412)

(G042) €10 CALL ERRRTN(O4Cy*NC AVAILAFLE SEGMENTSY921)

(0C44) C

(004%) ENE

FRCGRAM SIZE: FRCCEDLRE =~ (C0z2z LINKAGE = COCOET STACK - 000034

CO00 ERRCARS [CGETSEC>FTN=-REV1E.

Y R
o0 fud

! BN BN AN BR B BE EE BE OBE BE B BE mm e B b

BB EEEEENRENS N N NNNN B N,

RTN SEG

SUBROUTINE TO FREE SEGMENTS CALLED BY DELSEG coMMAnND AND LOGOUT

(- RTNSEG 2

L/

SEG = RT (xSeG, 12)
REMOVE RING BITS

|

RETURN
ERROR CODE
= E$BPAR
- 1 SAYS DELETE
ALL USER SEGS
F seg = :4000

|

®)

pon'T DELETE sEc ‘6000

DON'T DELETE SYS USER'S
sec ‘4000

PSDW = SDWNDN (CUSR, SEG)
GET POINTER TO SDW

NO SUCH SEGMENT

SEGMENT NOT ALLOCATED

AP= MAPNDX (CUSR., SEG)

HP 1S ADDRESS OF PAGE MAP

1 = Loc (HMAP)

I 1S ADDRESS GF PAGE MAP
COMMON

PTUP= RS (HP -1.6)

PTUP IS PAGE MAP # *

3‘ SEGMENT DOES NOT BELONG TO

THIS USER
)

IF
RT(PTUSEG

(PTUP+2),12) 5 <
SEG ,/éiii) WRONG SEG

LOCKOUT GETSEG |
LOCKOUT PAGTUR

N .
PAGSEG (Pspw) =0
PAGSEG (Pspw +1) = voID
7EROQ _SDW AND SET FAIILT BIT

WV

CLEAR STLB

\)

po 1 =1,64 THIS LOOP RESETS PAGE TABLE

PAGE NOT IN MEMORY

TP = CPTRO ¥ RI(PAGSEGLAP), 1)
CP 1S POINTER TO PAGE IN MMAP
PAGSEG(CP)=0 FREE PAGE INMMAA
PAVCTR = PAVCTR +1

INCREMENT FREE PAGE COUNTER

\/

PAGSEG(HP) = :70000
MARK NOT IN MEMORY <
NO COPY ON DISK

HP = HP +1

END
OF LOOP

pTUSEG(PTUP + 1) =0
PTusec(pTUP +2) =0
MARK PAGE MAP FREE

;
g

UNLOCK GETSEG
UNLOCK PAGTUR

|
:

SEéF’pl >——~> RETURN l

=

10 < SEG = SEG +

RETURN ERROR

CODE = E$BPAR

se6 =AND(sEG, :6000) + :2000

N

NEXT DTAR

F '_
Sl ses, 1000
20

!

RETURN

N
>

G

e RINSEGY ER1I4EBZKSE Sy ELS, LELOS/TE ; FAGE CO0O01

‘O.]
3| cro1y ¢ KTNSEGy FRI4CC3KSy FLSy CEZDE/TS
leacnzy ¢ T1C KFTLRAN CNE SEGMFAT CR ALL SCGS Sdal
(CCO2) SUFRCUTINE RTINSEC(XSEG4XCOCE)
%! (ccoy) INTEGER XSEGoXCCCE
L LGC0S). € DYYCCMy FRI40O0SINSERTy JLP-PLS-JFC-REG-GNS-BIN-LJS-BEF-JCF-FVD, 12702778 L
(C00S) NCLIST
D | coceer ¢ FUCCoFy FRIACOy NINy 04/02/76€
| LUC0ED. NCLIST i
(GCO7) C SYSCCM3FRRCWF MANENCNIC COCES FCR FILE SYSTEM (FTN) 07/25/7¢€
D | (eco NCLIST
| (cCos) SECRT CALL ey g
(0CO0F) X LCCKRy LCCKWy LALKMg UNLKF »
D | (ocoe) X LCOKFSy LKFShe LALXKFSy GUITCNS,
(0CO05) X FILFAG, INFEIT, ENAELE i
(gcor) C
S | coc10) INTEGER FSCwoFF oCFel4SEG¢FTUP
L (oc11) ¢
KBC12)Y € CRELEASE EABES)
D l(oc12) ¢
(0C14) SEC=RT(XSEC12)
(0C1%) IF(SEG.LT.52C00) GCTC ©00 /% NOEOCY ALLCWED
D | (uc1en IF(XSEGeERe~-1) SEG=:4000 I+ 1F LCCEING
(0C17) € === RETURN CME SECGNENT (SEC)
(0C1F) 10 IF(SEG.EGC:€000) GCTC 500 /» SKIP STACK SEG
3l oc1s) TF(AND(SEG+240C0)eFB40 oANC. CLSR4NF.SLSR) GCTC €00 /* NC ORCINARY LSR
(0C20) FSCW=SCWACX(CLSR4SFG)
(0Cz21) IF(PSCheEGeC) CCTC ECO /* NO SUCH SEGMENT
D |coczz) IF(PPGSEGC(FSCW+1).LT40) GC10 E£C0 /% SEGMENT ALREADY MISSING
L (ncs) FE=MAPAD Y (CLSRSEC)
(0024) T=LCC(FNAF)
D | (po2e) PTLF=RS(FF=146)
(DCZE) IF(FTUSEG(FTLF+1)«NELCLSR) CGCTC S0C
(0c27) IFCRT(FTUSECG(PTUP4Z) +12) oNELSEG) GCTC t0C [
D |(o028) ¢
L (002¢) CALL LCCKW(SEGLCK) /» LCCK GETSEG DATA
(0020) CALL LCCKR(FAGLCK) /% ShOULD NOT GET A PAGE-FALLT!
D |oc21) PAGSEG(FSCW)=0
(0C22) PAGSEG(PSCw+1)=VCIC /*» SET FAULT BIT IN SCW

C RTNSEGy PRIGO0>KSy BLSy 0E/CGE/TB FAGE 0002

: Ee
(0022) CALL ITLENZ _ /» CLEAR WHOLE STLB

. (00324) NC 200 I=1,£4 el
(gU2%) IFCFAESEG(FF)EE«D0) GC TC 150 /+ PAGE NOT IN MEVNORY

(002¢) CF=CFTRCART (PAGSEC(FF)412) /+ PTR TO MMAF ENTRY FOR FAGE

L (0%t FAGSEG(CF)=0 SECRRAHK PREE BVATURARLENT o " onll e e e Gt MEin T D
CO0C2E) FAVCTR=FA\VCTR+1

(00%<) 150 PAGSEG (FF)=3:02000C /+» VARK FPGF NCT TN MEMCRY, NC CCFY CN CISK

| (0040) 200 FP=HF41 _

(C041) C

(CO04Z) £ (REMCVF FROM CESCRIFTCR TAELE)

0ca) _ ETUSEG(PTLF41)=0 J+ FAGE-VMAP AVATLAELE

(0044) FTLSEG(FTLF+21=0

(06G45) 5

(0C4€) CALL LALKNCFAGLCK) e
(00417 CALL UNLKNC(SEGLCK)

(004%) C==- STEF TC NEXT ESEC

ecacy tC0L TFE (XSECAEe=1) GETE 108 ;
B SEG=SEG+1

EG0%51) GOTO 10N

(0057) (C=-=-=- STEF _TC AEXT CTAR

LpB5%) €680 IF(XSEGAEs=1) GETC SO0

ERCEA) SEC=ANC(SEC42€C00)+:20C0

QL =S) IFUIADCSEGy s IDCODYEGLLY GLTC 10

(0GE6) 1700 XCCCE=0

(e T) RETLRN

(0CE#)
(oces) =00 XCCLCE=EYBFAR

(UCED) RETURN

{(DO0E1) EMD

FRCGRAN STIZE: FRCCEDLRE - (00241 LINKAGE = COCO7O STACK = 000024

JOCO ERRCRS CCRTASEG>FTA-REV1E.2:

4
@
v

YES

¥

ﬁE\/ ,4 wWAIT FIX
5% TRANS [T W0 |
PRIMeS IV
SALING
ALLORITA M ¥ .
STEP CPTR.
ook AT
NEX T PALE PARN N
TRAME FTION
CoMw & I
5] (Y77 :
AL EMENT
w;v.qur 2 YE& AvAILALLE
Lacxed OR (PAKE coeNTER
TAAN 51T + <
1 'y :
STEP FPR =
7] lacic AT
e nEXY PREE
% &~
ASE He
REFEREMNLED
o 2
YES
.gi""' q FIRsT 4
g weNTInE 4 PACE N
¥ (case TPres)
d RESEY “LinsT ' |
s Ti=E & BT i
RK A<
? IR,
> Y —3 ﬂzrmz’woc-&;b. =
mebrLt caby, :
AT TMME 1~
1
ARK P& ! <
:ro'r gl FoTIFY PAOC - B3
-rwsrru:d £355 wrATNO
coinG OVT | Fon TRANKTRA
YEs +
' RETURN
PR KT
AL
(¢ Tpres) Mo

FAAN PACE?

AVALLARLE.

NOT (N M EMBRY)
2rY on BDOK,

X

UNCREMRNT
AYAILARLE

pice CovartiR

[E——

HMAP ENTRY: 16 BITS
(REV 14)

BIT 1 (V):

BIT 2 {R):

BIT 3 (U):

BIT 4 (S):

BITS 5-=16:

i 00
- 10
01

5 | E

LMAP ENTRY: 16 BITS
(MMAP +64) (REV 14)
“RITe 3.3
BIT 3:
BIT 4:
BIT 5-16:

- O
. O
.

-2 1 T T3
VIR|U |S

Valid bit, set when page is in
memory.

Referenced bit, set by hardware
when page is referrenced.

Unmodified bit, reset by hard-
ware when page is modified. -

Shared bit, set by software when
memory page is shared by processors
(inhibits cache)

High order 12 bits of physical
page address (PPN), low order 10
bits taken as P.

1f pége not in memory, bits 3,5 define

not 'in, copy on disc

not in, no copy on disc

in transition, coming in
in transition, going out

i% 3 68 16

Lock number (0O = not locked)
First-time bit
Use alternative paging device

Disc record index (for group of
.8 pages)

(L " . -

(A¥JDA3A INISSIAN) LSIX3 LaN33D0 19V Te- *93°% {AULNI> 41 F Ot IE

3INAVIIYAT 39vd 3 *93° AULN3D> A R
Y *YINMD OL ¥ld SI AMLN3 *337 NI 39vd 0 ®3IN® <AgLNI> 4l o SO o
2 TR N T
_ (39/d A4OWA34 VIV ¥id OO 3ND *3242% »200) O
i TLVAUDS 3VHYL dvi A¥OAIA) ki)

. B T R e ... K { 0 m Ja
(S39vd 8 40 dNJO¥9 ¥Id 3INI9A 3VD) X3IINI Jy¥ID3H =5 % R) 60 [

el M310 INI9vd 3LvNH3ILIV 381 b) _(hzdn.,
(NI=-39vd 943147 *HIONOT AMOW3IA-NL 39vd d33% JL) 3INL[L-LS¥I4 i Y taedii

(23%J0TN1=0) ¥3FANY %I 2-1 $dv A s O 2

AR
LN ONIOD *NJILISVYYL VI Il) (22134,

NI 9VIANDD SNDILISVVYL VI [o 3 (5236

VW W13 NO AJ0F IN SNT LN 01 3 (5230
NST 3 N2 AddJ *91 L3N 00 5 Aez i)

5 g

$3INIJ3] 5% SLIA A40A3Id VI LON 3374 41 2 (12Im

: J (0230,

¥33AIN JIVd vIL3A4d IL-4 7 (21300

e JIYVHS 39vd b 0 (41IM)
030141304 LON 39vd F o N 0 BT O

. 132V343434 39vd 2 3 A8

(37141 <= T) AY¥IA3IW NI 39vd [S dvadd 3 A58

i R A

13407124 SV s T T s

JINIJ30 SITYLNI 3AVH ((hI)HVAT INY (v3)4YAd4) JVYAYVd 3I4L 42 3L4v4 IML 4HL Al Ty T

*(INIIVd=-3Ud HLIM) AA4LIEO0ITY 233N=ATLVIIIY-L3741 ILdALRINIIY NT ND 3 L

SI L10-39V4 *ONVA3ID NI SI NI-39Vd *b304Y¥4 ¥4 3 (ntae,

A9ILVYLS INV IN3IWIIYNOA 39vd 341 SNIVLNID H¥NLIVS ¥ LS00

s Sl 7 5 6

yL4X bry393LVI (LODD

A (¥LdX)¥1L9vd4 3INILIIYINS (900U

37 4 50007

*SSVYA SHMILLVYN ¢°*INI SH3IL144D) 3JAIYd *TLaL LHDIYA4D)D) (%020

. 00J°*XXAXJYUS **INI *HILNJADD 3AIY4 3y LF069)

i “EIVINT 3393 Y (Zavo.
BL/GT/2T YAIN=-407=JA4=247=313-4M" *»30A444 *¥ILIV 3 (10J0)

1000 39v4d

THLGLIZT SAIN=43Y=JAd=3d" =

S1A=:44" #350aU4 ...J_ruqa o

| A

FACTLR, FRMCS4y JWF=FLS-JPC-FVL=- CF-NIPy 12/15/1F :

g 1] - .__ LG 2
1

FAGE 0002

gy
T e _
{0 O T ¢
‘647) C CVIFCCFMy PRI40OO3INSERTy WP=-RLS-JFC-REG-CGMS~-BIN-L.S-BEH-JCF=-FVDy 12/02/78
o T ORGSR < ¢ { 1 - NS
L ' FUCC«Fy PRI4GOO0Os NINMy 047027178
C4l) NOLTST
RO SHCRT CALL R
‘044) X LCCKRy LCCKWy UNLENs LANLKF
1G44) X LCCKFSy LEFSWy LNLKFSy GLITCN,
n44) y FILPAG, INHEI1, ENAELE PO L
'G4%) . i
JO4€) COMMCN /FMAFEF/ FMAFEF (E4) /J*» PAGE MAF FCR BLFSEG
1647) INTEGER FNMAFEF o
SEAL Y L
04S (INTERNAL STCRAGE ANC VARIAFLES.
CEC) INTEGEK FPyFMANTyFSeRA
‘651 INTEGERs4 VFIR
% 20 NI
o S N CALL LCCKW(FAGLCK) J* LCCK PAGTUR DATA : .
‘084) 110 FP=VMAPNCX(CUSRyXFTR)4RSCINTS(XFTR) 41C)/* PAGE-MAP ENTRY INCEX
985t) PMAT=PAGSEC (FF) /* SAVE PAGE=-MAP ENTRY
T05¢) IF(FFNT.LT40) EOTC SCO /x PAGE JUST ARRIVED!
1057) IF(ANDC(FMNT4:4000) NELO) GCTC €00 /x PAGE IN-TRANSITIOA
NCEW) IFCFAVCTR.EG40) GCTO 100DC /* NC AVAILARLE PAGES
1(EC) JF(RT(FAGSEC(FF+€4)4912)F0217777) GCTC 2000 /* NOT ALLCCATEC CN DISK RO
1CEC) FACSEG(KF)=:4000 /» MARK IN=TRANSITIONy CCMING=-IN
“061) € (FIND FREE FAGL)
GEZ) FAVCTR=PAVCIR=-1 ; S0
0e?) <200 FPTR=FFTIR41 /* STEP GLCBAL FREE-FOINTER
_CEH) IF(FFTRGELCFTF) FFTR=CP 1R
L0E5) IF(FAGSEG(FFIR)WNELD) GCTOQ 200 /J* MMAP ENTRY: NOT AVAILABLE A
CCEE) FACSEG(FFTR) =FF /* MMAP: PAGE-CWNED BY NME
1 T
CCEE) FS=FETR=-CETR(/* CCMPUTE PFYSICAL PAGE NLMEER
PCES) RAZLS(FACSEC(FF+E4)42)4RTU(FP42) /* DISK RECORD INCEX
Lt) . IFCAND(FMNT 9 :2C000)«NED) ECTO 225 /* BYFASS READ IF NO CCPY-CA=-CI1SK
4071) CALL _UNLKNCFAGLCK) /* UNLCCK PAGTUR DATA

B B = ==

L FACTUR, FRMOS4y WF-ELS=FC-FVLC=CF=NINy 1Z2/15/7¢ : PAGE €003
r,_w_
™ | o012 VFTR = XF1R /* CCPY FOINTER
Tl TR RS TE (LT CEEe 100 o885 IN1S CBL MLCC CEPAPEEYs 181Y)
(0C74) X VETR = LCC (REKDAT(1)) /* USE WINDOW IF BUFSEG
S lncrs) CALL TFICS(C+LTC(VYPTRy22)4PSyRA43S00) /* REAC-IN FAGE
W Lo LIE) CALL LCCKM(FAGLCK) : REBLIIRIE)"
(cc17) FACSEG(HF)=XCR(S1ECOCUIPSyANC(PMNT 220C0C))/% IN MEMy USECWMCC IF NC=-CCP
mtocreY € PRESERVE SHARED
m, L18079) gcic 20)
(0CPU) €
L enEsly - 52% FAGSEG(FF)=YCR(:1€00004PSyANCC(FMAT4220C0C))
2 leoces) CALL FILFAG(XFTR) /» FILL FAGE WITK ZEROES
(0CEZ) +50 CALL INFEIT /+ GC FROTECTED FOR A MOMEANT.
A | (ocna) FAGSEG(FF+€4)=CR(FAGSEC(FF4€4)4220000)/+ SET FIRST=-TIME BIT
w lences) CALL ENAPLF /» NCW WE'RE OKAY!
(0C8eY C
D |(nca7y c=oc IF(PGNFYC.EG.0) GOTC EE0 J* GLOBAL FAGE-NOTIFY CCLATER
Rentd CpERE) FGAFYC=PENFYC=-1
(0CRS) CALL NCTIFY(14FAGSEM) /% NCTIFY FROCESSES WAITING FCR TRAN
® | occo) COTC 500
el gotyy ¢ : .
fOCSEYy S50 CALL UNLKNCFAGLCK) /+ UNLCCK FAGTUR DATA
® | (ocs RFTULRA
s (0CSH) € CFAGE IN=-TRANSITICN)
(GCSE) €00 PGNFYC=PCNFYC+1 /% INCREMENT GLORAL PAGE-NCTIFY CTR.
O | tcoce) CALL UNLKNCFAGLCK) J* UNLCCK FAGTUR CATA
B bigncey) CALL WAITCFAGSEMN) /* WAIT FOR ANY TRANSITICN RIT,
(0C5) GOTC 1C0 J* AND TRY AGAIN
O | (o0cs) € (ERROR CN PAGE=IN)
S L ltnrncy sco CALL LCCKW(FAGLCK) /* LCCK FACTLR DATA
(0101) TF(ARDCINTS(RS (XFTRy16)) +:€E000) «NE.:4000) COT0 910/* IF SYSTEN PAGE
™10 PAGSEG(HP) =214C0004FS /+ USFR PAGE: GIVE IT 7TC HIV
v fro103) CALL FILFAG(XPIR) /* FILL FACE WITH ZERCES
(0104) CO1C 920
@ | (0108) S10 , FAGSFE(HF)=(/* SYSTEM FAGF: RELEASE
& fto1ce) NVEF (PS+1)=¢(
(D107 FAVCTRZFAVCTR41 i
® | (0107) €S20 IF(FGAFYC<EG.0) GCTO w20
s [€010%) FGANFYC=FGAFYC~1 J* AFTER NOTIFYING OTHERS
L -

L
. - . : N
.. <

PACTLRy FRMOSGy JWF-ELS=-JPC=FVL=+CF=NIVMy 12/18 /T¢ FAGE 0004

A CALL NCTIFY(1,4FAGSEN)

v s S i MG o el VI

) €20 CALL ERRRTIN(CyCo*FRACE~LSK"8)

| SR

Sy f . (NG AVATLAGLE FAGE)

% N ¢

CE Y C1000. EAEL ENAEBLE /* ALLCW TINTERRUPTS BRIEFL)

o) CPIR=CEIR+]1 /x STEP GLCHBAL RELEASE PTR

119) IFLCFTR.GE.CFTE)Y CFTR=CP1EB

11%) FP=FAGSECG(CFTIR) /*x MNMAP ENTRY

1.20) IF(HF+F.0) CGCT0 100C /* PAGE AVAILABLE

121) IF(EF+1.EQ.0) EOTC 1C00 x /* PAGE NCT AVAILAELE

LR) CALL INHETT /* GC PRCTECTED DURING CFECK.
L84 IF(LT(EAGSEC(FF4E4)92) NFel) CGCTC 10C0/* PAGE WIRED-DOWN

124) FMMNT=PAGSECI(FF)

12%) IF(FMANTLCFL.0) CGOTC 1CO0O0 /» PAGE IN TRANSITION

L1CE) . 1FCAND(PMIT ¢ t4C0OCCY«EQLN) CCTO 101C FE NOFEUSEDY TAKE ol

LD IF(ANDI(FAGSEC(FF+€4) 9320CCC)NFL0) GCTC 19C0 /*» 1ST-TIMEs CLEAR IT
{oEL) PACSEC(FP)=FMAT=240000 /% CLEARSUSEC BITy TRY NEXT TIFME
512%) GCTQ 10C0

] 26 € (FCUKD PAGE? KET 1ST EIT AND NCT MSEL)

1121) 1010 FAGSEG(FF)I=ANC(PMNT 42127177)+:24000 /» MARK NOT-1Ny IN TRANSITICN GOINC
1132) CALL ENABLE /* INTERRUPTS NOW CKAY
a3y :

P12 4 FS=CFTR=-CFThRC : /+x PFRYSICAL FAGE NUMBER

S12%) CALL SPTLE(FS) JeiFLUSE STLEP

2 EE) RA=LS(FACSEC(FF+64) 42)+HRT(FP43) /% BRECCRE INCEX
Y& 1F(ANDI(PMNT 422C000)«NELO) CCTO 102C /= BYPASS WRITE IF NCT MCEIFTEC
1135 CAaLL UNLKN(FAGLCK) /* UNLCCK FAGTUR CATA

A) CALL TFICSC(14INTLCC) ¢PSekAy$1950) /* WRITE-QUT PAGE :

140) CALL LCCKW(FAGLCK) /* LCCK PAGTLR DATA

2i81) L

14z) 1C20 FAGSECG(FF)=ANC(PMNT+:1C000) /*x MARK NOT-INsy COPY ON CIS
e3y U PRESERVED SHARED BIT.

“144) 1030. MMAF(FS+1)=0 /*x PAGE AVAILABLE

so T TR FAVCTR=PAVCTFR+1

114€) IF(PAVCTRWLTCFREPGK) GCTC 1000 /* CCNTINUE FRE-PAGING

147) £ocie 110 J» START ALL OVER

L B

R e I I N W M N B

FAGTURy FRMCS4y WF=FLS=JFC=FVC=-uCF=-NINMs 12/15/7¢ PAGE 0005

D014F) C CEIRST=TIME EIT ENJ

"014S)_ 1800 FACSEG(FF+Ff4)=FAGSFG(FF+£4)=-320000 o ICHEAR T SRR TME BT

H1%0) COTC 1000 /* AND FINC ANOTHER FAGE

ER1EL) C (ERRCR ON WRITE) A

pSey 190 CALL LCCKW(FEELCNKD L& LCCY PAGTUR DATA 2
R153) IF(MMAF(FS+1)4EQe=1) GCTC 1000 /* PLEGE MAFPEC QUT

£154) FAGCSECG(FP)=FNMANT+:4C000 /* RESTCRE AND MARK LSED

H3EE) COTC 1600 /*x LEAVING PAGE FCR ANOTFER TRY
IS) C {NC DISK.SPACE MLLCCATEL FCR FAGE)

i) 000 ERRVEC(Z)=XFTR /% ALTVAL(2)=WDNC

o B CALL ERRRTNCXFTR404"ILLEGAL FACGE REF4"417) /* BLTVALC(1)=SEGNANOQ

(6h15%) END

‘RCGRAM S12E° FRCCEDURE = CO00€E42 LIMK&RE = 08CFL2 STACK - 000022

0CO0_ERRCRS [<KPAGTLR>FIN-REVIE.Z:

o

. .4 sy .I » r | , . | ., ‘_ . . . - . - - -L .y- --

PLL FRED

M AP < te e
i POIMTER TO 3 VIORD

AP e ~ERED _ELH NMDIREC

e o —

PROCEDURE CALLS
i ‘ Lrl
—
A
400
531 —_— l

Y
L5 o il
CALLING PROGRAM i CALLING PROGRAM
PROCEDURT SEGHENT i LINKAGE SEGHENT
|
-—————-—-—-—-—-—-————-———(—
ind
A
’HOGI
' ERED 232 FRED
Vv -
, >
|
FRED
ECB
CALLED PROGPAM CALLED PROGRAM

LINKAGE SEGHEN PROCEDURE SEGMENT

(1SS}

e R

{

sel
__.__%.l e
|
CALLINC
PROGRAM
: STACK
i = e e
I
!
!
i
' !
(o 1
% St el
o ey
! CALLED
PROGRAM
STACK

STACK SEGMENT

ARGUMENT TEMPLATE

Yool B R sy IR 16

B 110 1ose IL-1B 10 0
k
B = BIT NUMBER
I = INDIRECT BIT
L = LAST BIT, LAST TEMPLATE FOR THIS PCL
S = STORE BIT, LAST TEMPLATE FOR THIS ARGUMENT

ENTRY

CONTROL BLock (Ecz)

j—’

co ~J o wun

(o

POINTER TO FIRST
EXECUTABLE STATEMENT
OF CALLED PROGRAM

SIZE OF STACK FRAME

W N

STACK ROOT SEG. NO.

———— i ——

ARG. DISPL,

NO. OF APGS.

LINKAGE BASE COF
CALLED PROCRAM

KEYS FOR CALLED PROGRAM

RESERVED

MUST BE ZERO

STACK FRAME

/

POINTER TO NZIXT
FREE FRAME

POINTER TO
EXTENSION SEGHMENT

(]
W RN = D

I

FLACGS

—d i s e e r——

STACK RODT SEC,

o

RETURN POINTEP

=

caLLER's SB

CALLER’s LB

(6] b = 2 S

CALLER'S KEYS

Lo

HWN aFTER PCL

POINTERS TO
ARGUMENTS
(3 “CRD INDIRECTS)
AND
DYNAMIC
VARIABLES

w
]

-

S R S A BN aF A

USE OF SUEROUTIMES

R

(D

CALLING PROCRAM

CALL

— CALLS SUBROUTINE
- ceneraTES PCL (PROCEDUPRE CALL)

PeL

- ADDRESSES AN LCB THROUGH A LINK
- CALCULATES RING NUMBER
- ALLOCATES STACK FRAME
- SAVES CALLER'S STATE
- INITIALISES STATE OF CALLED PROCEDURE
- TRANSFERS ARGUMEMT POINTERS
AP
- GENERATES ARGUMENT POINTERS FOR PCL
- rorrows PCL
- FORMAT
AP ARG,TAG
WHERE TAG MODIFIER CAN BE
S VARIABLE 1S5 ARGUMENT
SL VARIABLE 1S LAST ARGUMENT
®S ARGUMENT 1S INDIRECT
*Sl ARGUMENT 1S INDIRECT AND LAST

(/

2. SUBROUTINE

ARGT
- poes LAsT sTEP oF PCL

- EXECUTED ONLY 1F FAULT OCCURS
DURING ARGUMENT TRANSFER

-~ MUST BE PRESENT IF ROUTIMNE REQUIRES
ARGUMENTS

ECD

— GENERATES ENTRY CONTROL BLOCK (ECM)
TO DEFINE A PROCEDURE ENTRY

- GOSS INTO LiiK FRAME

= FDRHAT

|

LADEL ECR PFIRST,,ARSPISP,IARSS,
SFSIZE,FEYS

WHERE :

PFIRST - POINTER TO FIRST EXECUTABLE STATEMENT

ARGDISP - DISPLACEMENT IN STACK FRAME OF
ARGUMENT LIST (DEFAULT 32

MAPGS - NO. OF ARGUMENTS

SFSIZE - STACK FRAME SI1ZE, DEFAULT IS GIVEN
By DYHIM '

LEYS - KEYS, DEFAULT 6LV

.

DYHM

- SPECIFIES VARIABLES TO GO INTC STACK FRAME
- EACH ARGUMENT REQUIRES 3 WORDS

= FORMAT
NV ARG(3),ARG2(3)

PRTH

PROCEDURE RETURN

RESTORES CALLER'S STATE

DE-ALLOCATES STACK FRAMZ

CALCULATES RING NUMBER

EXAMPLE

S

rm

B

SULR SUE,ECE

AR%T (ENTRY POINT)
LDA ARG1,* (GET FIRST ARG)
STA SUM

LDA AR52,* (GET SECOND ARG)
STA COUNT

PR?H

DYRM ARG1(3),ARC2(3)
DYNM - SUM,COMT

LINK
ECB SUB, ,ARG1,2

EHD

B O M N A AN N N S e
_. . N O G N S SN S

NOTE

—_—

A MAINLINE PROGRAM 1S EXECUTED USING THe PRINOS IV

~ SEG FACILITY.

70 ENABLE SEG TO ENTER THE PROGRAM THIS MUST INCLUDE
AN ECP IN THE LINKAGE AREA.

THE EMD STATEMENT SHOULD BE FOLLOWED BY , MDD WHERE
ADD 1S THE ADDRESS OF THE FIRST VWORD of THE ECE,
THIS WiLL ENABLE SEG TO SET UP THE ENTRY SEGMENT

NUMBER AND WORD NUMBER.

EXAMPLE

ADD ..., FIRST EXECUTABLE IMSTRUCTION

2

{

LIMK
ECE ECB ADD

E'D, ECB

DIRECT ENTRANCE CALLS

many PRIMCS IV ROUTINES, PREVIOUSLY REACHED BY SY('s .
ARE NOW REACHED (Rev,1!) BY DIRECT PROCEDURE CALL TO
RING 0. THIS ELIMINATES THE OVERHEAD OF HANDLING THE
SVC FAULT AND THE ATTENDANT ARGUMENT TRANSFER.

DIRECT ENTRANCE CALLS MAKE USE OF THE 'FAULT' BIT IN

THE INDIRECT WORD.,

FAULT 3
| BIT RINC
B SN
! i
i \l 11 od
| r o
. INDIRECT WORD WITH

s /" TAULT BIT OM AND RING
s i - F1eLn O, |

| F

g

PROCEDURE SEGMENT

LINK FRAME

THE ABOVE STRUCTURE 1S CONSTRUCTED BY SET WHEN 1T ENCOUNTERS
THYE APPROPRIATE KIND OF ENTRY IN THE LIBRARY. ;

vHEM THE PCL 1S EXECUTED AT RUN-TIME, THE FAULT BIT CAUSES

TEXT OF THE NAME.

. A FAULT TO A ROUTINE WHICH FoLLows THE POINTER TO THE ASCII

1)

2)

3)

4)

DIRECT ENTRANCE CALLS

V-mode or I-mode entry to PRIMOS
Any service routines ring ¢
a) I/0 routines
b) Access restricted data bases

D.E. call are entries for anyone into PRIMOS
and the routine must protectect itself.

Dynamicly linked

[

1)

2)

3)

4)

CREATE DIRECT ENTRANCE:CALL

Put object code in Lib to tell seg this is a
dynamicly linked routine.

SEG

DYNT routine name
END

Add a gate to Seg5 module of PRIMOS. Use
gate Macro.
GATE routine name ,[PRIMOS name if diff}

a) Note: Gate segment is search sequentially
so order is important for efficiency.

b) Note: adding gate may overflow the current
size of Seg 5 and MAPGEN may need to be
modified to increase the size of the segment.

Write the routine.

a) Standard V-mode subroutine

b) Must protect it's own entry point.

e) Must validate all arguments

d) Uses Ring @ stack (seg #6000) set up by AINIT

Load the routine with PRIMOS

a) May have to modify MAPGEN

LINKING TO SHARED LIBRARIES (SIMPLIFIED)

POINTER
FAULT

NO

SEARCH GATE
SEGMENT FOR
MATCH ON
ECR

A

NOT FOUND

Y=
O

LIBRARIE
JSTéLL

{ * YES
| Gl

1

SEARCH HASH
TABLE FOR NOT FOUND
MATCH WITH i

AN ECB

Y FOUND

INITIALISE IF
FIRST TIME:
COPY IMPURE
INTO SEG “6001

A

TR

FILL IN LINK "POINTER
TO POINT TO -—-“*—--—(: RETURN :)~—-—-————— FAULT"

MATCHED ECB MESSAGE

)

| B
PTR EC R

Z SAVE (REGISTERS

A ST ACK

LOAD - . L

! WiTH
ADDRESS GF FAuLTIre
PO InVTER

A

ISHVE L ¥ FTRTMP
(“;‘{'o-c.k Re’,"}';"’e)

| v -

. C HECk! Folk 2 WerD |
IF /e O VB

]

Bapes ;
el B i’

LoAD %XB rTH PoinvTerR
To NAME o©oF RouT]WE
dJe DE LJIvkED

v

\JI

LonD A
. (ITH [LEVETH
[OF NVNAme 1wV
RYTES

1}:\ RAD PTR
LEMETH 2 S>—(9)

Go TO
BAD PTR

FRom [RBYyTes To
(Do l?DS

SToORE LENGTH

v PTRA
(Stock 'Ralitive)

B
/’_L/OAD LR Lo T
ADDRESS o©F GATE

C HANGE LE’UG-TH]

LoAD % i rTH
LENGTH

.(zgyraymxr : i

LokD p ¢itH Po;v?’&?
To /UAME | v ATE

J

Check FOR MBI H
o Tloo CHARACTERS

OF WMNAPE
£ 4 Corﬂpf**—’- Ax,xww%xrs* X)

;& MXT ECB
/ XTECB —>

TRLoF/ET/ﬁrMM\

ALY

[LOHD R A el o ¢ \

PoIVvTER ' Te (- ATE
THAT MATcHED

| ' : ‘\ :
‘ CToRE 1| [Dhck TR Ia

Jme. O FLTRTWV
common | FAWLT
RETQARN

@_.—

;I__.%EQQK Ugits i+

T F | s RIVGS HA»DL::& :
TUBTRERXYD it i '
Ge TO PTW PT -—)@ :

‘ /Vx"r" ECB

TrcREmeRT LB BY 16
Poe (nJTi Teo AMEXT GATE
POIWT, A Toe NAME 1m0
TH&ET | G ATE ;

v

. e y L
\/ END ey b GATES

‘/J'E 6"6 ;Lao}'(.Fc)r‘ Q;r\fj '?)
. p@f’\;{g*‘ pax..t.a/l"—f : Haluaf& v "*/

1

é.—_&/oﬁ_a{ : L[5 foo_co.use,]

fk. cow Hsve A RIDVe3
HAND’EL‘?—({ RESET T wFe
I Look Like Ho Rivea
HAWPLER. MNeveR ExicwTED
ANVD SET P TFO EVeaTs
RIVe 3 HAVDLEL %/

\”

: i | F
‘ e T EN T~
6F | ATE SEG TEYE -:,@

L

| LOAD Xﬁ e A
P"'V‘ +e PCB Comr~on

| LohD o L. ews s
| oFfset 4 c:.brr'z»j'/

[Eaidting PCB
ig oCEsat
\

L (..0{‘}0 A‘ t;;l'{”'- P'J{r- +o 7
C"”‘C'Q 87La,ck

[CoaD 7::‘;?« Mh{pi

i

/‘% (&QIDWI"& Cohcicﬂgd(SHs it
s | |t weas bafore, The CALF
‘f‘L—»a:“ ga+ yeou 'I’H’_re- 4{_/

feassr St Ee 1'
| | set wmegt pEr in PcB
Loael PB,-KEYS/FCoz)é/
FADOZ\ ;) Ao Comcga’.;oe

S tack
/% Chanse Qih—g L stack
L Se = C an PRTNV +o
4l l“'\b o Heonel le -‘*'-/
\’

T —

e
LoAD AL Lveoss o il -

L\aerﬁ{"-"" | T C_ug.rr-c.-j'
3‘{"5-:.["\ r-;r-a.r-d'-

——-"-’-—_-_____’—-_‘_‘—_‘__P—

R T

C_o"“"“f’m . Fa,u,o:t'" Ra“f‘urw
P P o c_.,p__yQ u_.ly-{_, 3 Qa,s'?!or-e &5] 5“&-—_5
G 8% PftTﬂ;

/-}’é (N ' becawuwse we
Clowged - The Ring @ sieck

| e go to +ha IQ-'m; 2 haudlen
Jﬁit boc k +o ta ?auJ+ﬁ3

ﬁ PV“OC‘AL&V‘L.&N&O C.-L\a..c-:e %LQ.

mode o fle machin = Ringd +/

pPTR NV =

5 J

e i ORI

Gf‘qql., : Psinter Feadlt < e SSa Sl
6{.&;}0 rﬁt?-‘fuurn ; "‘a C_oyhﬂna.h.&

LzUL{

Bre casliine Coll 45 ERRIRTY
Give U Pointer Fadllt 3 ~RSSase
Owa-:ﬁ f&q_"-u.yn +o C_QMMO.,I&.I‘,{
Level

——

it -

EE0D Jovg 8 L4

r N S ..1—
4 A sl 4
) I e B

SIFVN 40 S¥YHI OML 1¥3N kyl

HILYE OM I HOnYye

HLINIT Juyn
IN3IKO3S 31v9 40 1Yv LS
SQ¥0" NIe--

T *H19N3

0 *37° 41 HINvya

H19N3T 3IWyN 139

JWYNCNIT 0L INTOd

LON , 41 HONWYS

E0=3dA1

43INIO0d 3AVS

118 17Nvd 3Isvy3

MIINTOd INTON3440 dn XJ1d

F1VLIS ¥3SN 3AVS

’

*+S4174 =54

4]

XLSdne

aNIMLd x@g
E23LXN ING
X¢zax VM3
X E2 %47 YUl d0ulLd
X¥1d XA7 IXNAYL
$9S1vY gv3
XM1ld V1S
T Tuv
Tv9
vY1v
d1davn 3749
Yex Vo
tCdWiIMId gxy3
dldayg ang
0000L0. = YNY
dWiM]d niS
dSS
*$ya0v4T4y 107
FAVSY AVSYH 441d
C+dWIM¥Id ' ND3 X¥1ld
S41714+4%8¢S NO3I dWldld
—
=100 AM1d 833 093¥14
=
1INv4-¥31NTOd +

50 iU - g e 11/ e -

(2190)
(T190)
(0LG90)
(6990)
(R990)
(1990)
(9990)
(6990)
(%990)
(£990)
(2990)
(1990)
(0990)
(6590)
(8590)
(1590)
(9590)
(5590)
(¥690)
(€590)

(2590)
(1690)
(0590)
(6%90)

(8%90)
(1%90)
(9%90)

. T

YZHEONYEL0%T

IY%€00*£T90%1
X000000*€u¥vEco
157T0000°720%5%0
SZS000N0°*6¢

Te%%000°2¢ v290
S2S0N00*%HQ
LLYOYQ
0S0T4%H1
9021%1
SYSE00°NT90%1
X000000*€0%500
S0S0000°TEYS90
SYSE00°FI90%T
0T19¢00*F0
S0S0000°ST%1TO
00TO%TY
SET0000°*SEY540

SST0000°00%0nQ
STLO0Q

250000
050000
%S0000
000900

000%T0
00%LLY
000000
TI0000
020000
YLEEOO

:Hmlm w- .m!.l.-,_-z._."

PCEYEDD
s0E%EDNQ
9¢%€00
th2veENnD
"mmemoo

s 12%€00
102%€00
LIHE00
19I%E00
$SI%EDD
t€I%ENO
sTTI%E00
tI0%E0Q
so%gngQ
th0%€00
$Z20%€00
sT0%E0Q0
SLLEEQO

SLEE00
YLEEQO

e &

$S9FE00
t99€€00

SE9FE00

oy

TS IR T Y (U s

S i s Sttt o e Sl SR HR T D
. O
Bk 55
~
£ (0TL0)
y NI¥114 dWr (60L0) 9ZEE00°TOQ tLISEN0 -
SAINTd ¥IS (ROLO) SOTOOOO®%0 :916ENO
000%T.= ¥a1 (LOLO) 2T19fF00°70 $STISEND
o 118 (90L40) S2Z000PO0°STI%ITO :€1SEQCD -
YTTONYH=-1TINYd €Y 707 (S0L0) 22LEQ0°%EHSHO :TIGEND
aqpied o4 * (%0L0)
™M M\suu! Y I Aévarox T1LS €0L0) X%00000°LEYTITO :L0SGEND -~
e o s ¥aav<4~4 00 Z0L0) SETON00*STYS00 :S0SECO
e ga0-) ™1 o ?a\ 7. =N %J_sJJu AfT+EUX Nis TOLO) X200000°LEYITO :€0GEND
P i TEPRC I (1) 0040) SHTARnAc2g 1705€00 =
¥ 2245 pay ay 1 6690) YTIE0HT :T0CE00
i TR+ 40 [- MNE S 3002474 v01 (8690) SZT0000°70 :006€N0
- e i oo oo —— AfrEX 1S (L690) X0N0000°LEYITO :9L%ENO =
XOV1IS-031Y3INODD 0L Od4NI 3JAQW gd™4 - 7Q° (9690) SZNONOD*StosuL . 27E00
*# (6690)
¥ld LX3N 13S X T+XS0d+%8X V1S 24Y¥1d (%690) XSLONOO®FO0%ISO :2L%E0D =
9= 0QV (€£690) 1T9F00°90 $TLYE00
L3S3I¥ 1SAW €ISV STvNO3 €4¥1d dWr (2690) 02S€00°T0 $0LYENO
2+* dWP (T690) T1L%F00°TO $L9%€00 5
1S¥Y ¥IV1S-037TVIINDD X€Z+NXSId+TEX SVI (0690) X9L0000*FO%EQ90 :69%€00
AMIN3 QM9 IN3IWYND <- A AV 1 (6890) c0c0Y1 t%9%€00
LX3N ¥Jv1S-03T¥3IINOID X¢T+%S2d+%eX vO7 (R690) XSI0000°€0%S%0 :29%€0N0 -
99d AW <~ X 7 X071 (L0 ¥2N000N*SE sT9%€0N0
MINKO 3707 ($690) dSZ0000°%0%ET10 :L5%€00
INTWO3C §2d <~ gX 975924 dXv3 (6890) 19%%000°ZE%S90 :65%€ENO -
anNng<4 LON AYLINT 4NY1d 039 (%890) €72650N°7Z190%1 :EGYEND
¥YITANVH €3 ANY 47 33S £ TTETIT va (€690) Z2LE0D°0Z%5%0 :TSHEND
£ (2890) P
¥3TaNYP-1INVY €-ONTY ¥0d dnil3s # (1§90)
3SYE YNTT Q¥073Y +994+423¥1d €v3 (0890) TLEFOO®0EYLI0 :LH%E00
y _3M0 SI 41 HONwYA LXNAYL ING (6290) EZ%EOQD*ET90%T :S4%%€00 &
IWYN ¥04 WIIHI ET+%87 Va7 (R190) 16T0N000°Z0%500 :€%%END
IN3W923S 31v9 NI €23 IX3N 9T4347 €IvI 923ILXN (LL90) 7020000°7T%L20 :1%%€00
(3490) -~
NLYL1d dul (SL90) 9ZE£00°T0 :0%%END
¥HT1 d¥YNS £8ygny LT 119 (¥190) SETO000°*SEYTIS0 :9€%END
22 40 ¥00V 139 == HILYW 1N+ %W | ea (FLS0) T000000°90%E00 :’ %t 00 o

- \

&

'€

-

“e

H9d = (T)IYALY S¢gd ™4 dVv (Y€20) S200000°*NOSON0 :=2LSEC

Nla¥dad 77vD (EEL0) 1%S%000°ZE%T190 :SLGEQ

16d = (2)VALIY 138 T+33A%43 'S (ZEL0) 125%000°22%150 :€LSEO

16d 139 T+8d74 VAT ¥1dIIv (TEL0) SE00000°TOY500 sTLSEQ

07202t t0LSED

S0€281 TL196¢0

T0LEHT $995¢€0

0%2ent $99CE0

SUELYT s %96¢0

) THEg L tE9SE0D

SO0FenT $1?9S¢E0

JLVY O3NIJ430NN¢8 129 (0e L0) b e | tT95E0

INIW93T 24V9 NT €93 03SNNN WOY4 AYINT aldlIY EXSP Lyvoavy (6210) TLSEQO*NTHYIEQ :LSSED
1v9nyQ INT (RCL0)D 15600

0v¥e02T1 t9G6SED

0vecest $E656E0

Y1225 :¥686€E0

TOEEHT 1E£6S¢E0

0h21s1 1265¢€0

s0€est L RETTE R

9TLY YT :0s86€0

1INvd ¥3ILINTO4¢8 I3¢@ (L210) LTEOST $LH8¢€0

di 3A19 -- SO23 v3I¥ 40 1nn d1dJJv 8XSI ¥1dOve (9210) [LSEOO*0TI%IE0 :5%SE0

(6210

18¢9= dv (%2L0) TT9E00°N0E0N0 :EHSE0

S¢.1713¥1d.2= dVv (F210) ST9€GO*00TONO :THSE0

Se%EX " dv (Z210) X000000°*N0S100 :LESED

SET+2ux dv (TZ10) XTI00000°"0ST00 :SESED

*fdWlYld dv (02Z0) SO0S0000°00%%0N0 :€E6€0

SedINS$3= dy (6TL0) %T9€00°00TQON0 :TESEN

S¢0= dv (RIL0) ET9F00°NOTOND :126€0

Pdd¥u3d 7vI (LTLOD T0S%000°7€%190 :526€0

*49+873%1d 9Iv3 dNYLd (9TL0) TLEEOD*NEYL90 :€£2550

* (G5110)

_ SATYINA 40 # V31911 A NO3I XVKHETT (¥1120) 0t1T00no0
P2d NI S¥ld ¥IviS 0377323N0"N bYl. no3 ASTAId C€110) %L0000

24¥1d dWr (2TL0) ¢lvE00°*TO $122¢¢0

e e e Lo TEASOd+%6X V3Tl Ed¥ld (T1L0) X%20000°€0%S%0 :02S€E0

€00 39vd BL/2T/¢c0 ¢ V"WTN=SHI-9TH=-938=3dr-9r3-STd-dMr €S%<00% 4 *NTYW!

o e F] 'y - " 3
- L.Ln.. sl Gt b e) T

LB I S I B e i 3 ot da

17r3

MId

N3OSk 154¢91= dv
agw StTuX dv
NI¥LIY ON Cig= dVv

(0%L0)

(6ELOD)
(RELD)
CLEL20)
(9t 10)
(cel0)

(IF11

¥Y020000°00
Yy¥ZE9RT*00
Y90ETGT*NO
vhee0sT*NO
vY.LT0000°00
v000n0N°*no
Y000%10°00
v900000°00
Y0000L0*N0O
YRLLLLT 00

029€£00°00€000
Xon0000°00S100
€ET9£00°0070N0

8 ge ev ww we sy =% e

029€00
LI9€END
919€00
€19¢00
Yy1G6e00
£19¢00
ZI9€E00
TI9E00
0TI9ENQ
LO9ENQ

c09€00
£09€E00
T09€00

O

(5]

v

—

e R gt am——

AJVLIS-0UITVIINOD 0L O4NI 3A0M

13534 1SNW

dld hxwz 139

f1Sv1 Svno3

1Sy AJvisS-027v3IINOD

ANING OM9

INIYENID <~ A

LX3IN NIVLS-C3IV3IINOID

Hiag AW €= X

INI 93T Bad &~ G¥

SUY3ITANYH FIY0W ON

d313WVYY¥vd NyoQ

NIXIYd

CINVEI-AIV LS NONIY L)

¥$591709 =5

Yg1+28S-3009474

A aX
+1%071428S-dd ™4
€294y ™4

XYT+%SDd+%uUX
Q=

ENALT

4%
X¢Z+MSDd+ 3 X

XCT+%SId+%8X
4

HINMO

9385924

dNE17
X#¢749147171

X¥ld

T

N9 [
IANBIT
XVWdT 1=
ANBIT
541948y 4

ZETO¥Y T S36NE1
LXNOI

Yan
148
v3
vlvid

v1s
aav
dur
dhr
SV
AVl
van
¥xan
u1a1
gxXv3

038
Yo
XV1
Vis
337
dWr
dirl
Sv)
3¢
van
194V

(6920)
(8920)
(1920
(99L0)

3 (§9L20)
¢NETIT (%9120)
(€920
(?910)
(1920)
(0910
(6SL0)
(RGL0)
(L610)
(9610)
(6610)

(%510)
(ESL0)
(Z618)
(15L0)
(0SL0D
(6%L10)
(8%L0)

; (L7L0)
(9410)
(S%10)

(%% 10>

NEI1T CEHYLOD)

923 IXNGTT (2%L10)

IN3

(T%20)

127T0000*70%S00
X000000*2EH1T0
7200000°9¢%E%0
SST0000°TEYL90

XGL000N*€E0%160
TT9€00°90
Y2LF00°TO
$99¢€00°T0

X9LC000*€£Q%ES0

G0G0%T

XGL0000"€E0%S%0

veo0000°G€E

dSZ20000°%0%ET0
19%%000°2¢E%<90

LZLEQOT2T90%T
ZZLEQD°02Y%5%1
2060%T
$260000°%0
LLy1%0
LELEUDSTO
LZLE00°TO
IELEQO°TY
LZ2LEQ0D0T90%1T
SCT0000°T2%5%0
509000
¥60000

000%T0
00%LL1
200000
210000
020000
CEQEND

129€00

t9L9E00
' HL9€00
sZ2L9E0D
:0L9€E00

999¢£00
$699¢N0
$%99¢€00
tE99£00
$199€00
:099¢€00
$1989¢00
$G6S9E00
t€S9€E00
tI169€00

t159¢€0(
1659¢00
t9%9€00
tEY9E00
:Z%9¢00
tT%9€00
:0%9€00
LLEYEQDQ
$GE9E00
TEE9E00
1ZE9ERD
LtE29E0N0

$T29€00

(TN JBF B OB B 27 O B I

W Rim s @l sl w §yT TR TTEANAE FTINTLATNITC WS ET BB KT T SR A AT W LS B SRR R g

dNM1d
dWil¥id

#éegT+2gS-NQav44
stgnyy 4

ZNOIT
15414 X589 TENSOd+28X

#«?«u&i \,J 191917
w»XJnJ_tr %.meu_ 7 uw 2871+4%0S-SAIN" S
_ 00n%T, =
%97+50S-04 4
YITANYH-1TNYSd €Y TX®¢7g18TT

A HINIVd —rid

AYH4+%0X

> e i £87+74S-400v47

mawiqg\d _,:{gx
wa4+wnmlw>mxl¢
: ¥

FF FFEFEEEFEEFEFMMEFEFEEEEEEE

Far3

NMId

dWrl

1S

dSsS

1g7

g1v3 JINGIN
*

dWr

vYan ENBT
%

dl 191012

Nldd

V1S

Yal

145

7407

Xan

TR
1017
11
van
gVl

(£610)

(2610)
(TI610)
(N610)
(6810
(PBL0O)D
(218L10)
(981L10)
(SBL0)
(%8L0)
(EBLO)D
(7810)
(18L0)
(0810)
(6L20)
(8L10)
(LLL0)
C9Li0D)
(€410
(2LL0)
(EL10)
(¢LL0)
(TL2L0)
(0LL0)

Y0T0000°00
£EZSF00°TO
S0S0000°STH1TO
00T0%1
TETO000°9e%5%0
SGTONON TE®L90

299¢€00°70
X%20000°€0Y%5%0

2000000°00N0NO
119000
70T0000°2Z0%1T0
ZT9EQOR 70
T200000°91T%1 10
CCLEODN*HEHGHT
$260000°S€E

X%00000°LEYLTO
TET000N*9T SN0
Xc00000°LEYTITO
10T0000°20%500
YTEOYT

= s

1ele00
9e1€00
YeLeC0
EELEDD
TELEND
L2LE0O

92L€00
w2 LE00

cZLE0O
12Le00
L11€00
QILEND
YTLEQQ
ZTILEND
TTLEDD

LOLEDO
coLecO
£0LECO
10200
noLeEND

&

_

E BB R EEBEEEEBEEEEEREREEDE,

INTERRUPTS:

Process Exchange mode on

1)

2)

3)

000120:
000122:
000123

Interrupt from I/0 Bus
Micro-code e

a) PSWKEYS <—
b) PSWPB < RP (;mj hive il ele. LT whem coonact v cd)

Keys, models

c) RP <~ Ring @, Segment 4, Vector address
d) Keys 4= 64V mode

e) ICPN - interrupt clear priority network
f) Set interrup inhibited in keys

g) Fetch next instruction

Next instruction is the beginning Phantom Interrupt
code for the interrupt. Phantom interrupt code will
either handle the interrupt or cause a process to be

scheduled to handle the interrupt.

Phantom Interrupt code must

a) Acknowledge the interrupt to the controller
b) CAI - clear active interrupt

c) Return from interrupt

EXAMPLE:

MPC Phantom Interrupt Code

(0093)
000120 (0094) ENT MPCINT kj::)
031404 .031403P (0095) MPCINT OCP 11403
001216 (0096) INEC MPCSEM <§—(:)

000000 .000506

1) Interrup vectors to MPCINT

2) Acknowledge to controller

3) 1INEC
—~ clear active interrupt
- notify MPCSEM - start interrupt handler proc.
- return from interrupt

M 1 G
\.jn:_{;fk LA L{M{;)
CoNTEaLLLEL

U

MPCDIM
STARTED BY TSXMPC or PHANTOM INTERRUPT
CODE, WAITS ON MPCSEM

CHECK STATUS AND
LOOP IF BUSY

v

CHECK MPCFLG

@ - INACTIVE
7@ - ADDRESS OF
CLEANUP ROUTINE

5

LOOK FOR MORE WORK
MPCFLG=p

\V
l JST to CLEANUP

%
\p\

(LOAD Y WITH -4 [

J _

LOAD A RING +4, Y
H ADDR OF ROUTINE TO PROCESS DEVICE
STORE Y IN RCNT

s, GO PROCESS
’ —|
iy

N\

LLEEREEEREEEEEEEED §

BIY ; [

MPCXIT

\’

CLEAR MPCFLG

v

WAIT
MPCSEM

V

JMP BACK
TO BEGINNING

]

MPCDIM

page two

4

PRJ, PR1
PROCESS PR{, PRI
BRANCHED TO BY MPCDIM

5
Y-

PRY I CLEAR A [PR1 | LOAD A with 1

J£ |

[

W

JST STATUS
"GET STARTED'"

IF GO BACK
BUSY or TO MAIN
NO PTR LOOP OF

MPCDIM

!

STORE BUFFER POINTER
(PRBFC@ or PRBFC1)
in PARMLIST of NEXT PCL

| 3

CALL BFDEQU
BUFAP AP
AP NW

|

PRBUSY,1 --B
CLEAR/SET BUSY FLG

v

GO BACK
TO MAIN
LOOP OF
MPCDIM

JST SETDMA
LOAD DMA Reg.

%

PR#, PR1

LDA BUFA*
GET ADDR OF
INSTRUCTION (FROM TSLMPC)

v

I IN A,OTA TO START I/O

v

GET STATUS 1

v

IF
NO INTERRUPT
PENDING

%

ENB
and JMP
TO MPCXIT

OCP TO ACKNOWLEDGE INTERRUPT
SET MPCFLG
ENB '
JMP TO BEGINNING OF MPCDIM
TO HANDLE THE INTERRUPT

page two

CLEAR
MPCFLG
AND WAIT
ON MPCSEM

MPINIT
MPC INITIALIZATION
CALLED BY T$xMPC

U

Load A with channel #
(DMA = '36)
OTA to controller

RETURN

No response ""No MPC"

CALL LOCKPG _J Lock MPCDIM

V

Load A with addr to phantom
interrupt code and OTA it
to controller (keep trying
until it works)

Note: Phantom interrupt
code is the same for all
devices: PR, CR, CP

\Vg

Set MPCFLG inactive

Set PRBUSY and PRBUSY + 1
Not busy

Set MPCINI initialized

& I & & A & & N S SN O A A A N NN NN

Enable MPC interrupts
OCP XSETM

v

- W

TSIMPC - USE EﬁTRY POINT
xt-ﬂ
(XUNIT, XBA, &4V, INST, STATV)

.

NW -- XNW
UNIT -- XUNIT
BA = AND (XBA,: 23 777 777 777) +
AND (LOC(XBA),:14 000 000 000)
WEAKEN BUFFER ADDRESS

BB B B B OB B | 'JIII illl illl JIII JII' ill' illl III' III' JII’ ill'
.

NO CALL
ERRRTN
"BAD UNIT"

CALL
ERRRTN
"NOT ASSIGNED"
CNTRLR = RS (UNIT, 1) l
IF
CNTRLR YES
NOT ¢
\Vg
CONTROLLER § CONTROLLER 1
\/

| BT e

DIMNDX is 1 if controller §
and offset of MP2COM from
MPCCOM if Controller 1.
Therefore, no matter which
controller is used, all
access to MPC or MP2COM can
be made by (index + DIMNDX)
into MPCCOM.

BUFX is index into
PROBFC, PRIBFC, PR2BEFC, or
PR3BFC depending on unit #

i

and controller #.

" TSLMPC page tw
CONTROLLER @ CONTROLLER 1
DIMNDX = 1 J
\%
IF IF YES
MPCINI(1) # @ MPCINI(2) # ¢
\2 v
CALL MPINIT CALL M2INIT j
initialize controller initialize controller |
, ? :
IF
IF CALL ¥
MPCINI(1) = ¢ | ERRRTN MPCINI(2) = §
NNO }{PCN
: \F V
\y N | DIMNDX=1+INTS(LOC(

| MP2F<6+)))- INTS (LOC(MPCFLG(1)))|

MFA2FL(1)

BUFX = DIMNDX + 5* RT(UNIT,1) }

\

IF
INST < §
Status Request

FORMS
CONTROL

B B B BE IR DR BN BE R B BF BN B B B B AR A

-

TSLMPC page three

2| W = 70

r NWl =Ny + 1

3

-
~
\j

>~
~

BUFA = BFGETR (PROBFCBUFX)
GET ROOM IN PR BUFFER

, Nwl

IF YES

BUFA # §

* NO ROOM WAIT FOR
A WHILE *

v

’ CALL NOTIFY

(Q, MPCSEM (1,CNTRCR+1))

I
* TRY AGAIN *

\/

Kick Driver to
make sure active

A
| CALL STIMER(3) | WAIT 3/10 of sec.

\

CALL STORE (BUFA, INST

CALL MOV32P (BA, BUFA+1l, NW

MOVE INSTRUCTION and DATA
INTO BUFFER

B I I I B I I I B B B B B B B B R A

-

200

TS1MPC

CALL BFENQU (PROBFC(BUFX), Nwl
Place Buffer in Queue

|

{ I = RT (UNIT,1) + DIMNDX l

* 1 is ptr to PRBUSY or PR2BSY *

page four

IF
PRBUSY(I) = @

CALL NOTIFY

(0, MPCSEM (1,CNTRLR+1))

IF device driver
idle start it

WV

STATV(2) = :200 + LS(INTS(BFGETR
(PROBEC (BUFX), 71)).NE.#,6)
Free space in Buffer fstatus = OK

—

BFGETR

Get space in Q

BUFA = BFGETR (BUFCON, NW)

BUFA = BUFFER ADDRESS RETURNED
BUFCON = POINTERS INTO BUFFER POOL
NW = SIZE OF BUFFER WANTED

BUFCON + @ - BFR - read ptr

BUFCON + 1 - BFW - write ptr

BUFCON + 2

BFTOP - top of Q

BUFCON + 4 - BFBOT - bottom of Q

U

XB <~ (BUFCON)

v

A€ NW
A& A+1
B4 A

A & BFW

COMPARE
A,BFR
WLR

A& A+ B

COMPARE
A, BF

FULL

V

A] B e‘ Q
RETURN

vV

—> BEXITP
— BFXIT1

A<= BFW
AGg= A+ 1
B A
A<~ 9
A,B%— A,B + BFTOP
RETURN

C B B BB BN BN BN B BN BN BN B B B B B A Y |

GO TO BFXITP

NO ROOM HERE

PAGE 2

X&— BFW

AS—§
BFTOP, * , X<~
BFW<&—{

GO TO BFXIT1

A,B&-0
RETURN

C B BN BN BN BN BN BN BN BN BN B BF B B A A A A A

PAGE 3

BFENQU

PUT IN Q

XB <~ /BUFCON/

A€— BFW

X€$— BFW

A= A+ W + 1

BFTOP, * , X&<—A
BFW&— A

RETURN

BFRELS
Release ITEM in Q

XB€— BUFCON

X<€— BFR

A&~ BFTOP, * , X
BFRE— A

RETURN

L BF BE BE BE O BF BF B B B BF B B B B B B BF B

BEDEQU
GET FROM Q

U

XB <—/BUFCON/

A &~ BFR

p;\\G E 4

N .
COMPARE EMPTY

A, BEW

RESET TO TOP

BOTTOM

BFR &~ A

A,B & A,B + BFTOP
RETURN

|

i

ARSI FESSSASANEN

BFDEQU
GET FROM Q

U

XB <~ /BUFCON/
A & BFR

PAGE 4

COMPARE

A, BFW

TES

(...

:»%h:—
f i
=

\’

RESET TO TOP

BFR ¢ A

A,B & A,B + BFTOP
RETURN

(

L

i

!

Set or incr
lock bits in
user page table
PAGS64, 1 is
ptr to entry

vV

Access page to
fault it into
memory

L

COPY HMAP ENTRY
from user page table
to Seg § page table

YES NO P750
v
N
L < TVAO L € UBUF
ITLB LIOT TVAO,*
LDA TVAO,* Load IOTLB entry

invalidate IOTLB
entry and reload
it with a STLB

miss

AV

page two

}

B BE BF B BE B B B BF_ B B B B B B B AF B &

UBUF < UBUF + 1024
TVAO <« TVAO + 1024
HMAPO < HMAPO + 1
X €« X+1
Y < Y o=]
YES IF
et
l/ NO
L < VAO
RETURN

page three

| UMAPIO)

(UBUF < PBUF*

Vv

TEMP <€ Virtual page.
of UBUF

|

CALL MAPNDX to
get address of page
map that owns UBUF

l

!

[X & ptr to page map entry

‘ Y< # of locked pages

>
v
[
IF YES
key is odd]
o v
Reset unmodified
bit in user page
map
o I
N
vV

_—

page two
YES IF NO
bit 15 of

\\\\\\\iji;ji/////////

Lock < Lock - 1 Lock <= §
in user page in user
map page map

e %

L B B B BN B B O BE O BF BE_ B B B B B B B A B |

l
|

V4

XX+ 1

Y&Y - 1
YES IF
Y >0

NO

PRIME CCMPUTER INTERMATICNAL

REFERENCE NOTES CN TEE AMIC

FREPARED BY: C PARTRIDGE

NOVEMEER 1278

CCNTENTS
; 1) Introducticon
I

2) Briaf description of the AMLC Systam

2.1 Tha Eardware

2.2. The Software

B DMX Transfer

2.4 Interzupt Processing
2.5 Softwara Implementation

3) Tha User Commands

3.1 AMLC

Ja2 ASSIQI/TASSIG
< et AMLETE

3.4 NUSR

3.5 NAMIC

3.6 TERM

4) Inner Details of the AMLC Software
Cverview

Phantcm Intarmimt Code
Basic Flow Through AMLDIM

I - -
wKN -

5) Handling Special Requirsments and Xacwn Problems
5% Kncwn Specials
S.2 RKncwn Prcblems

8) P300 Differsances

AEES S SaFESSNNSSNSN

1)

INTRODUCTICN

This document is designed as an aid to using and under-
standing the AMIC hardware and software.

The standard documents describe the use of the AMIC
related cocmmands, but a description of how the software
and harcdware works can cnly be found in intermals course

notes, which really require attendance con the course.

Many problems occur in normal usage of the AMIC due to a
lack of knowledge of hcw best to use the system. When it
comes to making a modification to the software toc adapt it

for a special requirement, all nature of problems occur.

The information contained in this doccument is split into a

number of sections:

a) A brief description of the AMLC.

b) The user ccmmands and what they do.

c) A more detalled view of the software.
d) Interfacing special devices and coping

with known bugs.

e) Differences on the 23C0.

The informaticn refers o the segmented architecture: The diffarencss

in the P3C0 are described in Section 6.

The details refer to the Rev 15 and Rev 16 releases of PRIMOS.

e e e S

EEESSSSSESfNESSSSSSSSN

ERTEF DESCRIPTICN OF THE AMIC

The Harcwars:

The AMIC (Asynchronous. Multidline Contxoller) interfaces
full duplax/half duplex data linas to a PRIMS computar.
Thera are basically three types of boards:

5002, 5004 half cuplex

5052, 5054 full cduplex .

5152, 5154 full duplex with QAMIC

The last dicgit rafars to the nurber of lines(2 = §, 4 = 16).
The half duplex' type ian't suppozted by standawd softwara.

A P3CO can handla 2 boards (not QAMIC tyrze), A P350, 400, 500
can handle QAMIC with a 4C0, S5CO expandablae to 4 beards,

Informaticn is transfarred by Programmed Input Outsut (2IQ),
intarrupt and DMX transfeax. PIO is used for setting states
or reading ccntzol words. Information transfer is achieved
on the standa=d board by DMC on input and DMT fof ourput.
The QAMIC beaxd uses DMC for input and DY for ocutput. The
speed of a line may be altared by scftware as can the

charactar format and parity.

The Softwara

The coooonents of the software for the AMIC are:

a) The AMILC driver AMIDIM (Segment 6)
b) Tha AMIC phantcm intsr=unt code (Segment 4)
c) The user ring buffers (Segment 7)
d) The input tumbla tables (Secment 2)
e), Thea éadicatad calls (Segment @)

The software uses two basic mechanisrs. The f£irst cne, DMX
t—ansier cccurs without direct software interventicn. The

second cne, interrupt orecessing involves a) and b).

The design aim is to reduce the overheads incurred with the
2nd mechanism because this software 1s of course consuming

CP pcowex.

2.3 DMX Transfer

This mechanism uses cycle stealing. This means that the

flow of executicn is not affected while DMX is going cn.
However, in the micromachine which is where the microccde
comprising each instructicn is being executed, thare is 2

temporary brezk to handle the DMX service. This microcede

= e A Al @ et

is known as firm wear.

Incoming characters from the device use Direct Memory Control.
This method uses a pair of pointers in memory to indicate a
memory area whers characters can be placed. Each AMLC board
has two such pointer pairs and memory areas (known as tumble
tables). At Cold Start, the AMIC board (the contxoller) is
loaded with these pointer pairs, and triggered. For a system
with 4 boards there are consequently 8 tumble tables. Each
+tumble table is 48 words long. Characters arriving from a
device are routed to the tumble table. The 2 byte (1 word)
entry consists of a line number and the character, or a bit
pattern in the line number byte to indicate a condition ie:
break. This process continues until the tumble table is £ull.
At this point, the controller signals this fact (interruonts)
and switches input to the other tumble table. This teggling
action continues autcm.atica;lly. ‘Tt is the respeonsibility of
the softwars to remove these characters befors the toggle

action overwrites the table.

Outgoing characters can use one of two mechanisms:

a) DMT (Direct Memory Transier)
- b) DM) (Direct Memory Queue)
g =

e m— Rk s s s s s

[8]
.
L

DMT is the most commeon machanism. Ia memory, a cell
is maint=ined focr edch line. The controller is given
the address of the call block. Each call is scanned
at the rata for the lina pertaining to tha cell, for
prasenca of a charactsr. If a charactar is prasent,
it i3 moved to the cutput davica and thae call clsazed
by the contzoller. It is tha raspensihility of the
softwars to fill the calls at a2 sufficient rata to
gatiafy the line spesd to which the call ralates.

" Thae second mechanism, DY is availabla on the 51 series

bocards. With this tachnigue, the dadicated cegll is
raplaced by a queta. It is the responsibility of the soft-
wara to tcp up tha qusue kefors the AMLC has extTacted all

the characters at the lins speed.

Intsrzupt Processing

Transfars to and £rom memory occur without softwars inter-

rupticn. It is the raspensibility of the softwars to ramove

tha charactsrs from the tumble tables at a fast encuch rata

and place characters in the dadicated calls or guasues t2

satisSy the line speeds. The sofitware is invoked by means

of intermupticn f£rom the contrcller. Each line on the cont=oller

has a flag bit called the Character Time Iaterrupt flag (CTI).

If this £lag is emabled then an periodic interzupt is generatad by the
AMIC at the rate for the line. The worst situation could be

every line going at 9600 baud with the CTT flag cn. In this

case it is unlikely that the CPU would do anything apart from

rurming AMLDIM, t=ying to servicas this interzupt rate. This

stata of affaji~s is avoided in a balancad system by using the

CTI flag in an orcdered manper. For inmput the CITI flag is set =
cn a particular line at a lcw rate. This ncminated line,
called the input clock line, (cne for the whcle systam) is set

to intsrript 10 times per seccnd

-4 =

l

At this rate, software examines the tumble tables and
removes the characters., This is fine while the input

rate is low (human type speed). A second mechanism
exists to handle the case where characters are coming

in more rapidly ie: a fast cevice sending in characters.
When a tumble table is full, the AMIC recognises this and

generates: an interrupt known as an End of Range (ECR)
interrupt. This causes the software to clear the tumble
table, hopefully before the other tumble table fills, . h
(which, of course, happens ncrmally). These two mechanisms

cope with the two extremes. The first one, typing a few

characters at cne terminal, ensures that the characters are
interpreted by PRIMOS and not just left in the tumble table
until an ECOR is eventually generated. The second one, flcoding
the AMIC with characters, prevents data loss except in the
limiting case whers the input rate is greater than the ability

of the scftware to handle it.

For cutput the CTI f£lag is set on a particular line at a faster
rate than input. This line is called the output clock line,

(one for the whole system). For the DMD case ¥ A single clock line

.

cantols cutt adirput. In the DMT case the software examines

e a4 g

the dedicated cells of 2ll the lines and fills up any that are

zero if characters are available. In the DM) case, the software

tcps up the gqueues if possible. This system is fine if the lines

are operating at the output clock line speed (or lcwer) in the

case of DMT. If it is desired to run the line at a high speed,

then two techniques are available. The first cne is to make the.

output clock line run at the high speed. The disadvantage of
this is that the amount of CP power reguired to service this
rate increases. At 9600 baud the CPU can spend a large
percentage of time (>50%) checking the dedicated cells, iZ

this technique is adcpted. The second technigue is to switch

on the CTI flag for the particular line. EHcwever when no 2ore
characters are to be transmitted, then the flag must be switched

off (otherwise the overheads arproach the first methed) .

- 5 -

A

-——— ekt mBA v

\

Y

o O it et el @i il e

]

|1

"“l (2

T R B

2.5

Normally the seccnd mathod is adopted. The first cne is
usually cnly chesen by accident. _With DMQ high spesd lines
are handled by increasing the size of the queus so that the
tcppi.nqcpczthaquauamtimasnmdcmccpa‘yiththa
higher rata. In practisa it 1s difficult ¢o drive a line
at tha maximmm rats of Eémbaudd::at::m:bim lcading.

Softvara Irplamantaticn

Tha pravicus sectiocn descrirad the scitware rachanisrs that

ara cperating system independent. In other words, the intarzTmpt
procassing is not dependant cn the type of operating system. If
the system has an AMIC btcard, then the scitware mostT perfcra ths
roquired sexvicing. This saction dascrikes tha scftwara ccoo-~

venticns adcptad by PRIMCS to intarZaca the AMIC 2 the rest of

the systam.

The first considaraticn is the eventual dastinaticn cf inccming
charactars and the stcra whers outgeing charactsrs resids.

Each configurad line (terminal users and 2ssigned lines) has an
imout and an ocutput buffer. These buffars are circular (zing)
and defanlt to 192 charactsrs on input and 384 charactars cn
cutput. Characters arrive at the input buffsr from a édevice at
the rata the davicea is transmitting. When the buffer is full,
echo back is disabled. User space pPrograms remove charactars
fvom the buffer using ncrmal input read routines. Characters
a=rive at the ocutput buffer frcm user spacs programs. When the
buffar is £ull, the user is suspended. Asscciﬁted with each line
{s a data word called the LWORD. This i3 used by the software
+5 datermine which buffar is being used for the line and various
charactaristics sat for the line.

-

Note echo is achieved in the sofiware nct in the .cont-oller.

S B Br BX BF BF B BF BB B B B B B B By B |

3)

3.1

At cold start time, a test is made to see how many boards
are plugged into the system. The internal tables are
adjusted according to the result. The last line is called
the group 1 line and determines the rate at which the tumble
tables are scanned. The next line back is called the last

line of group ¢ and determines the rate at which the dedicated

cells are scanned for output. In a DM) system, there is no
group 1 and the clock line becorwes the last physical line.

TEE USER COMMANDS

This secticn describes the commands that afZect the AMIC and

its associated software. The user has to be the supervisor

(system ccnscle) except for the ASSIGN and TERM command.

AMLC

—

This is the major ccmmand affecting the AMIC. It is issued

fyom the system conscle either "on the £fly™ or in the C £——PRMO

file. The format is:

AMIC (protocol line nurber onfiz)fword)
The variants are:
1) AMIC protocol line number coenfig
ii) AMILC protocol line numbex cenfig Lwexrd
iii) AMIC line number config
iv) AMLC line number config Lword
v) AMIC protocol line number

The protocol may be TRAN, TRANES, TTY, TTYES, TTYNCP. The ES

protocols invoke the CTI bit on. output. Consequent
than the cutout

ly these are

used if the line is being set to a speed greater

clock line. For DMQ systems 5S must not be used. The difference

between TRAN and TTY concerns the treatment of newline characters,

the parity bit and echo.

b o s e Sl b —————— o
'

. Ol

For TTY protocol carriage return is echoed for line Zeed,

bit 8 is set trua and the character is echced unless specified
otharwise in LWORD. TTYNCP disassociates the line fxom a user
spaca and it is used when:

a) A USRASR is being sat
and can b.’%i‘;'ﬁ =1 ac'nigvm e

b) An assignad line is being set up

In casa a) the. line baing no cpped is 2 less than the user
nucber. Casa b) is usually specified if transparsnt protocsl

is being used. The lire number is specified in octal. The
config word is a bit pattarn usad to set up line speeds, stop
rits and charactar length. On racaipt of the config ward,
PRIMOS isstes a PIO to the cont—oller to altar its stata. The
speed bits have 4 fizad spesds, a progracmed clock and 3 jumper
assicnable speeds. The programmed cleck is usually set to 96C0
baud. : The jumpers have to be set cn a ccompleta beoard basis.
Normally installaticns chcosa the intarmadiats speeds between
1200 ‘baud and 96CO baud. The DNCRD csntrols treatzent of
carriags return, echo and XON/XOFF. The right hand byte
datermines whather the line is asscciated with a user spaca.

To make a lins assignable, this byte must ba clearad. The exact
specificaticn of the config LWCRD bit pattern can be found in the

System Acéministrators Guide.

ASSIGN/TNASSIGN

This command is used when it is requirad to assign an AMIC line.
It isg issued frcm user spacs. It uses the same forzmat as AMLC,

the ASSIGI/UNASSIGN being placed beifore AMLC, le: AS AMILC etc.

LB N

Borame Bams & Baen s

LR R R R RERERE B E N KK _

a3

Two important points to note are:

a) LWORD can not be altered from user space.
b) Not specifying the protocol will default the line
to TRAN.

The implicaticns of a) are that features like XON, if set
up this way, have to be dcne on the LWORD attached to the
criginal AMIC command inpput at the system console. The
implicaticns of b) are that if a feature like XCN is
requizxed, then TIY or TTYES must be s.pecified because XCN
will not work under TRAN. For the UNASSIGN, an abbreviated
syntax is allcwed, i1e: N AMLC lineno.

AMLEUY

This cocmmand can only be issued at cold start f£rom the
CONFIG cdata file. It is used to change the buffer sizes

and the Queue size if DMQ is being used. Note, hcwever, that
the latter doesn't work under Rev 15. The parametars are
octal wards, so for buffer sizes, a conversion to decimal
characters has to be made, eg: a parameter of 10CO would

give a buffer of 1024 characters. The line number is also

octal.

Problems cccur if AMIBUF is being used to altar assicned lines.
The line number must be the next cne beyond the terminal lines
for the lst assigned line and the one above that for the next
and so on. This is because the buffer given to an assigned
line is taken frcm a pool residing above the texminal buffers.
The o:_::"'.er in which the buffers are given is determined by the
order in which the lines are assigned. The physical line is
not used for these calculations. Imagine a system where

NUSR = 4 and NAMLC = 3. The AMLBUF ccmmand must use line number
3 for the lst assigned line, 4 for the 2nd and 5 for the 3rd.

The line actually assigned is immaterial.

sl

LW N W SN G A

When using the DMQ parametex, the queua gize omust ke
calcaulated 27X, 43 K&16 If the queus size is less
than 16, then a machinae balt will occur.

3.4 NUSR

e

Thia command controls the nuxbar of terminal lines ccnfigurad
#or this seesicn. NUSR rust be placad in the CCNFIG data
#1le. NUSR which is cctal, rzpresents the pumber of users

including tha systam usar.
35 NAMLC

This ccmmand controls the nuxber of available AMIC lines.
suffars are lockad acccrding to the combination of NUSR and

NAMLC.

3.6 TERM

This ccmmand alters the characteristics of the AMIC £rom usar
space. It makes the LWORD bits availabla at user spacs, in
particular XCN/XOFF and duplex. TERM will clear bits 4 - 8

of LWCRD so, if these bits have been used by 2 modified system,

then cars must be exsrcisad.

4) TNNER [ETAILS OF TEE AMLC SOFTWARE

This saction is intended to give an indepth view of the sofare.
£ it is requirad to hang devices on the AMIC or mocdify the
scftuyare for specials then the imslications of deing this have
to be. understcod so that unpradictable side effects axe not

experiencead.

= 10 =

e ey

1

b

e o

|||F*'|||? lll'k IIII“h III' IIII IIII IIII |III -I'I' ill' JII’ |‘I' |II' I‘I' l'l’ lll’ lll’ |‘I’
i

ol

Overview

The most important mcdule handling the AMIC is AMLDIM.

This modula runs as a complete process and has its cwn
semaphores to centzol the character flecw. AMLDIM 1s

where control goes eventually when an interrupt is received.
This module uses a number of other modules:

i) FMLIOB (From Logical Input Output Buffer).
This module is resconsible for cbtaining
characters £rem the ring buffer and passing

them to AMLDIM.

ii) TOLIOB (Te Leogical Input Output Buffer).
This module is responsible for placing
characters in the ring buffer (either input

or output).

ifd) BUFCHEX. This module examines the ring buffer

to see if there is rocm for a given numxber of

charzacters.

The code that handles the interrupt is contained in SEG 4.
This code causes the interrupt response ccde (IRC) to be

invoked.

Phantom Interrupt Code (PIC)

When an interrupt is received by the microccde, control passes
to a location in sagment 4. The current PB register and XEYS
are saved by the microcode and the code locatsd in segment 4

is executed.

- — i A et B s it -

For the AMIC this ccde consists of 5 instructicns. There
are 4 OCP instzuctions and an INEC AMLSEM. The OC?
instructions clsar the AMLCS inter>upt mask and disable
any furthaer interrupts., The INEC is a procass excharge
instruction that:

1) Notifiss the semaphora AMLISEM and placss tha PCB
cn that semaphora on the end cf the rasady list at
correct lavel.

11) Issuas a CAI cperaticn which frees the backplane

of the C2U for further interrurots.

The cperaticn parfocrmed in 1) means that the AMLDIM process
which, in idle stats waiting on AMLSEM, gats movad cnto the
reaédy list by tha dispatcher (a miczoeode coperaticn). The
positicn it occupies an the ready list is governed by its
laevel, which is 2 for the AMIC. Only the clecck and SMLC
are hicher., The significancs of the end rositioning means
that if other processes wers on the same level, then the
AMLDIM process would be placed at the end of the chain.
Howaver, as AMIDIM is tha only process at this level, this
is of no significance. The level is set in the PC3 at
Systam Startvp. The dispatcher then either schedulss the new
process (AMLDIM) if it is now at the highest level or, else
continues wish the curreant process. The lattar will only

cccur if the current process is the cleck or the SMIC.

The end rasult is that tha AMLC gots serviced very rapidly.
When the AMLDIM process has finished, then the dispatcher
schecdunles the next process in the ready list. This could
be the cna that was inter—vptad oxr a higher one if another

interrupt had occurzed atter the AMIC one.

_ : _ 1LadLagd

(g0110vd 131) i :

- g0 v &,

Jave . N
R R L 4 b TN A 7
Jyo ; . ¢
%.QHQQL. 772 | Mmnge GIQ_ !
] 1! .]
. |
s Aq&.&» .:Sﬂ _
ol e e A G VR I TG Y3140 0 R o NI R
74 45 '
_ .
P :
! yo3 dnad?) :
: No sditd : .
I . : I |2
: % wirs0ll ;,..Soaw I
| : A jonor 21¥2))
(] .H '
G .m P ydv _ hit
goriwd 11y 991 |
NasSing Livm s3arovL I
! 770 Wnl ! F:&QH
' . |
| !
' I
_ | Ldavuarnt ,.__. NoJ
v35M WId Y gty Y 377?720Y
3 _ _L c\mﬂ

Jor7olL 11V2

goriwd 1)
has4ing LlvMm

visn

A gartor 1y

(301105 117)

yave

w310
104 41

MIr?0l A0
A 9oroL 71k

yavl

4

ol

D
O]
0

51732
qILyn43a

a1

wIid 7|/

tdnyuarwl

g

nm.qic_.
770WNL

jrn

LadLad
: | dnowy? A S
71
_ m
|
|
* - - -
]
4 5
dagy? .
——y—
——
! N u \
]
st i

radnT

Y 377270YL No?

. Y iall ,) |
T E R E R R R E S ST

e e s . e e Ml .+ I | I._...-.‘.ll. . . . ‘

BB B B N N N N N N

Basiec Flow Through AMLDIM

Referring to the diagram, the basic flow starts with the

& spatcher (microcode) giving control to AMLDIM. After
the lst interrupt, after cold start, the process (AMLDINM)
is always cn a WAIT instructiocn. The first task is to
identify the controller that interrupted. These tests

are performed in Rmode because PIO cannct be performed

in Vmode. Any PIO instruction is converted to an EIO
which cccupies 2 words. Failure to find the interrvoting
controller causes a HALT. EHaving identified the interzupting
controller, the status word for that controller is input to
determine what type of interrupt occuxrxed. Three types of

interrupt can occur:

i) End of Range (ECR)
ii) Character Time Interrupt (CTI)
iii) Multiple CTIs
Case i) is indicated by bit 1 being set (the sicn bit)

Case {i) is indicated by bit 9. Bits 13-16 indicate the line.
Case iii) is indicated by bits 9 and 10.

Case iii) occurs if a 2nd CTI is generated before the INA

instruction is issued to get the status.

I£ none of these cases is detected then a WAIT on AMLSEM is

issued and the dispatcher reschedules ancther process.

Case i) EOR

Control is transferred to AMLIN. The correct tumble table is
located and the table IRADR is used to referencs the input

protocol. IADR has one entry per line which points to a orotccsl.

e

- ——— — s

. . L] . - .

Tha cdafault set up is TTYIN. The AMIC cocmmand medifies
the tablae according to tha protocsl named. The suﬁsc:ipt
to point into the corract entry of IADR is cbtained from
ths line mumber held in tha tumble table. Contzol is
transfarred to the appropriata protocol.

Thera ars two basic irput proteccols:

a) TTIIN Telstyre input
b) TENSIN Transparent input

The purpcsae of the protocol is to exarmina the inceoming
character and maka adjustments accsrding to the specific-
aticn of tha protcesl. r case a) a test is mads to s=e
if its a break character, - If not then tasts ara made to
see if XCON has been enabled. The character isg writtsn to
the input ring buffer using TOLIOB and 1f echo is required
then it is also writtean to the cutput ring buffer. I£ the

input ring buffer isg full, then ro attemtis made to wzite

tha charactar away and acho is disabled. Consequently, if

tha input ring buffer is nct cleared, character lcss results.
For case b) no tests ara performad except icnoring braak.
However, - the charactsr will not go to the imput ring buffar
2L 1 $9 Coll.

Both protocsls NTFY the semaphore of the line so that a user
procass waliting on the semarhora will be placed con the reacy

list.

Even though cnly cne ECR was generatsd, all the turble tables
are cleared while this scan is being perforzed. At the end of
the lccp, the AMLC status is examined back at AMLDIM to see i
any other intarrupts had occcurrad (using the same status word
containing ECR). If none exist th n a WAIT cn AMLISEM is issuad
and the dispatcher gives the C2U to the next user con the ready
list.

- 14 =

i

Case ii) Character Time Interrupt

On detecting a cha.ract..r time interrupt has occurred, a '
test is made to see which line caused the inte*runt. I ;
the line is the input clock line, indicated by its GFLAG

being set, then extra functions are perfcmred. These are: o

i) Testing for loss of carxy. The state indicatsd by
a bit in the data set word word for the controller.
the DTE (data terminal ready) is d¥cpped for these
jines. If carry has been drcpped and DISLOG is enabled
then an abort flag is set in the process abort word of the
PCB. This is done at the half the cleock rate (consequently
usually 5 times a second). Dropping the data terminal signal
for lines that havs lost carxry.

ii) This occurs every 3 minutes. Eowever, prcblems occur with
this; see secticn 5).
Every 3 minutes DIR is drogped for all lines that dont have
carry. This caters for the case where lines that never had

czrry, e.g. modem lines, are accidently engaged.

i1ii) AMLIN is called to clear the tumble tables as for an

EOR.
Then AMLOUT is used to examine all the dedicated in the cuxrent group

(@ or 1). The mechanism used to do this is to check the cutgut ring

buffer to see if any characters exist. £ thers ars charactars
present then code is entered{depending on the ceatroller type). For
the DMT case, the dedicated cell is examined and if it is empty, then
the OADR table is used to rransfer control to the output prot tococl for

the line. The default output protocol 1s TTYOUT. Others available
are:
. a) TRNCUT Transparent

b) TREOUT Transparent highspeed
c) TIEQUT Teletype nighspeed : ;

laE R E R EERNENAE

The main differenca exists between the high speed and

the normal protccols. The high speed protccols use the
character time intarrmupt bit to over-ride the s.‘.cwe:.
speed of the group clcck rata. If thers ars mcra than

40 charactars in tha ocutput ring buffar then the CIT bit
is switchad cn. This of coursa causes interzupts at the
rata for tha line. When thara ara lass than 40 charactars,
thae CTT bit is switched off and tha dadicatsd call is ra-
plenished at the clock rats for groun zero.

In the [Q case the quaue ig examined to see if it can take
any mors charactaers. Becausa DM systems do not use high
spead protocol, the intsrmimt is caused by the last line of

groun zaro which cccurs at 110 baud.

The routine FMLIOB is used to obtzin a charactar and place
it in the desdicated cz2ll for tha line or at the bottcm of the

cqueue for DMD.

-

When a2ll the lines have kesn serviced, a WAIT cn AMLSEM is
issuad.

Casa 1i4) Multiple Charactar Tize Interructs

The cnly diffarsnce between ii) and iii) is that the AMLIN
locp is executsd prior to AMIOUT. This is dome becuase there
is no guarantee that the multiple inter>upt dida't cccur on
the input cleock line. The AMIC status word cnly contains the
line number of tha last interzupting line.

- 156 -

5)

5.1

EANDLING SPECIAL REQUIREMENTS AND KNOWN PROBLEXMS

Often it is necessary to interface special cdevices to

the AMIC. It is important to be aware of the conseguences

of éoing this in terms of the effect on the whole system
apd the effect cn the device.

Known Specials

a)
b)
c)
d)
e)
£)

a)

XCN/XOFF for input devices
Buffered devices for output
Page mode devices

Cassette Input

Adding new protocels

Interfacing DMD boards

XON /XOFF

In the standard AMLC scftwares XON/XOFF is supperted on
cutput. This means that when the feature is enabled,
sending an XOFF to PRIMOS suspends cutput and sendi.ﬁg an
XCN resumes it. However, some devices used for input,

such as cartridge devices, will resgond to XON/XOFF. This
is designed so that the device can transmit data at hich
speed with the softwars stopping the device when its buffers
are full. The modification to PRIMCS is fairly simple and

involves:

i) Testing when the tumble tables are being cleared to
ensure there is encugh rocm in the input ring buffer

to held the data.

ii) If the buffer hasn't sufficient rccm then placing

an XOFF in the output ring burffer.

- . AR T S &

. e S

b)

114) Testing the stata of the irnput ring buffer
if an XOFF had been sent to see 1f transmission
can be re—enabled.

iv) If transmissicn czn ba re-enablad, then placing
an XN in the ocutput ring buffar.

Invoking special featurss can ba achiavad by making use
of spara LWOSD bits. The main considaration is to enzure
that extra coda doas not incrmasa the ovechsad in AMIDIM
C®U usaga. Ccnsequently test 1) is the cnly cze that
needs to be placed in the interzupt ldop. Test 1ii) can

be placed in the low interztopt rata locp eg: carzier loss.

Bufferad Davicas for Outout

Scma cutput davicas, such as plottsrs and printers,
indicata when thair intermal buffars are full, by setting
an interface line (the busy signal) . The standard AMIC
£54 czn demct this on i~ 8§ & mie the state of the signal
available to the software. Interfacing AMLDIM to these
devicas can be achieved by:

i) Incorporating a special test in AMIOUT
ii) Adding a new protoeal

The modificatieon i) is straightforward but cnce incorporated,
gives the device to a specified line and also inveolves an .
overhead in AMLDIM, even if the davice is not being usad.

14) is a much mere satisfactory soluticn as it is line
indapendent. Caze must be exercised when adding this

modi fication that all the precauticns are cbhserved wnen

perZcrming the I/0 required to read the AMLC status.

& 18

[.

c) Page Mode Devices
Page mode terminals are those which transmit a whole

screen of information in cne burst. This causes a

large quantity of information to be sent to the tumble
tables. If there are a number of page mode terminals
connectsd to the AMIC, then there is the danger that the
tumble tables will not be able to handle the input rats.
Consequently, loss of information will occur, wiich
necessitates increasing the size of the tumble tables

in segrment @. The main consideration is to ensure that
the disk driver still resides at location 14C0. It will
also be necessary to increase the size of the input ring

buffers using the AMLBUF command.

d) Cassett2 Input

Cassette input devices are similar to page mode devices,

Lol B _BF R0 BN NN SY B N 1

in that they transmit burst mcce packets. Consequently

the size of the input ring buifars will need to be
increased and the tumble tables may need to be increased.
1£ the device resconds to XON/XCFF, then the consideraticns

in a) need to be bornme in mind.

e) Adding new Protocols

Adding new protccols is a fairly straightforward process.

The tables in NLKCOM will need to pe adjusted to reference
the new protoccl name (as input with the AMILC ccmmand) to

the driver name in AMLDIM. The new protocsl code will

need to be added to AMLDIM using the gic contained in the
existing protocols ie: use of TOLIOB and FMLICB to manipulate
the characters. The only other important consideraticn is

+o ensure that the generatesd ccde dcesn't overflcw the page

boundries set up in MAPGEN.

10

.

£) Interfacing DM) boards

Adding D boards to the standaxd systam causas no
difficulty. The préblem comes when a special addition
has to be incorperatad. The DMQ conly affacts specials
that raguire suspension cf ocutput basad ca cartain
requirsments. The length of the quaua must be taken
ints account because suspension of transfar from the
ing buffar to tha quaus doesn't affact tha I coing
£from guaus to. tha AMLC. It is tharafora necassasy to
pack cut the quaue with null charactars which éen't
gat sant to tha davica.

5.2 Xnown Prchlams

Cartain kncwn problemsaexdst which can be got rouzd by usiag cartain
t=chniques.

If forcad logout cn disconnect is configurad (in the CONFIG £ila)
direct connect davices may be logged out. The cbject is to éxop DIR
(Data Terminal Reacdy) on lines with no carzier. EHcowaver this is done
by pratending all lines hava carzier. Any line that never had carxier

" (ie: a dirsct cconectad lipe) will be fozce logged cut. The solution

Zor devicas that generata DTR is to use cabla tyse 1470. Fox devices
that do not generate DTR strap DTR from the AMLC t2 caxziexr., For the
system console being cperated as a USRASR tarminal, tha carzier must

appear high on the lins that corresponds to the buffar being switched.

The altsrnative is to saet the LWNCRD to Zaro.

If forced locout on disconnact is emabled, then cutput 22y not ba
turned on. This is because the logout messaga is attexptad before the
LWORD is changed to allow output (ie: the buffar number insertad).
If the ocutout ring buffer is full then the procass (user) hanges on 2

semaghcra. Message all ncw can cause the ring buffer ts £111.

f"l'.L| s

1

Wi

O B SN SR G N R AR SR O OGN N A AN AN A O A

.

6)

Unstable carrier can cause problems such as randcm disconnects.

roblems can occur with UK Modems because noise on the line may
cause the modem to think carrier is permanently high. Carrier
hich with no cne logged in can cause a modem to beccme permanently

engaged by a wrong number.

Tha maxdimum size of all ring buffers (in total) must be less
than 32X werzds.

P300 DIFFERENCES

The mechanisms used by the AMIC harcéware are independent of systsm
as the same controller is used throughout. The main difference

between the P3CO and P4CO concerns the segmented architecture of

The AMIC ériver AMLDIM doesn't differ significantly between the
P300 and P40O. The tachnique of tumhle tables, dedicated cells

and ring buffers applies. DM is not available cn the P3CO.

The most important difference concerns the way the code is entered.
As thers is no process exchange mechanism, the interrupt address

is the entry point for AMLDIM. The DMX memory areas exist in the
same segment as the driver. The ring buffers exist in a psaucdo

segment which is addressed through the memory mapring tables.

The parameters of the AMLC scftwars are fixed and changes can
cnly be made at source level. The most comzon change is the
buffer size. This can be achieved by modiZying the medule TFLIOB.
The main consideration is to ensure that the centzonics buffer

start address is located on a page boundary.

-

S s s

1

sl el

']

The suspensicn of users is achieved by a state vector.
This means that i€ a user requires input, he will not
gat access to tha ring buffer until a time slice iaterval
(mliks PRIMCS IV) whare he will be waiting cn BUFSZM and
get put ca tha zzacdy list by AMLIIM. This of course has

conseguances when sarvicing fast davices.

I/ I0FF iz pot imolowentad in tha stapdard system,
althouch insartion of the ccoda is fairly straichtforwazd,

S s

AMLDIM ENHANCEMENTS

, BUFFERED PROTOCOL (REVERSE CHAMNED)
- LWORD BIT-5 SET-DETECT BUSY
BIT-6 (USED ONLY IF BIT-5 SED
ON - IF DATA SET SENSE HIGH ISSUE XOFF, ELSE XON-
OFF - IF DSS LOW ISSUE XOFF, ELSE XON
. TRANSMIT DISABLED WHEN BUFFER EMPTY 5 SECONDS,
. DTRORP CONFIG DIRECTIVE AND DROFDTR COMMAID,
. BUFFER OVERFLOW DETECTED USING NAK ("225) CHARACTER.,

IF ONLY ONE CHARACTER SPACE REMAINS IN THE INPUT RING
BUFFER, A NAK WILL BE PLACED THERE, A SUBSYSTEM CAN
CHECK FOR THIS AND REQUEST A RETRANSMIT AFTER ISSUING
A CALL TO BURCLR,

. PARTTY ERROR DETECTION S
IF BIT 8 OF THE LWORD IS SET, AMLDIM WILL REPLACE ALL PARITY
ERRORS WITH A NAK CHARACTER. THESE MAY BE HANDLED AS FOR

F

l I — I } L] — N - _/ — — ks -
’.
\ | ‘
P - S et S S fan gl ST I
¥
s - e - s PR Ty G >3 gy S
Syirem lwit : e
B, . e o — - —-| p-Verry - | ——- .- — r— -
- & 3
o ki S colye s —_— smmee- S — e R s e -
-’- - = - — - - —— e — - - ——— — — ——— - . —
CDHTRG:, ?ALKL .
- —— - o _— —
Dtﬁl’ﬂ“mﬂsg
PRotess Xc_m = ==
"._
‘”T?RRUPTS
- — — — i —— —— - - - - i
: !
wa[BB, e . Eals % .oae T
2 e -y A J =g P. PeaC.EDu-F“ Casc OTuer l NOT‘;‘Z
i
o M!ﬂ“y Féﬁ; e -Lo.ﬂ-ft-ﬁli : : o2 = 0 _‘ e o < :.,:!T‘;."
- ::-q._ - e -’f; § e j __.:4
Y T 7 Y

v-Mcde Register Description:

I
SCRATCH DMX CURRENT REGISTER4SET (CRS)
RS2 RSl RS2 RS3 =
ADR HIA LOW ADR HIGH ICW4 ADR ADR HIGE % LOW

TRE - 8 - - 19090 140 GRE:QLT2 -

TR1 - 41 - 181 141 GR1:PTS- -

TR2 - 2 - 182 142 Gr2(1,A,1d) (2,B,LL)
TR3 - 43 - ~183 143 GR3(EH) (EL)

myOO W H®
>
I

4 - 194 144 Gr4
TRS - R - 185 145 GR3(3,5,¥) =
TR6 e 46 - - 186 146 GR6 -
TR7 - 7 S - 197 147 GRr7(8,X) -
18 rRoMX1 - = - 119 158 FAR1(13) -
11 RDMQ2 - 51 = - 111 151 FLR1 -
t) - RATMPL 52 - - 112 152 FAR2(4) (5)
13 RSGT1 - 83 = - 113 153 FLR2:VSC(6) =
14 RSGTI2 - . S o - 114 154 PB -
15 RECCl - 85 - e 115 155 sB(14) (15)
16 RECC2 g 26 = 116 156 LB(16) (17)
ay - REOIV -7 A - 117 3i51 X8 -
20 ZERO Q& 60 (28) (21) 128 168 DTAR3(18) -
21 PSSAVE - 6l = - 121 161 DTAR2 -
22 FRDMX3 - 62 (22) (23) 122 162 DTARL 1
23 RDMX4 - E - 123 163 DTARY -
24 C377 > 64 (24) (25) 124 164 KEYS (MODALS)
a5 - - s - 125 165 OWNER e
26 - - 66 (26) (27) 126 166 FPCODE(1l) o
27 - - e - 127 167 FADDR (12)
38 PSwFB - 78 (38) (31) 138 178 TIMER o :
31 PSWKEYS 1 5 - 331 Sl = -

|
|

32 PPA:FLA FCRA 72 (32) ((B3) 132 172

33 PPB:FIB K28 73 - =3 1/3 = -
34 DSWRMA - 74 {34) {(35) 3134 174 = -
35 DSWSTAT = i3 = - 335 Yo = -
36 DSwrB - 76 (36) (37) 136 116 = -
37 RSAVPIR = i - 37 Ve - -

NOTICE - Numbers in parentheses () show P399 Address Marping

Pefinitions
TR Temporary Registers

TR7 - Saved return pointer on a crash (autcmatic save)
X Register IMX o

ROMX1 - Used by I¥C, buffer start pointer
ROMX2 - REA at time of I¥X trap
EDMX3 - Save RD during DMQ
ROMX4 - Used as working register
RATMPL Read Address Trap Map to rP Low
RSGT Register Segmentation Trap
RSGT1 - SDw2 / ddress of Page Map
RSGT2 - contents of Page Map / SDW2

L 11 g

L2

OB -

Register End of Instruction Vector
Constants : !
Procedure Base SAVE -zl
saved return pointer when return pointer used elsewher _“‘
Constant “ -,
Processor Status Word Procedure Base ==

return pointer for interupt return (also used for Prime

308 campatibility) :

Processor Status word KEYS :

REYS for ‘interupt return (also used for Prime 398 campatibility)
Pointer to Process A

Pointer to Level A

Process Control Bleck A

Pointer to Prccess B -

-

- Pointer to Level B

Precess Contreol Block B

Diagrostic Status Wozd RMA

RMA at last Check Trap

Diagnostic Status Word STATus

Diagrnostic Status Word Procedure Base
Return pointer or PBSAVE at last check
Register SAVE Pointer

Location of Register Save Area after Halt

General Register

0ld Length ard Type

Pointer To Sign

Field Address Register 1

Field Length Register 1

Field Address Register 2

Field Length Register 2

Prccedure Base

FPBH - REH

BL -8

Stack Base

Link Base :

Temporary (auxiliary) base

Descriptor Table acdress registers

See below

See below

Pointer to FCB of process owning this register set
Fault CCOE

Fault ACDRess

l1-millisecond process timer (used for time-slice)

e

.;{

V-Mcde Register Usage:

2ddress

STLR/

ILDLR Trap
- 7
28 : |
2L 2
3 H. L -
S H 3
7 H %)

18 H 23

18,11 -

12.13 -

22 H 4

12 L B

13 H 6

13 L -

14 B,L -

5 8.L 14,15

l6 H,L 16,17

17 B,L -

29 H 18

28 H,L -
21 B,L -

22 H,L -

23 8,5 -

24 B,L -

29 52,5 -

26 H 11

27 8,L -

27 L i

38 H -

F
|
_%

AL T

Usage

P (program counter)

A (accmulator, high half of L)

B (double-precision, low half of L)
EH,EL (accumulator ex..e_nsmn for MPL
DVL)

Y (alternate index), S (stack)

X (index)

(field address and length
register 8)

(field address and length
register 1)

(floating accumulator, mantissa
high)

(mantissa middle)

(exponent)

(mantissa low, double-precision)
PB (procedure base)

S8 (stack base)

L3 (linkage base)

X8 (temcorary base)

(high half of DIAR3)

DTAR3 (descriptor table address
segments 3£72-4895)

DTAR2 (segments 2948-3871)
DIAR] (segments 1824-2847)
DTARS (segments B-1823)

keys, medals

CWNER (address of process cmtol
block of process ownirg
register contents)

FCODE (fault ccde)

FACDR (fault address)

(fault address word number)
process 1824-microsecond c.p.u timer

1

v i

3.

u awed,] aded

Z awed,] aded

1 Pwexq aded

0\

16119 4q
2001 pu

11e)s proo
1910 218 3D]A3P

pd uo syuawidag

e

ze

Alowap ujely

omaw

AL

> Juawdag

28 .w;

a0e]

q Juawdag

A
a8e,]

ade

R JudwWidag

ao1aaqg Suydeg

o =l pm oae
m -

uiyiim aoed E:.ﬁl: wouaj surddew ~

Kiowoy [eniITR

—

915.149 Aq Ajjeatweudp pateaad ad1aap U $5320dd
dujded o) yuawdas jenyaja y
woux) Juyddew e g
4 v 1
1 L
- - - N -
- e adeg | adeq
V4
A.I e ew e e il
e B I PO, — o
oo T = B o
A..n..n....ll.l.l .ll..l..r.._..........}............... e adny aduy
- = P
o 2 e

Kiowap 1enid|p

{1 $83201(
g,
~
/.!
\
< \ / Z 1
< LY = ¢« s 3]) aldey
” I-...-r..lllll..ll[lfl.lﬂuol.f
g -
e e o e oww o ~
” ,
3 \
< z 1
oa_o uma Umuﬂm

Kiouwapy (enixt

v sf

4
juswdag

ﬂ_
juawdag

q
juwdag

v
udag

by ! v %kl
S3yaay sida ¢
dVW
h9+
1 S
39vd j
ANOW3W dVYWH
BUED : . GUOM
¢ .
Tl aous _ HOLJ1Y¥IS3a INIWO3S
_”
J7avL YOLdI¥dS3a INIWo3Is
(*D3y\SSIAAV 3TAVL ¥OLdIYIS3Ia) uvid
uvia 20
ssyaay
1 gz
| <
T . | il
P ~ 39vd NIHLIM SS3yaay , , S , ﬁ_rd
Pl LSS O §an | 30vd 4 INIWO3S
{ .
e , .
———— o

Bl e s s o

‘3 10 11 16 o

e | s
Etae ol ~<+——WORJ PAIR
e 17 18 32

1-10-#0PBTIRI:'SINSDT

11 - 32 - HIGH ORDER 22 SITS OF PHYSICAL ADDRESS (LCw ORDER BIT TAXEN
AS ZERD SINCE IT ALWAYS ACCESSES A WORD PAIR IN SDW.

SOw
o ‘wth mrn aib'e
. L v .
Wl
- TS
v cpT e e -
- wh. -
S s
-

-y

“
LS
i

.
4

e o pu b
S

e SOT
i fibi _
- - [o%
;
e : UP TO 128 YORIS
S 64 ENTRIES
sT™
1 10 11 16
PMATR -HI M=7
Flaa [2m8 | oo | pam -Low
17 18-20 21-23 24-26 27 32
2TTS 1-10127-321 = PHYSICAL ADDRESS OF PAGE MAP. (MUST BE ON A 64K BOUNDARY.
- BITS 13-20 = SPECIFY THE RING RIGHTS FCR RING 1
BITS 21-23 = XESEXVED FOR RMRE (®ing 2 nawts)
BITS 24-26 » SPECIFY THE RING RIGHTS FOR RING 3
SOTE: RING 0 ALMAYS HAS ALL ACCESS RIGHTS.
&
Sl
ey A
(“
-

[

HMAP ENTRY
s sy gt
Gl S5 8 - 16 :{
e e '--E
= - V{R|U|S PHYSICAL PAGE 1 -
T T e =
p vv‘
'y - YALID = PAGE IS IN MEXDRY
R - REFERENCED = PAGE NAS REFERENCED
U - UN-MODIFIED = IF THE PAGE HAS BEEN MODIFIED,THIS 2IT IS 0
ptobqbl
S - SHARED BIT = RESERVED FOR FUTURE MILTI-PROCESSOR SHARING I i . &
' ¢ P$507
RITS 5 - 16 = 12 BIT PHYSICAL PAGE {
A '-""-:"-‘Z-'"-‘-‘
hgiator! L -
SR S ¥
e -_.._'E"_'_H- 2EE

)
=5

. e

1ocx § = IF 0,PAGE NOT LOCKED
+0 OLD = N0 OLD COPY EXISTS CN DISK,IF BIT SZT
ALT = USE ALTERNATE PAGING IEVICE

RITS 5 - 16 = DISK TRACK ADDRESS (INDEX TO 8 PAGES)

T A .-.-‘_ ..

W LS A
»s . .
* ARy

.----'_-_.'_é--

Ir-/o

e .32 34 5 16
T [Ix[®o[ALT| DISK DNDEX TO 3 PAGES
i |4 PLD{PIV

Bt
et
. * =

L USSR

W',

'l"""&; ~

{

SEGMENT SHARING

!
-

- DTARs O and 1 are shared by all processes. =
They are not altered on a process exchange. 3

Il'ill'

Thus all processes hsare the same segments
numbered 0...3777 (octal). =

- Tach user has his own private settings for
DTARs 2 and 3 stored in his Process Control
Block. These settings are swapped on a
process exchange.

Thus each user can have his own individual
segments numbered 4000...7777(octal).

- But segments in DTARs 2 and 3 can be shared
too. This happens when two (or more) users
have segment descriptors pointing to the
same page table.

This form of sharing need not be system-
wide, and the segment number assigned to
the shared segment need not be identical
in all processes.

This type of sharing is not allowed under
current release of PRIMOS.

OPERATING USER
SYSTEM APPLICATIONS
DTAR O DTAR 1
(0..:17777) (2000...3777)
SHARED operating shared editor
system code shared libraries
DTAR 3 DTAR % 2
NONSHARED (6000...7777) (4000...5777)
per-user normal
system tables user code _~

TYPICAL DTAR USAGE

I -1
-

STLB

I (IOTLB)

SIMPLIFIED DATA FLOW

(seaent #=10)

; v e .‘-"_..

!
if
{; PID R | sec# |pace #|wp #
- NNt (B S S |
STLBI
ADDRESS TO
STLB |
(0-63) PHYSICAL
PAGE
#
' > PHYS PAGE

STLB II SIMPLIFIED DATA FLOW
(seaMeNT # # 8)

5
.
i
] -
:_ PID R | sec# PAGE # WO B
1
INDEX PHYSICAL PAGE NUMBER
&
\
.4
1 oF B4 LOCATIONS
F?) > COMPARATOR
: HIT
N MISS
NOTE 1: F1 AND F2 ARE HASH FUNCTIONS =
NOTE 2: [F MISS EXISTS. MAPPING FUNCTION 1S PERFORMED ACONG WITH

HAS FUNCTION F2. PHYSICAL PAGE NUMBER PLUS HAS F2 ARE
wr1TTEN InTO STLB. -

CACHE (P350 - PE30

VIRTUAL ADDRE

)

SS

R | sEG#

PAGE #

ADDRESS
INTO CACHE

(0-1023)

PHYSICAL
PAGE # INDEX

FROM STLB

COMPARATOR

HIT/MISS

DATA WORD

LA] g

HEHMORY
ACCESS

5

R RITL JWDEX
LNITH wWEw ”1.11

WATT Fof DATA
FROm ®EmoRY

L’ FRom MHEFORY

WRITE DATA

IWToe EACHE

SET
vAL1D- BIT

et |
ADDR . CACME ~HTmORY - -
ST s L TAWESUSLY =F
HEMORY AT
e LS8
| I T = o
ADDREST [LWp2D-wumdl
RESET
YALID -8IT
VALID-BIT
WRITE TATA
FROowm <CPu

DATA FROM
CACHE TO
cPy

Ire HE0R2Y

(K
I g

3-1-31 ¢

INPUT - OUTPUT ¢

—

JL -

P

i e 10 11 16
TYPE 14 | FUNCTION DEVICE SELECTION CODZE
:&
L 00 - OCP N
£
UP TO 64 DEYICES
: : 10
01 - SXS
10 - INA
11 - OTA
DEPENDS UPON
DEVICE CLASS.

g T e

N

PHRN IDIAIQ
“TaE N
g BT "By
W, n s
._._ +§&¢P€D 9 i pg dUnwm— oy B
”LN I-UZ/JQ Aw\ MH_O 5.
An0o 1uQ X —Q QO\Wd o i
/ : |
SIS OWHIGY =)
| e AG3goan Y| .
529 ird ANnO L i
~ . 91isaaga
9 / N \ : \... i :
IWAWING 57 1Nd Ny T oamﬂv ”.
HIQUIY [H eIy . el
Q34D : 2 QId 246
ERHC AR EN Wad| 309> |50 i
e L (e (TN | s] e Nn=1-_ Uda]
_ S)
(et xoFa. O]

|

g

. :("escr:plc:on s

-t IR U_EQI'ET\GH

A. DT - Dlrcc.'l memory transFer

3 :.on{rnllcr aupplacs Memory Addres
Jlrlc‘:]r; Fastest or oll DM

-
-

L

B. -Dn_}ﬂ - Dlrt:‘!‘. Memory ac::ss; c‘.on!:roucr Supplﬂ.S'

-

“C.Ll:nnc \ numktr.

to C.PU; CPU accessas a pair of loecatians 1n Re.y.s’te
Fle which will supply -RANGE and STRRTING LochTiON

for 'i'nnsﬂ:r-; 8 channels er ‘Dmﬂ; glawser am DmMT
F’e-s. Files locztions 20—37 reserved fFor DmA

‘ 12 13 14 15 1L) €7
1Y Lacstion 2's Comp. aF Rinse 99 oo e B e
/"‘" e . e

F 4

Rangt 2 Number or Werds s be "'Fan:Ftrrc:l (41’*
99 oo = Htah order ‘Sddress bsLb {a 2lleows

tramafers :hyu.a".crc. within 256K
et 1 I
vy
[
]

Star*l-: Addrass

2 g Lecation

- - -

LB;’:S ISFIL eF 1"* Loul-m-. exl’:ncl ';J_.lrcs.s -Lo
e — _

G DINC = Dafgg‘l‘ mhﬂo-zr Cl'n.'nnt.lg C,M'Cv-autr_ S‘upplncs “C-‘Hznncl R, R

CPU; CPL 2ceess 3 pawe of Memory Locstions L"l‘jl'
whieh sepply STRARTING ADDRESS 3nd ENDING RADDI
m channels (-4-0—*"%?"1!3; Slouacs‘c- ee ! 'Dm:-s.; |
1S M3IX., rowsge
!
Starting Addrass

TITK

I.

al. t

1. 2
Ending Rddvreas -

Ll-n lt ‘ L? h—‘l—-!hf

- ¢

LA LJPC!"B.“C\OV\

. "es:r:pbon g

A. DT - Dlre:{ memory 'Er-;n.chr's &Dﬂ‘trn“cr‘ aupplu: Memory Addres
cl\rlr.HT; Fastest or 3ll DMx =

3 controller Supplﬂ.s-“_‘c.h:nﬂcl number
te CPU 3 CPU accessas a3 parwr of locatians 1n chms‘::
Rle I.-J"NC"\ un” Supp]r RANGE SHJ STRRTING LocRTION

for ‘fr;ns.?er-; & channels erf bmﬂ; slower tham DmMT

Pts. Files locztions 20—37 reserved fFor Dma

B. -Dnjﬂ = Direct memory access

-

! 12 13 14 15 1L) €*
1 Lacatisi 2's Comp. of Rinse q|oo ;"__‘j‘ e
/ o G, T

s

Rangt 2 Number or Werds o be 'l'-ran:\'-'cr-r-c[(‘H"ﬂ
99 oo = Hna\-\ order 3ddress l:nL:. Yo olisw

Yravmafers :lnyw"ocrc. within 256k

: 1

i iy 12 .
- s Lo.-_-;{-,o,.. - Starting Addrers
LBL”CS ISFIL eF 1"* LDLE{‘IDH. :x!’enc’ :J,[rcs.s -‘rc- '

C. Dmc - 'Dlr:c'!‘ mtmo-z' CH‘annr_l; C.onk'-ﬂ“& S‘upplacs “C-‘rﬂ.mtl num".:gv-“ -‘-

CPU § CPU 2¢cces3 3 pawr of Memory Locations (=dj=
whieh supply STARTING ADDRESS 3nd ENDING ADD
: s Hotea3ms)s slowesd .
~3T K }m !:'n‘anntﬁ - 3 5 es e T| -Dm.x.) l
1S M3ax, rowse

! 1.
Starkting Addrass

B0 1 1. .
= Eﬂdtns QJJ“CSS =

Llhﬂtlgé LY t.n-l—-ihr

Ir-1¢

bi~x

02001 —0009 $nopvao] 0)fwosf 23[suvip prom gpo| o 20f siapanwivd saoys apchioxy

el

LO0G6
} X

X

§S34QQY UIISNVYL

A

e IL 91 GL vl €L 2L 1
faiyia Bl .
] g
L
(wva 5 p
$$3HQQY VWA = ¢ [HIBWNN
1] ;s o 0¥0000 e
13INNYHI JWa =1 | NIVHI oy | 000900 [oovzEl
/E vee _\ D3IH SS3IHAAY 9/VWA SRR VGl
H¥3170ULINOD O/ _ nas
O
s o
= o1}
*1 In
_ ‘Z€ S1 (00vd)
STINNVHI VWA 40 HIBWNN WNWIXYWN —
~ '960r 51 0IHYIASNVHL 38 NVD v1va /0z001
LYHL SQHOM 40 LNNOWY WNWIXVW — '
]
"HIJSNVUL IHL HO4 SHILIWVYVY A : i
JHL SNIVINOD 44 SIHL 'YWQ HO4 \ﬁ ' ¢
30ISY 13S $37/7 U315/930 3HL 40 3NO V1va /0009
40 SSIHAAY NV H1IM NdD IHL $3171ddNS
_ H3TT0HLNOD IHL SHI4SNVYHL VYIWA HO4 AHOW3IW
"_ .._7’ - 1

«[YWQ) SSIDIV AHOW3IW 103410

o —IC

‘02001 —0009 $10110I0] 01[W104] 43[suiD) PLOM OpQ] P 40f s12)2mvipd smoys 2punxy

‘,n _..n -'_
$S3HAQY VWA = p [H3EWNN
TINNVHD awas=t]| mivio [="
ol '@ YEL

000400

"D3IH SSIHAAY /YA

H3ITT0HLNOD O/l

(TVOIL3HOIHL) Xb9 LSOWTV
S Q3HUIASNVHL 3d NVI
1Vl SQHOM 40 LNNOWY WNWIXVA —

{Tv2113403H1L)

STINNVHOI OWa vZ0oL 40 WNWIXVW —

V OL dN 38 NVD 3H3HL

SNV3W SIHL ‘BLLE OL dN HIGWNN NIAT
ANV JHY A1ddNS NVI HITIOHINOD

3HL 1YHL S3SS3¥aAqv 31815504

'JOVId INVL OL SI HIASNVHL IHL
NOILYD0T HOIHM LV $3141034S §S3HAAY
SIHL 'AHOW3IW N1 355300V SI 1VHL
$S3HAAY NV HL1IM NdD FHL S311ddNS
H3ITTI0HINOD FHL SHIASNVHL OWA HOS

«2WQA) TANNVHI AHOW3W 123414

K

ssayvaav

VYNI4/NOILYI01 ONDOD3S

$53HAAaV YI4SNVHIL/NOILVYIOT LSHId

£534aav

Voo

"AHOW3IW 01 '903d
§S3yvaaAv dWA 40
NOILHOd SS3Haav
IH L S3SSVd ONY
owasi12313andd

—

Ndd

viva
ss3x¥aQav

-

J

viva/ozoot
|}

|

]
. V1vda /0009 t
i ES:EQL il

LY

0009/000€
AHOWIW

._...:q_..—._

l® -

H

‘0009 topwaoyp woif[o) 1afsuviy v 20f s12)21uvivd smoys spduioxy

viva

000900 ss3yaayv

‘D3H SS3HAAVY Lwa

H3TTOHLINGDI O/

"LWQa DNISN

SH3TTOHINOD 3HL 40 NOILIONNS

ANV NDIS30 0141034S 3HL OL

"ONIQHOIJV SIIHVA 034HI4SNVUL

38 0L SOHOM 40 HIBWNN JHL

'H3I4SNVHL ViVQ 3HL 40 SS3HAAY TvN.LIV
FHL S1 HIIHM §S3HAAY NV S311ddNS
HITTOHLNOD 3HL SHIISNVHL LWA HOA

"AUOWIW OL
A1103HIa sS3ivaav
3H1 S3S5Vd ONY

= 1W0 8123130 NdI

e

¥

Ndad
5[18
sl |5
~ B
gL (P
¢
|
|
: | ¢
- I -
V.lva /0009
AHOWIW

L3R

«(LWQ) H34SNVYHL AHOWIW 123410

1!

i

A

Ll .
.wﬂru.

L
o

il

e fr.rn

‘|’|... r.,'.l I .

REV

. 16 FILE SYSTEM CHANGES

o 63 FILE UNITS PER USER (UNIT 53 RESERVEDZFOR COMOUTPUD)

-

o NEW CONFIG PARAMETER
FILUNT (RSVUNT) (MAXUNT) (TOTUNT
(16) (64) (2048)

RSVUNT - NUMBER OF FILE UNITS GUARANTEED TO
BE AVAILABLE TO EACH USER.

MAXUNT - MAXIMUM NUMBER OF UNITS A USER
CAN HAVE OPEN.

TOTUNT - TOTAL NUMBER OF UNITS THAT MAY BE
OPEN SIMULTANEQUSLY BY ALL USERS.

AN

The Chagsas

¥

o

HEWUFU(['.304 ch_s

CPU boards

* % URC ¢ oritveller
v¥ AHLC & BAMLC
*4 HssHLe w HPLC
% Disk Ddawz Cotroller
* TapL D Ccrctro”ir"
So0cC ov V’C'f b oad

BLJL le'J.S T %AM Arg ,#’jr(,&a_,fa—dq,(/(g

\

““Lq_u, e Boar'c(; (FED' tuns Qer ,(,;TJ,L‘,La

RO 35

wpp il
fb

=

+ %

MEHOR-‘-{ bDA rdg

CPU boacds

» % URC ¢ oritvller
o A C, o aAHLC
*+ HssMic ~ HPLC
« Disk Daise Coroller
- Tap.bw Cotoller
J0C o VO b oo

Rolle bosrds pasitiong Are .v‘m,tw peatde

\

—Le_u, 3 Loér"f{s (fﬂf ‘r"m_(£ R ,(,.:11’4.

Tt

.-:r_z {;Lu&/_

~peud

o WA l 5@ R <. mw@,m
u‘.u.m“.._.m.ﬁm_u ﬂ .“ﬂo%fwuy a2 mwib M
DI Xslq me.woem

Nd D

NV oo el e e A

PuoImI
%.,_..m_ “OI

AA0HIH

Feh " TR

INTERLEAVING

MOS ;
MEMORY :

EVEN
ADDRESSES

-——=-—=00 ON = N O

CPU.

rr1:1:c")3=-.lc'1

MOS
MEMORY

OoDD
ADDRESSES

——— =W U W

INTERLEAVING IS IMPLEMENT USfNG TWO IDENTIAL BOARDS,

ONE BOARD CONTAINS THE EVEN ADDRESSES, THE OTHER BOARD
CONTAINS THE ODD ADDRESSES,

THIS HAS THE EFFECT OF SPEEDING UP SEQUENTIAL ACCESS AND
REDUCES THE CACHE MISS RATE,

& =5

A A b S (B T W A X } O B N A THEHARD W
A N N N| N N N N | N N 0/1 300W 1sund
A A A IO T ol A N | N N TANVd TOUINOD TVNLYIA
A oot S 1 et B QR ¢ A A N | N N AUCHEDY STEVAVT YAINI
A A X AR 0 0 N | N N AowEd (009) NOILOTMHOD ANV XOTHD YOwdd
X 9 ity ¢ T X X ;i W 3 N ALDMVd (31A€) Y0SS3ID0Ud
A A A I A 1 X A : 0 I N ALTYVd (1X4) AUOWEN
X N N N | N N N N | N N HO13d-Tdd NOILOMLLSNI
X A A $ % 108 A N | N N ONVIDXA SSHOGUd
% X 3 X & A X N | N N 1Hoddns bwa
Ay 4y rAy 2 G 4 S I 1+ 8 8 8 8 STANNVID W0 40 Y3@ON
A A A A A A A A 0 0 W1 pue 1l
A A A Lk A A N | N N (ONIYVHS WvdOOUd) NOT.LDILOUd AMOWIN ONIY-ILTW
9TxZ¢ | XZX9T [NZX9T [XZX9T [XZX9T [XZX9T NzX9T | E/U e/u | B/U (S4LAg X SLIE) FZIS AYOWEW FDVD
8 B 8 g | 8 |em | wvmuf e/uje/u |e/u SUILSION FSOUNd TVHANTD (LIg Z€) 40 YIDIW L
CTA gzil pzrl syl ezv peer } W Y oW ;W] &S I YILSIOT NI SYALSIOTY 40 YIDNW
(4 Ay rAy ol Ay 43 81§ ‘91 9T (SL19) FZIS YALSIO ONV SN TVNYAINI NdD
¥9 b9 9 ¥9 | ¥9 b9 < G o 1 I (KELSAS ONIGQMIONI) SY3sSN J0 YAMION WIWIXVW
wes | wWeel| was| Xzis| wee | Xzus| Xe9L| ezt | B/ e/u (STLAG) YISN/AUOKEW TYALUIA 40 INNCWY RIWIXWW
WoSZ| W e/u | e/u (STLAG) AUOREW TVNALMIA J0 JNNGWV WWIXVH
4" ot 1T st [91 |9 ot 191 1.9t 1 91 (SLI9) 9ZIS QUOM AYOWEW
W8 Wp | WZ Wg | WI N8 NZIS | NZYS | X8ZT| A8ZT (SALAG) AUOWIW TVOISAHd 40 INNGWY WIWIXWW
12¢ 1zl 1zsl 1Ts| 128 | AR9 | A¥9 | U9 | ¥P9 | UY9 @I140ddNS JA0W SSTWAAV LSTHOIH
: X T o
0SL 0S9 0SS ©00S OSy OOy 0SE 00€ 00Z OOT TUNLVE
(" :

SOTLSIVZLOVUVHD }. /34

A

WOSSIOONUd TVHINAD TWIHd)

I Wt

NdD SIHL OL ATddY ION S$30d TUNLYId SIIL = e/u
(TIYMANIT YO) TUVMDYYH AE Q3LIMOJdNS

_ JOVAIVd TYVYMLI0S
NOTLONYLSNI QILINTMETINING A9 03IMO4dNS

H

ol |

J3140ddNS YO @IITddNS SI LI SIA = A
3.1¥0ddNS ¥O Q3ITddNS ION = N

i TYNOILJO = O

W0SSAD0Ud TVMINID NI SQYVOE 40 YIDWW

(300004 IW) DILTALIYY INIOd ONILYVOTd LSVH.

DILDR LYY WIDIINI 119 b9

OILINHLIYY ¥3O3INI LIG 2%

LINN 21907 JILAWLLINY 119 2€

JILTNLLIYY INIOd ONILVOTd NOISIDFYd HI18NOA PUB FONIS
' JLLDMALIYY

NOISIOTYd H16N0d PU® JAIAIG/ATILINN TYVHINVH

. ~ 1u0ddNS 13S NOILOMLLSNI SSANISNG
QNJ 02S ONJ :m_(.@NJ 81¢ | 61F SYT| LT AR " 135 NOILOMILSNI NI SNOILOMILSNI O WIMUW

- i Mk ain
— . .

Su D P D e &)
RO e e o)
o — R - IR < M
SR o G e

5
A
A
A
A
A
A

> e P e = m O
> 5= e > = > ™M
Bl pa D D D (e
hee SRR N 3w
o O = = = = r

o

”»

I H H Hop T W H I H 1N N

OSL €) 0SS ©00S OSy 0Oy OSE 00S 002 1) ALYA)
- [. Soseenii

F;LES

THE CPU INCORPORATES A HIGH SPEED REGISTER FILE OF 128
LOCATIONS, EACH 32 BITS,

THESE LOCATIONS ARE DIVIDED INTO 4 GROUPS AS FOLLOWS:

GROUP

GROUP

GROUP

GROUP

0

I1

111

(F1LE ADDREsses 0-'37)
USED BY MICROCODE AND SYSTEM

—

(F1LE ADDRESSES 'U40-'77)
32 DMA CHANNEL REGISTERS

(F1LE ADDRESSEs '100-'137)
USER REGISTER SET A

(F1LE ADDRESSES '140-'177)
USER REGISTER SET B

TWO USER REGISTER SETS ARE INCLUDED TO FACILITATE FAST
PROCESS EXCHANGE, ONE SET 1S AVAILABLE TO THE CURRENTLY
RUNNING PROCESS AND 1S REFERRED TO AS THE CURRENT REGISTER

SETs

DETAILS OF THE USER REGISTER SET ARE AS FOLLOWS!:

H
T~

Ler L

241 ?E

| s41 ST

rel ¥E

£y §L

2. 28

e 18

dI3wL

oll &

(z1)

R ELLE]

L9 L2

(1)3Q004

72/ 72

A INMO

S/ ST

(Smaow)

£A

rr/

AT

£/ §2

Tavid) ze/ 22

23Vl ya1 12

(o)syvidlosl @

g8X|lsr L]

(L1)

M EDIE

25/ 7]

(s1)

(r) 3¢

S5t 51

8d

rsl ki

OJEALIE|ES1 §1

(s7

(r)Tavd

sl 2l

174

tst 1

(51) T v

! ol

(7 #)L¥9

n L

249

" 2

(ASEIS D sy

|2 1 2

(13)

(#7) 139

fvl €

(n'sz)

(mvVi)Taosi2el 2

Sid (fd9

_1. !

T10: P

on o

o7

I~

£
s Ea8

¥ 32

SI7I4 ¥3ILS193 00S5/00bC.

1 28

sl SE
Mt bE

gl £

gi &

wawll

@l of

D)

¥ 200V o

e 5

Q) ddv-

v 12

WAINMO

TR 4

(s1wariy)

SAIN

et

ZyLd

o 322

Tavid

i B 4

29v.q]
T T9xid

e i | -
QI @2

gx

L L

(1)

(72) 91

L/l

(s1)

(»] 8S

S5

8d

St

(QE/HALT]

tn i

(5)

(OEETE

2H 2

T34

i it

(0) Tyvy

oIl o)

QIR

Lo/

239

2

(A31)539

Sol

9

(13)

(W3] YD

Lol

kel

(b 1)1d9

29/

S1d: Ty 9

lo/

T110:9%8 9

L

2

S

ko) ¥
Y

[4

!

Q

op/

o7

I+

N..ruuuw ;
F:w.&uw—u Nuﬂ_.

SEY Sy

ter L

il - 2K

Y7
24
Sl
17
$i.
U
1.
aL
L9
29
52
)
59
ey
%
oY
L5
75
(49
7]
LS
15
15
oS
Ly
2y
¥
4]
i
4l
v

o

(£8) (o£)
(sg) ()
(£9) [(28)
() (°f£)
(¢2) (22)
(52) (r2)
(£2) | (22)
(12) [0Z)
01 IH
pwa T4

|

YldAvVEy

garSA

IS MSQ

ywansa

f82d

P14 g9dd

¥92d

vid -¥dd

SAMSd

g2dnsd

IZED

2LLF)

£rwaX |

aavild

INO

033Z

Alo3 Yy

1223y

1233

71953

J.15983

1dWiIVa

7xw dd

1 xwdd

LaL

291

SAL

ryL

£y

¢dl

IL

L

07

IH

H2U30S @4

4=}

PRIMOS STRUCTURE

STLN| |12SNI| .h,m.o_ hmmm. 4} ﬂ.U _ < _ .\V.vk_
| HEE hd
a0 T4
Ly My
Do
J
Ly _Emﬁ_ 07 ON el 0N &) S 5 S
el
[00hT3d

TR

i LQ.S:@%«E Y]~ 27vA0q v

L }
ﬂ ﬁ,ﬁéﬁmﬁ «E\GE) Sm,ﬁ?.ﬂ. \Q\.fnw v

YA 7d TP UL. D035 0]

)

O'fﬂ ra'/trmj, §\15't’%1

YV I T IO~ 0w A]~

/
Y
1
N
Vi C 0
4
N,
Y

oA

N
N
/|

%

Lﬂ. Hﬁo{umi/

i

REV. 16 PRIMOS IV SEGMENT LAYCUT

SEG B8 1/0 SEGMENT

PAGE

NUIMBER
- (OCTAL)
IU = >
DMC CHANNELS FOR AMLC, SMLC,. MAG. TAPE,
AMLC DEDICATED CELLS AND TUMBLE TABLES,
SMLC STATUS BUFFERS
*1370 DVDISK
2 QAMLC @ CONTROL BLOCKS
'3 PRBUFB, CRBUFF, CPBUFF
'y PRBUF1, CR2BUFF, CP2BUFF
‘g FRBUF2, PRBUF3
‘6 VGBUFF
7 O B - //
%/// / /
UNUSED ////’
7~ o //
'35
RING NODE WINDOW
i1 e SECOND MAG, TAPE
CONTROLLER WINDOM
47
SMLC WINDOW
63 IPC WINDOW
'65 MAG., TAPE DUMP WINDOW
" 166
FIRST MAG, TAPE
CONTROLLER WINDWO
74 DISK WINDOW

i

SEG 1 FILE SYSTEM ASSOCIATIVE BUFFERS
SEG 2 83 MOVU2U SEGMENT WINDOWS
SEG 4 INTERRUPT SEGMENT

o PHANTOM INTERRUPT CODE
o CHECK HEADERS

o SEMCOM - SYSTEM SEMAPHCRES 0 - 2301
o READY LIST

o WARM START CODE
o COLD START CODE °

o ECC HANDLER v
o (OPERATING SYSTEM VPSD) 12000 - '12000
o INTERRUPT FAULT TABLE AND KANDLERS ’T
o COMMON CHECK HANDLER 176000 -
o FIRST LEVEL EVENT LOSGER (LOGEVI) F11eteC
0 PCB's
o CONCEALED STACKS
o INTERRUPT STACK \/

i = p

SEG 5 RING B GATE SEGMENT

SEG 7

THAIN
o SUPERVISOR COMMON (SUPCOM)

o CLOCK PROCESS

o USER FAULT TABLE AND HANDLERS

o SVC INTERLUDES AND CGDE

o COMXIT, UNLOAD, ETC

KERNEL PROCEDURES

o DEVICE DRIVERS

o LOCK MECHANISH

o BUFFER CGNTROL (TFLIOR, LOCATE, ETC)
o PAGE TURNER

o COLD START CODE (AINIT, AMINIT)

o COMWAND PROCESSOR (DOSSUB)

o BACKSTOP PROCESS (SCHED)

0 TERMINAL 1/0 BUFFERS
0 SPECIAL BUFFERS (PTR, PTP, CEN)
0 Q@ DATA BLOCKS FOR QAMLC

0 PER USER DATA (USRCOM)

0 FILE SYSTEM UNIT TABLES (UTCOM)
L1 9

SEG 11

SEG 12

(SEG 13

Se6 14

SEG 6003

FILE SYSTEM PROCEDURES

NETWORK DATA AND PROCEDURES
SMLC DATA AND PRCCEDURES

COMMAND ENVIRONMENT)

(ONE TO CHE)

RSAV AREA

OPERATING SYSTEN VPSD ENTRY
CONFIGURATION COMMON (FIGCOI: AT '700)
MAGTAPE DUMP AND MEMORY SCAN
WARK AND COLD START ENTRIES
VIRTUAL MEMORY MECHANISM CODE
MEMORY MAP (IAP)

PAGE MAPS (HNAP)

PTUSEG

SEGMENT DESCRIPTCR TABLES

/1o IR o WY e AT o GIRRE o W = ARG o SR © SR & EER, =

SUPERVISOR RIHG & STACK

-3

((© REV. 16 PRIMOS 1V USEFUL LOCATIONS
MEMORY FAP | HiAP . 14/2000
START OF PAGEIAPS AP . 14/12000
START OF PTUSEG | PTUSEG 147140000
NO. SEGMENTS IN SYSTEM NSEG 14/141200
NO. SEGHENTS PER USER NUSEG 14/141201
NO. OF CONFIGURED USERS HUSR 5/2207
PAGE FAULT COUNTER (32 BITS) PFCN 5/233
LOCATE READ COUNTER (32 BITS) LOCCNT 5/23%5
SCHEDULING CONSTANT HAXSCH 6/2213
ELIGIBILITY TIME SLICE ELIGTS 6/2321
TINESLICE FOR USER N USRTS 6/1277 + N
HIGH PRIORITY 2 HIPRI 4/536
ELIGIBILITY 2 EL1GA 4/540
LOW PRIORITY & FOR DEFAULT :
= USER LEVEL LOWPRI . 4/550

«' DEFAULT USER LEVEL ON READY LIST LEVEL 4/626

' PCB's : CLOCK /75700

- ¥

REV. 16 PRIMOS IV USEFUL LOCATIORS (CONT INUED)

PCB's:

a

LCCKS:

F16COM

BHAMSK

I- &

HLC
BACKSTOP
USER 1
USER
FSLOK
UFDLOK
UTLOK
TRNLOK
RATLOK
PAGLCK
PACSENM
DSKLCK

DSKSEM

4777100

_.ﬂ/76500A
47100100
4,/100000 + 100N
6/13543
6/13551
6/13557
6/13565
6/12573
6/13561
4/522
5/13607
4/5354
14/700

14/723

REV. 16 PRIMOS IV SEMAPHORE LOCATIONS

HIPRI @ 4/535
ELIG & | . 4/540

' LOWPRI @ 4/542 - 552
INPUT WAIT (BUFSEM) §/17524 - 17724
TIMED WAIT (CLKRHG) 6/2350 - 2374
FILE SYSTE! 6/13543 - 12576
PAGE 1N TRAMCITION (PAGSEM) 4/532
DVDISK WAIT (DSKLCK) 6/13667 - 13672
DISK 1/0 (DSKSEM) /534
LOCATE WAIT (LOCSEM) 6/13675
USER SEMAPHORES 5/21045 - 21245
NETWORK WAIT 6/20136 - 20336

MAG TAPE WAIT 6/21z47 - 71261

SYSTEM LIMITS EXPANDED (Rev. |7)

. 64 SHARED SEGMENTS:
2000 ED (WIT IN SEG 13)
2001 - 2003 DBMS
2004 - 2011 SPSS
2012 DBMS
2013 BASICV
2014 KIDA, FORMS, COBOL, SHARED LIBRARIES

2015 DPTX ~ 1CF
2020 MIDAS SEMAPHORES

2030 - 2037 RESERVED FOR USER APPLICATIGHS
2040 - 2042 DBG
2050 FTN SHARED LIBRARY

. 511 TOTAL SEGMENTS (NSEG)., DEFAULT IS STILL 192

« 128 FUNITS (10CS STILL 16)

. 62 STARTED UP DISKS

TA-

PLUS

PRIMOS MEMORY REQUIREMENTS

SEGNO REV 17
0 3 K WORDS
- 4
6 16

14 4

2 3

600D -

SEG 4 - 100 WORDS FOR EACH CONFIGURED USER
(PCB’S AND COMCEALED STACKS)
SEG 7 - TERMINAL 1/0 BUFFERS FOR EACH CONFIGURED USER
(DEFAULT 96 AND 192 WORDS RESPECTIVELY)
- PAPER TAPE, CENTRONICS BUFFERS AS REQUESTED
(1K WORDS)

SEG 12- 6K WORDS FOR MDLC
18K WORDS FOR PNC
23K WORDS FOR MDLC & PNC

SEG 14-SEGMENT DESCRIPTOR TABLES (NUSEG*2* NUMBER
CONFIG. USERS)
~MMAP, 1K WORDS FOR EACH 2MB OF PHYS. MEMORY

SEG 21- Q DATA BLOCKS FOR EACH CONFIG. LIME IF
QAMLC PRESENT (DEFAULT 32 WORDS/LINE)
SEG 22- PAGE MAPS, 128 WORDS FOR EACH SEGMENT IM
USE ABOVE '1777
SEG 6000 - RING @ STACK, 1K WORDS FOR EACH LOGGED IH
USER.

IA-Z

PRIMOS MEMORY REQUIREMENTS (CONT.)

3K WORDS MORE THAN REV 16 (Twets = .

EXAMPLES :

10 USERS CONFIG., 5 LOGGED IN - 48K WORDS WIRED
20 USERS CONFIG., 10 LOGGED IN- 61K WORDS WIRED
30 USERS CONFIG., 15 LOGGED IN- 73K WORDS WIRED

WIRMEM CONFIG. DIRECTIVE PRINTS INITIAL WIRED MEMORY,
NEED TO ADD USERS RING @ STACKS AS THEY LOGIN,
PAGE MAPS AS THEY ARE USED, BUFFERS AS DEVICES ARE USED.

Th-3

PRIMOS MEMORY REQUIREMENTS (CONT.)

PAGED:
SECNO REVI? REV (&
ASSOCIATED BUFFERS 1 64 " B4 K WORDS
ECB'S 5 2 2
KERNEL CODE 6 36 26
USRCOM, UTCOM - 10 82 WORD PER CONFIG. USEF
+16 WORDS PER FILE UNIT
IN USE.
FILE SYSTEM CODE AT 19
NETWORK, COMMS. CODE 12 38 37
COMMAND ENVIRONMENT CODE 13 34 0
DPTX 15 4 0
RING 3 STACK 6002 1+ PER 0

CONFIG USER

WORKING SET:

MAIN CHANGE OVER REV 16 IS THE HEW CCHMMAND ENVIRGNMENT
- ADDITIONAL 10K WORDS FOR SEG 13
- PLUS 1 1/2K WORDS PER "ACTIVE" USER

GUIDELINE: 20-—30K WORDS IHCREASE

REV 17 SHOULD NOT BE RUN Of SYSTEMS WITH LESS THAN 1/2MBYTE
PHYSICAL fiEFORY,
TA-4

SEG .0

SEG 1

SEG28& 3
SEG 4

okb 5

PRIMOS SEGMENT LAYOUT (REV 17.1)

. 1/0 SEGMENT

. DMC CHANNELS FOR AMLC, SMLC, MAG TAPE
. AMLC DEDICATED CELLS AND TUMBLE TABLES
. SMLC STATUS BUFFERS
. DISK CHANNEL PROGRAMS
. @ CONTROL BLOCKS FOR QAMLC

. FILE SYSTEM ASSOCIATIVE BUFFERS

. MOVU2U SEGMENT WINDOWS

. INTERRUPT SEGMENT

. PHANTOM INTERRUPT CODE A
. CHECK HEADERS

. SEMCOM - SYSTEM SEMAPHORES
. READY LIST

. WARM START CODE

. COLD START CODE

. ECC HANDLER Y

0 - ?777

. (OPERATING SYSTEF VPSD) ‘2000 - 13777

. COMMON CHECK HANDLER 4
. FIRST LEVEL EVENT LOGGER

. PCB’S 26000 -

. CONCEALED STACKS
. INTERRUPT FAULT TABLE AND HANDLERS
. INTERRUPT STACK v

. RING @ GATE SEGMENT

S

‘115777

SEG 6

SEG 7

SEG 10

SEG 11
SER- 12

SEG 13

PRIMOS SEGMENT LAYOUT (REV 17.1) (CONT.)

. THAIN
. SUPERVISOR COMMON (SUPCOM)
. CLOCK PROCESS
. RING @ FAULT TABLE AND HANDLERS
. UNLOAD, SEM$, MOV . . .ETC.

. KERNEL PROCEDURES

. DEVICE DRIVERS (INCLUDIRG DISKIQ)

. LOCK MECHANISM

. BUFFER CONTROL (TFLIO$, LOCATE ETC.)
. PAGE TURNER

. COLD START CODE- (AINIT, AMINIT)
. DOSSUB

. INTERNAL LOGIN
. BACKSTOP PROCESS (SCHED)

. TERMINAL I/0 BUFFERS

. SPECIAL BUFFERS (PTR, PTP, CEN)

. PER USER DATA (USRCOM)

. FILE SYSTEM UNIT TABLES (UTCOM)

. FILE SYSTEM PROCEDURES

. NETWORK DATA AND PROCEDURES
. MDLC DATA AND PROCEDURES

. COMMAND ENVIRONMENT CODE

. CONDITION MECHANISK, CODE
. RING 3 FAULT TABLE AND HANDLERS
. SVC INTERLUDES AND CODE

ThA-b

PRIMOS SEGMENT LAYOUT (REV 17.1) (CONT.)

SEG 14 . RSAV AREA ('200)
. OPERATING SYSTEM VPSD ENTRY
. CONFIGURATION COMMON (FIGCOM AT ‘700)
. MAG TAPE DUMP AHD MEMORY SCAN
. WARM AND COLD START ENTRIES
. VIRTUAL MEMORY MECHAWISM CODE
. MEMORY MAP (MMAP) ('2000)
. PTUSEG (*150000)

. SEGMENT DESCRIPTOR TABLES

SEG 15-20 . DPTX

SEG 21 . @ DATA BLOCKS FOR QAMLC'S

SEG 22 . PAGE MAPS

SEG 6000 . RING @ STACK

SEG 6001 . SHARED LIBRARY IMPURE SECTIONS

. ABBREVIATION FILE

SEG 6002 . RING 3 STACK

SYSTEM LIMIT EXTENSIONS (Rev 1%)

. RING BUFFERS MAY BE UP TO TWO SEG'ENTS LONG. USE BOTH
SEGVENT ‘7 AMD SEGYENT "3,

. NSEG LIMIT NOW 1022 SEGVENTS

. NUMBER OF SHARED [DTAR 17 SEGYENTS INCREASED FROM 64 TO
128, [*2000-'2177]

. NUMBER OF SHARED LIBRARIES INCREASED TO 16

. PAGE DISK SIZE INCREASED FROM 512 SEG'ENTS TO ENTIRE -
300VB, IF NEEDED, '

VIRTUAL MEMORY DATA STRUCTURE CHANGES

. AT REV 17 HYAP/LMAP COULD SUPPORT 511 ('777) SEGVENTS,
. BY PUTTING HARDARE MAPS IN SEGVENT 22 AND LOGICAL MAPS
IN SEGVENT 33 WE CAN NOW SUPPORT 1022 SEGVENTS (“776),

START AT WORD ‘100,
, PTUSEG LARGER, NOW STARTS AT 14/25200.,
, M¥P INCREASED TO 2 WORDS/ENTRY; STARTS AT 14/4000

EXTRA WORD USED BY

% % ® %

.ll‘W:AI-**

* % ® %

: i i . PN e
VIIFA] A 3 3 ,___/““!: .".
Sy
. - : w? Ay f 7

. METHOD OF PASING DIRECTLY FROM FILE SYSTEM
. AT REV 18 ONLY ENOUGH SUPPORT FOR POSSIBLE
EARLY RELEASE OF EPF's, g
. THO NEW KEYS TO SRCHS$ - e
:20 OPEN DAM FILE FOR VMFA READ ACCESS
:60 OPEN DAM FILE FOR VMFA WRITE ACCESS
TO USE AT REV 18 e s
1. CALL SRCH$$ TO OPEN IN VMFA MIE.
2. CALL VINITS TO MAP FILE TO MEMORY,
3, CALL SRCH$$ TO FREE UNIT,
4, PROCESS FILE.
5, CALL RTNSEG TO REMOVE SEGVENTS,
- VINITS- |
CALL VINIT$ (KPY, UNIT, LOC (SEGTAB), LOC (RSEGTAB), NSEGS,
LOC (WINDOWD, LOC (ACCESS), "OC (LEN), CODE)
KEY - :10 CONSECTIVE SEGNOS REQUIRED
:i WILL ACCEPT ANY OLD SERVENTS
2 T AM RECOMENDING SOVE SEGVENTS
:1 T MIST HAVE SPECIFIC SEQVENTS

UNIT - UNIT ON WHICH FILE IS OPEN

SEGTAB - SEG'ENT NUMBER(S) MAPPED (RETURNED)

RSEGTAB - RECOM'ENDED SEGVENT NUMBER(S)

\SEGS - NVEER OF SEGYENTS TO Mep
WINDOW - WINDOW NUMBER IN FILE (FIRST SEGYENT @, .SECOMD SEGVMENT 1, ETC.)
ACCESS _ ACCESS RIGHTS DESIRED FOR EACH SEGVENT

'LEN - LENGTH OF DATA IN EACH SEGVENT (RETURNED)

COE - STANDARD ERROR CCDE (ERRD.F UPDATED FOR WWFA)
- MUST USE NIFS CONFIGURATION DIRECTIVE

NVIFS MAY BE FROM 1-256

NSEG + NS MUST NOT BE GREATER THAN 1022

IF WFA SEGYENT, PTUSEG ENTRY IS AFTER THE NSEG'TH ENTRY. WHEN

NOT IN MEMORY, LMAP CONTAINS THE LOW ORDER RA OF PAGE - HVAP CONTAINS
THE HIGH ORDER. WHEN PAGE IS IN MEMORY, HIGH ORDER RA IS STORED IN
THE SECOND WORD OF THE MYAP ENTRY.

!r:r | ‘ ‘:etl- / 5? 4 =

SEG I/0 MAP SEGMENT -: *

SEG LOCATE BUFFER SEG . .
TEMP SEGS - INTERUSER MOVES

0
1l
SEG 2-3
S e ok CHECKS, TRAPS, PX, ETC.
B RING 0 GATES
8B 6 RING 0 KERNEL CODE, LINKAGE
- :
10
31
12

SEG LOW SPEED I/O BUFFERS
SEG - FILE SYSTEM DATA STRUCS
SEG FILE SYSTEM CODE, LINKAGE, OVERFLOIW FROM SEG 6
SEG NETWORK CODE, LINKAGE
SEG 13 COMMAND LOOP SEGMENT 1 =
SEG 14 COLD&WARM START, SDW0,1, ETC
SEG 15-20 USED BY DPTX
SEG 24 USED BY DMQ BUFFER
SEG 22 , ; PAGE MAP SEGMENT
SEG 23=26 SMLC COPY SEGMENTS
SEG 217 NETWORK BUFFERS
SEG 30 NETWORK QUEUES/BHA'S
SEG 31 : NETWORK A g iy
SEG 32 COMMAND LOOP SEGMENT
SEG. 33 LOGICAL PAGE MAP SEGMENT
SEG 34 SECOND SEGMENT FOR RING BUFFERS
SEG 35-37 FREE
SEG . 40-237 USERS WIRED RINGO .STACKS
SEG 240-277 NETWORK MAPPED SEGMENTS
SEG 6000 WIRED RINGO STACK
SEG 6001 ABBREVS - DYNAMIC LINKS
e 6002 'RING3 STACK
. 0003 UNWIRED RINGO STACK
- SEG 6004 CPL :
SEG 6005 ' GLOBA% VARIABLES o

a0
¥ :

)

-

MEMORY MANAGEMENT

In this section, we shall cover:

® What is Virtual Memory?

® How the system manages its memory?

® How does a virtual address translate into
a physical address?

T—i7

\/n’{‘-‘y\ ‘/}nﬂ,hﬂfﬁ arl obV/-O‘LLA)»-_-/o
4 Qroups "’5— (oad ii’—qwj\. Eake Grup
hen L DA’.SCN»JJLU'\. "'T‘A/L/LL Doldrses ?29«4/&‘ (P7TAR)

5@:[“{»5{'
0.
“am
DTAR S
* boer BuDoogp,ﬁtrafga;f ,;r_,,":m Shared Lib.
5N = > —
DTAR 2
\Yooe
< 3m T -mooe
DTARL
‘203?__
* A rea 61’101-“2:] /T)ypﬂlrun
s kal :ﬂ
5 ' DTAR S
aridin 4yile
0 Df r] Ts e ,

DTAR & — qué 6?12,1-;2;' S
DTAR L — :sLm.,{ L {ﬂ&’ i

DTAR A l it
DTARS | Pivelll do pse

Looay +od.

Nnd 7 R
g P°D .jy r =
MWD eLgd xaanv] uj
_ ndd .
[a4 ol _ id el | mrpb rvovhug
ooy e S e e
| ir
Aa1LS

el s gl

2 vk L

%19

G o) L corvipy TOUAA

T Ha.fbg

' | vudv

‘0w Yos

f.o\ﬂbmmww.;&h._l_nl .v?ajuq

T-19

u awet a8ey

Z 2weay 3ded

| Pweaq a8ed

935139 4q
paiedo]je pu
1deys pida
pPa1831D 319°3DIAP

duided uo srawdag

AIowdp uiey

z
23e] ldey

D JuaWsag

umﬂ«_ _

q Juawdag

20 m;

¢ |
ad¢e,) | o8e

e Juowdag

ad[aaQ Sudeq

AN1OVd £q Ajjestweudp pareadd Aiowdw utew o) JUDWTIS J B
utyiim a8ed jenjs” wouj duiddew et AJowop [ENIIIA
936139 Aq Ay). stweudp paleasd 321Aap u $59204
_ guided o) uawdas (eniaia >
wou) Surddew e ;
L] .q “ 1]
GeaE e o BT
S e e e o e a8ey adey
e & “~ V4
— A' = ey e oy e . AN =T L _\\
. - £ o —
19
A‘..‘lltlllill"'llla“-l..l St UMﬂn— Umm&
ee i . g
el bo mn -

Klowap (enjdip

"D
JuaWdag

q
Jjuawsag

I-ao

q
juawdag

v
wawdag

{1 ss?204d
- . — - Ny ‘
-~
N
\
b ¥
\
& \ Z 1
. g «+ +|a8eg | 28eg
. ' - pmat e | - e o - -~
“ lt.l
s -
" m ea fe e o ™ L
Sa \
\ \
< 4 !
. .."- UME Umﬂnﬂ
i :
RO DITTAN) SETIRETN Aiowap [emr

Y mmﬂ.....tﬁ%.

SeI9Ray vrg 49Ze

T.z el ¥ Jﬂ!m_».c_
1 - i

L

AvanN?a 2
L v ricAll

=T

IMYD 4o FDNIN L9wr| s ug =g
q7a901 SI 39vg

WOSTG SN Y YN Pl gew pevg Y

Vil 992 W SAvivw P Oy 1 740N

(pro9y SN 7992 7w¥S)

€ My Wo VMY S5y » D2-¥2 M9 =D
(gorwrs?v) €2-12 $+'9 *9

757 N man oy
T opano9xa N qQvay

il
Pl
1 @1
P
11¢
P
[
PPp

d d |

I FARQVH A9 135TY « DN GrosTY
qQPNINFIIY SI IV VEL FLh]
[FIVHCINY AP 23S 32 g oY 29H Ay AvAy
HWSH ™M 3 39 # 135« | 29 *A avyy
(> 390972 00) 7290
[~ v~ BFBY Se7Y oy
9l vRZI | DY PO PHITY §3372Y ¢+ OZ -0 sug sy
Au a 9l-\ S29) FIPUL IYW I2vg Int
Jo s39uy TVISAYY = SE-+2 9-1,349 od
d 41218V ¢ d
et L23 visc _Jo3 sy
‘AyeM \qcﬂ_.:oﬂ qaoM
- $OLaV¥SPD LNPHDIS 95559 ¥ $30w LoN Qv

hov - a9 9 _..:udv
SFP\ly ..!.w r {4

FHYL 94 P9YJ

At = o.m.-v peivIe]
S534qqY M2 [MO LTS
190w FRUL L9WHS

SS2IqY 493

|

\\. oN 399 99
st

ﬂl—“_l—l u‘.k—.qxa h..ﬁsU—.....Uh_mUII|.|}|PI\|) r -Ill.lll. e,

|

FHig L

do\;.vﬂ.ﬂuuﬂ Snmu 20| 2 O] =|%arg

‘GLIFHDFS IRSD

wod QRN FI¥ oMl YISO Rl 4Ky
WALSAS DHUN P40 ML QL QRIPRAY MT7Y
PANH $.7ViQ OHL SupRrES ¥2o)
LIS, 1D WA T YRS TN
LrWD7S ¥ Ak Sy YYAq VG

v

(Mas w

Sty INRY Sk

91 Ti9 i ol

1

FEEOry sy 7wl v

L

52

)/F\J)H\J\II_,\J.,_,

L I\

iyl i

r .d..ﬂ,/ o.f \ e

f..._

3

= iR S5 i 5 nnw-dq-d-

sringiieiese) v IT] ¥

g

ed JLHPUP
2" 1 U

RI0EA0

.r“nﬁa-_

zT i TUTIETA

PROCEDURE CALL

PROCEDURE/LINKAGE/STACK ARCHITECTURE:

MOTIVATION IS SHARED CODE
NEED SEPARATION OF CODE AND DATA
DEFINE THREE MEMORY CLASSES FOR EACH PROCEDURE :

(1) PROCEDURE AREA: .1 PER SYSTEM
; . PURE CODE
. LITERALS
READ ONLY AREA
. POINTED TO BY PB
11) LINKAGE AREA: .1 PER USER
| . FORTRAN LOCAL VARIABLES

. LINKS - INDIRECT POINTERS
TO PROCEDURES AND COMMON

ENTRY CONTROL BLOCKS
. "POINTED TO BY LB
(111) STACK AREA: .1 PER INVOCATION
« CALLER'S STATE
. ARGUMENT LIST
. FORTRAN TEMPORARIES
. POINTED TO BY SB

Base Register

There are four base registers associated with 'Procedure
Call' called by a user:

PB - Pointed to the beginning of the
- procedure segment.

LB - Pointed to a location '400 location
before the beginning of the linkage
area.

SB - Pointed to the current stack frame.

XB - Extra base register for users to use.

Direct Entrance Call

A procedure call to a routine which is implemented
in the operating system but is gated through is
called a Direct Entrance Call. See Figure

a3

H

Y4 MOIHLS

NN

o P jQw T ﬂ;ﬁa&\

~rod ..c__*lﬁ.nw.
AAumind 3344

- 24

?C.H:J.?H 24 oN

: i 4y
\ / 4y
\l;, 9232 Ly us /a7 7124

dvpmord EPap v shepery SpapD wrd Slepery v awwy 2umpmost ITY)
e > proubos ;
-+ G) noboS Y prowbos

H

.'. {xamr'd og R j?/miof’ f.d/waob [M

Bowdure fmne linkoge frome

ChLL TNOUA ’"”"““____£>
e

c See S
-+ N
§ S ¥
A :
GAT: TNOUA
ELB
L=~35

PROCESS EXCHANGE & SCHEDULING

Process Exchange

_ One of the operating system's responsibilities is to

* decide which process is scheduled to run next and set
up the necessary steps for this process. The first
step is done by software modules, such as SCHED,
PABORT. The latter step is done by hardware/firmware,
and the procedure is called process exchange.

The data bases for Process Exchange are:

READY List
PCB (Process Control Block)
WAIT List

The root of Process Exchange is the Dispatcher,
which is done in hardware.

The Dispatcher assigns a register set to the process
which is scheduled to run and turn on the timer. It
also scans the READY List loocking for the process on
the list.

-2

L 37

s R e (S e A

0
T
0173 404 -
1L 935 2
MOLSTY ‘1IN0 £
ONIWOD HNIHM : mwwmwwwm
RELT
] EREEIRER]
1ny430 99113 | : sl | L o
73S 2 . QNVEH0D dYH) ARETEIRER]
& 553)04d ¢ T3A3] 43N
ol gt 4 b $S3004d-¥3dNS
¢/t 9173 MM I¥dIH (10H
Q3LSNYHX3 WIL 73S 2 . 5
NIHK STIATT S - TudMon ((Ndd (3¢ . J4N0SH o
ONINO)) / 53 i
1n0 MY AQY 1 /- IS
SYH 1L 23S Z AQY TTILS W
- INONNY S+ ¥3sSn - 9113 $SI04d M10T)
a3SN WIL LX3IM 23S 0T/ yasn ALY) | ALTNOTYd
9173 TIN4 IAI9 0L T4dIH _ 1SI7 AQY3Y

NI LNd "¥'D N3IHM - THdIH 2

@INH NIHM (73S 0T/¢ 9173 Ad 139)

| f'll .".'

=
SINTERACTIVE USER" CYCLE

o
~

! 4 N \N}"{E (by the AMLDIM process)
\
[I warr N X
(for a characteT
[| by C1IN from ring O) e
= TTY Wait Queue

L] e

L

" WAIT \
(after a new-line
character is received

- by COMANL) Tesetl time

slice \ \

% \NFY'E (by the backstop process)

Ky
‘\\ \\ High Priority Queue

-I“-—""'? "

‘s"-r-'Ll-‘n;
(R

process Teady, the backstop will n?tify 8

¥ben there is no
there are any-

process on the high priority queue £ 3

I-3af

|

‘III ‘Il ‘Il ‘
. f :
7 & b - - ="
:

OBJECTIVES OF PRIMOS 4 SCHEDULING POLICY

FAST RESPONSE TO INTERACTIVE USERS
. AVOID THRASHING
. SOME PROCESSING ON GRINDERS

THE PRINCIPLE CONSEQUENCE OF THE PROCESS PER USER
ORGANISATION OF PRIMOS IV AT REV 14 1S THAT THIS POLICY

IS NO LONGER IMPLEMENTED BY CHARACTERISING THE "STATE" OF
A USER BY A NUMBER ASSOCIATED WITH THE PROCESS, BUT BY
WHICH QUEUE - READY LIST OR WAIT LIST, THE PROCESS CONTROL
BLOCK IS THREADED ON.

SCHEDULING POLICY IS THEN EMBODIED IN THE STRUCTURE OF
NOTIFY AND WAIT INSTRUCTIONS THAT, ON CERTAIN EVENTS, (E.G.
END OF TIME SLICE) ARE USED TO PUT THE PCB ONTO AN
APPROPRIATE QUEUE.

. A PROCESS MAY BE NOTIFIED TO THE BEGINNING OR END
OF THE READY QUEUE

. A PROCESS MAY WAIT ON ANY OF SEVERAL SEMAPHORES

. A PROCESS MAY BE REQUESTED TO REMOVE ITSELF FROM
THE READY QUEUE TO A WAIT QUEUE BY SETTING ITS
ABORT ELAG

. -
.

J - N - -
{
L]

e

Ready List:

| POCR A

"I F

B8 L

o=l
L

level T

L ies & 1

_—

B U -

FN_ A
g
i B (S
. ¢
= .
T Enl 8
PR
il (2]
= (4]
g
B
= 7]

5 . FC2

s g 5 J
ks v i
SOREES terocet
- é —_ P

BJL Y doga 5 Teve k——zvel
T EOL 18 " — i > e o
s PCB FCB
o
s v =

|-_‘ Ei ._.-I . _E
o E —
3 MEEE

segment.

Ajl pointers are -16-bit word number pointe
The segment numter is contained

of the OWHER poinier within ezch register sev.

All PCB‘sTarf addresses must te even (bit 1€ = £).
of the ready list Is marked with » BOL enfry = |.

FIGURE 1.

rs within +he PCB
in +he high poriion

A

(ﬁ.

Semzphore

#——3 Counter(=2)

WAIT LIST STRUCTURE

NG 4 Sept 1975

l- BOL

ol NI }

j level —{- A -level -
el ¢
% WLSN , WLSN
l [wLwN 5 WLWN
PCB PCB

=~

QUEVINEG .
praerITy

- N N M -

. _.T
L]

/S PRIDRITY CRDER WITH FIFO°

Figure 2.

LFoR EQuA¢L

LahEars, |

o — i ———— ——— —y = &+ 8

R — -

e pliipl

Aoepeh e’

REV. 15 READY LIST:

ey

LEVEL
0 CLOCK PROCESS
1 SHLC
2 AMLC
3 #PC, MP2
4 VERSATEC
. 1PC
: RING NET CONTROLLER
1 SPARE
g SUPERVISOR PROCESS
o [USER LEVEL 3
10JUSER LEVEL 2| yjSER PROCESSES
11 [USER LEVEL 1
12 [USER LEVEL &
13 | BACKSTOP PROCESS = == — = _

HIPRI 0

ELib- W
LOWPRI @

’t'u.__/

L

A4 ““ru. r\

REV, 1€ READY LIST:

v CoMfrTe “Pound MSERS
(o 5 v ron 12 (.LOHPRI Q

_ T-S. anX _ba'—‘iﬂ A
(& TaB%e Sty usSth: W (B Sinste. ok Hlew g j:C{' Lo

— L4
v TR u S Gors O ftlhiaTs & o é‘ Covn 'Nf‘L

g LEVEL
0 CLOCK PROCESS
. 1 AMLC
. 2 SMLC
3 MPC, P2
£ 4 VERSATEC
z IPC
. 5 RING MET CONTROLLER
- 7 SPARE
il 9 SUPERVISOR PROCESS
9 [USER LEVEL 3
10 [USER LEVEL 2 o
. USER PROCESSES
11 |USER LEVEL 1
.- 12 [USER LEVEL 9
13 { BACKSTOP PROCESS = =~ ~ <
. 0 J/"M M-W'Wﬂ/m-oc?l Stale
_ D oec. TiMe Stict
jTE2 W PTED eV ey '3 s« eyt dorort “Fro T3 Al
. w5 GAUE depuos PRV USEAS i R Q
anoT @ CPA. e r
. o cLIG Q

SCHEDULING 2

il e

wINTERACTIVE USER" CYCLE

PES
4 v o
3 e
~~
: Sy
= iy
l é \ \NFYE (by the AMLDIM process)
(N
I [I warr N\ \
(for a character
! l by C1IN from ring O) \\
’ \ \\ﬁxh TTY Wait Queue
m -~ L d"'—'_"""";- as
" WAIT ‘
(after a new-line
character is received
by COMANL) reset time
slice \ \
\ \NI—‘YE (by the backstop process)

o
\ \ High Priority Queue

""‘"—"—? " a

¥hen there is no process ready, the backstop will notify =
process on the high priority queue if there are any.

I e T AR U e 1

> T T R o e S oy e L e R R T - -
| Lt "o L S yiei3ad G - o Ty - ey g1
. v R Ty e s e Ty verons

SCHEDULING

#COMPUTE BOUND” CYCLE

READY &IST

VSER LEVEL

Y 4

PRCCESS

-

o — —

BACRSTEP —

MNFYE

FRom

BACKSTOP

e e

ELTe &

— —
—-—
G -

Y

WHEN ELIGTS (DEFAULT 1/3 SEC) IS UP, PROCESS WAITS OR
ELIGIBILITY Q IF ITS TIMESLICE (DEFAULT 2 SECONDS) IS ROT
OTHERWISE WAITS ON LOW PRIORITY 8

- EXHAUSTED,

ELIGTS 1S RESET ON NOTIFY FROM ELIGIBILITY Q. TIMESLICE IS
RESET ON NOTIFY FROM LO¥ PRIORITY B

-
>
e
».
-
-
L]
= &
‘e
= Ao L.
R vl i 2
-
cen
ot
*
-
p

Vi

Pozu7T TD
10PRT @ -
FoR USER Ty,
LEVEL 3 rig
€ -
v "
55HA#MRE
CHECI_ COUNTER NOTIFY
IPRT 755 HIPRT
>/a L.
Fad
SEMAPHORE '
CouUNTER NOTIFY
>0 Lo WeEAZ
ﬁ:ga NEXT : ?
LowEA LEE
;
b

RACKSTOP PROCESS (SIMPLIFIED) Rev 15

A

e B I

e 1ol

pMCTIAY
| ®ZPRT

NECTIFY
ELIC &

Rt 4

NCTIEY
| LewPRI & >

ACTIVE PROCESSES DEFINED AS THOSE ON FS LOCKS, DSKLCK,
DAGLCK. A PARAMETER CALLED MAXSCH 1S USED TO CONTROL THE
0, OF ACTIVE PROCESSES. THIS NOW CONTROLS INTERACTIVE USERS
45 WELL AS GRINDERS. g

< - e m

Mpoes

NOTE: “QUITS’ CAN TAKE A LONG TIME TO RESPOND IF PROCESS
IS ON LOWPRI Q. -
A=lo

t - PAGOWYY TRICESS5:

e privel

."L
o
:

beT LOPNFY Y
Fon wWEvEL L
T PAFYT
STCRE NFTLVT || ﬁai -:ir “F
Lwen do—h‘l: -
3 .
= -
Som DS K5 Erp -
PALSEM
Lossem
psxicx 4 4
wo o
vT Lo
TA~ oK
AT oM
3 MALS exf
G-
MNOTIFY
NIPRZ Q | .
AMOTIFY +
£ @ 0
- #g e
ANT oM MOTIA Y Sz
O~ FUALINT { EvNREMT | o s O _Aanzin YES
tewlpr lowpir o MEYerT ¢

Yl-l.

—>

OPNFY ALLOWS 16 NOTIFIES ON LEVEL 4 LOWPRI O
8 NOTIFIES ON LEVEL 3 LOWPRI @
4 NOTIFIES ON LEVEL 2 LOWPRI @
2 NOTIFIES ON LEVEL 1 LOWPRI @

AN ey

1 NOTIFIES ON LEVEL @ LOWPRI Q

5Ny

. NFYCNT CONTAINS CURRENT NO. OF NOTIFIES ON CURRENT LO¥PRI Q.
WHEN NO OHE IS ON THE CURRENT LOWPRI LEVEL,
IRRESPECTIVE OF NFYCNT

60 TO NEXT LEVEL

FOAng > 4y wKoe vV Je.(D HACla (D& FRERELO S

e pirvel

. “lu'-'il- I hy

(simplified 3
S ——
A ¥
w'a:f MNOTIFY -
‘e
So 7 HIARI Q
A
0 .
4
A
SEmARNCRE
coun TER MOTIAY
e tow PRT g
Y
A
&
4
- k
= FoR wEXT >
lowerR LEveL

e

I

BACKSTOP PROCESS:

JZR_\/ f'g

CET L(OPNFY
ZoR LEVEL L

STcRE AFTEMT et

GET LCPNFY
FOoR MEIXT .
LoWEN cﬁ&v"‘-‘"

MNOTIFY
L
Hffof?f a y
S DSHSEM
PAGSEM
— LOL-SEM]
pDsrclen
vr Lok
vTLors
Ta?ﬂf—cﬂ'
PATLO K
)
7 4
¥z§ MOTIFY
Dt EISC O o
Fer-}
YES MOTIFY
(uJ?QENT
LoWwPRI G
 destd
e

QA

LOPNFY ALLOWS 16 NOTIFIES ON LEVEL 4
8 NOTIFIES ON LEVEL 3
4 NOTIFIES ON LEVEL 2
2 NOTIFIES ON LEVEL 1
1 NOTIFIES ON LEVEL
NFYCNT CONTAINS CURRENT NO. OF NOTIFIES ON CURRENT LOWPRI Q.
WHEN NO GHE IS ON THE CURRENT LOWPRI LEVEL, GO TO NEXT

IRRESPECTIVE OF NFYCNT

——

LOWPRI Q
LOWPRI Q
LOWPRI Q
LOWPRI Q
LOWPRI Q

s Sarmad L

\
|

MAXSCH COMMAND:
USED TO SET THE SCHEDULING CONSTANT MAXSCH FROM SYSTEN

TERMINAL
MAXSCH)

DEFAULT SHOULD BE 3,

NOTE THAT MAXSCH IS CALCULATED AT CONFIG TIME ACCORDING
TO AVAILABLE MEMORY:

YEMORY HAXSCH
64K WORDS 0
85 1
123 2
160 3
EI [I‘JTS Lil'ﬂk@\bi!] .
USED TO MODIFY THE ELIGIBILITY TIMESLICE FROM THE SYSTEM
TERMINAL

ELIGTS <Ny , WHERE n = NEW VALUE IN TENTHS OF A SECOND
DEFAULTS TO 3710 SECOND,

CHAP COMMAND:
AS AT REV.14, CAN BE USED TO CHANGE PRIORITY AND TIMESLICE

ON A PER USER BASIS., NOTE THAT DEFAULT TIMESLICE IS 2
SECONDS.,

T e 3 -
= LA g R T N A b e R T
. &% X T 1 . P S S s A S i : 3
¥ : - e R S Al 25 e T\ otrres iy .

e 71 7

SCHEDULING

MAXSCH DEFAULTS TO 4 FOR SYSTEMS WITH 443KB OR
MORE

BACKSTOP KNOWS ABOUT THE NEW DISK QUEUING
MECHANISM WHEN CALCULATING THE HUMBER OF
ACTIVE PROCESSES

WITH MULTIPLE DRIVES, MAY BE POSSIBLE TO IMPROVE
SYSTEM THROUGHPUT BY RAISING MAXSCH

COMMAND LINE PROCESSOR

Command Line Processor

: In Revision 16 and prior to it, the module DOSSUB
> is 'the' command processor. The commands are cate-
gorized into two groups:

internal and external commands

All internal commands codes reside in DOSSUB. All
external commands' run images live in an UFD called
CMDNCY.

In Revision 17, a major change occurs in the command
line processor =-- call it New Command Line Processor.
It has two distinct modes:

static mode and recursive mode
Currently, all user's programs and all external
commands are executed in static mode. PRIMOS codes,
internal commands, as well as the condition mechanism,
are executed in recursive mode.

There are four groups of commands in Revision 17; they
are:

e 01d Ring 3 internal commands:
START and RESTORE
e New Ring 3 internal commands:

ABBREV, RLS, REN,
DMSTK, RDY

e Ring O internal commands:
DOSSUB's internal commands
e External commands:

Such as utility programs,
compilers, and external

commands installed by users.

New Command Line Processor is illustrated in Figure

-30

H

b
K‘U LoG—IU EXIT FRRRTV
0K, |
ozc/ /‘“

possup

@——)
Messa g€ MLSSA (L
J// e LTN

* GET Commpup| &—-> C.omm./

l

[P rsL
Logmmand

Ay

Pty CHMREAS

-3

READ A (OMHAND LINE

N

LOMANL CALL
C1IN
CAIN READ
A HARACTER
FROM FLE
- = L'
WAIT
: ROLES
NOTIFY FRoM BYvFSEM P 5
AMLDIM - B :
h
v
Zomo9T e
e FiLE Ec¢HO
: VES
s Y CoTPUT
CHARALTER Y
To FILE
L 5 .
RETVAN
- A s e = - " '_. : TEST FQR
TICRRARL d4ud PROCESS
ERRSE & KIFLL
§ LALL SCHED

TO WAIT on

HIPRI Q WwITH
RESET T/S

i

- 32

-{zfev- N

i CL$GET

Yos / DessuB

Yes /TaviesM

CREETA

Aaw Cornp
PrOCESS IR

4

q X
Comm a-*\c‘

porst
L owimand

RLZ

MO

CE!

Yoo

ABDREV

prepro-

cusser

Txecle

EXQ bvvc’

A

RésTope Ruw

v :‘hhfa?. - Zye L

Py LR

gx' 7

Y

DEBUGGING

£2)

(3)

(4)

(IT)

(1)

(2)

DBG - SOURCE LEVEL DEBUGGER

Overview

Addressins Modes: DBC orerates on Prosrams which execute in either
64V or 321 modes. The debusser itself executes in 44V mode.
Lansvases Surrorted: FORTRAN-74)FORTRAN-77:PL/1:PL/PF.

COBOL surrort is planned.

Memory Resvirement: The debusser’s procedure part (which is shared)
occuries 3 sesments. Per user information reauvires a fixed amount of

srpace includes common area and linkase text. This occuries about 4EK
words. Per user space of variable lensth includes stack srpace {at leas

16K words) and symbol table space., All symbol table storase is allocate:

dvnamically.

Central Processor: The DBG runs on any CFU carable of seneratins
64V addressins mode. Presentlys this includes FRIME 356:1488,450,5808,558,

658 and 750 rrocessors.

PROCEDURE OF CALLING DBG

Prosram Comrpilation

The user must inform the compiler that he/she later intends to use DEG.
This is done by includins the '-debus’ parameter as one of the compile-
time orptirons on the command line. :

For exameple» to compile "myprosram’ with the FORTRAN compiler for later

use of DBGr» one enters:
OKy FTN MYFPROGRAM -64V -DEBUG

Inclusion of the ?-DEBUG’ ortion causes the comepiler to outrput the
information necessary for the debusser tn recosnize and manirulate
prosram unitsy symbols and statements.

Frosram loadins
Frosrams which are comepiled with ?'-DEBUG’ option are loaded in the
same way as thonse which are nots in other wor3sy» the user exrperience

no chanse in prosram loadins. e

Invokins and Terminatins DBG
The debusser is invoked at FRIMOS level by ?DBG’ command followed by the

name of the SEG file contanins the Pprosram to be debussed.
For examepley to debus the "#mypPprosram’:

OK: DEGC #MYFROGRAM
##DBG*#* revision 17.0a (A&-February-1979)

>

With this commandr the debusser is entered. It reads the prosram and
symbol table from the SEG file into memory and eprints an ID

messase as well as a prompt sisn >. The debusser’s command mav be entereq
When the "quit’ command 1s entered: the control is returned to

PRIMOS command level.

Example:

> QUIT
OK I -34

(4)

User Prosram Control

Control is initially passed to DBGC from PRIMOS when the debusser is
invoked. Control passed from DEG to user’s prosram when

the user uses RESTART or CONTINUE command to restart or continue
prosram execution.

the user sives one of the sinsle-ster commandsy such as STEP» STEP]
ke cor DL ; o

the user CALLs a subroutine contained within the user prosram,

or when the evaluation of an expression invnlues a user-defined
function.

Control returns to DEG when

the user prosram encounters a breakpoint previously set by user.
the prosram completes execution of the number of statements imepliec
or expressed in a sinsle-step command:

the main Pprosram returnsy or any prosram unit stops: Pausesy calls
EXIT or calls ERRPR% tuv return to FRIMOS command level,

in entry trace modes wheneuver a procedure is called or returns,

in stafement and/or value trace modesy whenever a procedure is call
or returnesy and prior to the execution of each statement:

a user’s subroutine or function returns from a call made fron DBG
on behalf of the user

when the user derresses the 'quit' key at his/her terminals provide
the user prosram has no handler or the QUIT$ condition.

List of Debugger's Commands

RESTART
CONTINUE
GOTO

MAIN
BREAKPOINT
TRACEPOINT
CLEAR
CLEARALL
LIST
LISTALL
TYPE

LET
ARGUMENTS
STEP
STEPIN

IN

ouT

ETRACE
STRACE
TRACEBACK
WATCH
WATCHLIST
UNWATCH

VTRACE

PRIMOS BUILD

This section will be devoted to PRIMOS build. It is necessary to
build PRIMOS when you

e Modify one of the operating system codes.

o 'Rlnj 3
= e Install a Ring OAinternal command.

® Install a Direct Entrance Call.

The PRI400 directory is where all the source programs and the
corresponding object codes reside. PRIME supplies the source
program so that user may modify or add a module in the operating
system.

There will be a demonstration for PRIMOS build.

H

_37

** Listing of C ALL **

Jo ALLs PRI4CS FLN =Mkl £3/14/7179

/* COMPILE AR2 LAD ALL SOURCES FOR PRI™“OS AND ITS UTILITIES
/= COPYRIGHY 13734 PRINE COMPUTER INCan FELLESL=Y s MA J2153
/*

COMO O_ALL

/[*

CO C_COMOD.OFF 20
S = '
cD E_VPSH 290

/*

[=

Co € _PR¥LD 20 /+ to build th2 preloider run file - PRIMIS

[*

/*

CO C_MAPGEN 2T /&« Senerate MAPGEN projranm for PRIM3S - «MAPGEN
J*

/*

€0 € KS 20 /e« Compile and/or assemble source progrms in KS
/*

/=

£0 C FS 28 /+ comoile or assemble source pragrans in
J*

J*

ED E_ N3 24 /+ comnile or ass2mble sourc=2 projrams in N3

/=

[*

Co C.C5 20 /+ compile or assembl= sourc2 projrams y 11 f

/=

[*

€co C_SE 20 /+« compile or assemble source programs in SZ

/=

V& '

“en L_R3S 20 /e« compile or assemble source programs i1 R3S
/=

/e

E0 CLPERPLTR. 210 /e« compile or assemble snurce projrams 1in o 1 v I
[

Co C_COMC.ON 20

/* _
COo C_R3LOAD 20 /+ 1. o3d ring3 object codes and ouild PROOJ13, PR5002

Co C_LBOAD 20 /+ Load ringd object codess build run files PROOO -- PR
/*

/x

COMD -END

CO -END

L7

F~38

L}

00000 PPPP EEEEE RRRR AAA TITIT 11111, OCO00 N N SSS

0 o S P& R- R A A T 1 0] OGP BN YR B

0 O PPPP EEE RRRR AAAAA E 1 0 O R NN SSS
0 . P E R R A A T 1 o) O K. NN
00000 P EEEEE R - B A A ‘ 11713 Q0000 N N SSS

DEVI1ICE
NUMBERS

(ll

To build or modify a partition you run a command called MAKE.
In Aprendix A, there is an example of MAKE being used to
change two smaller partitons into a larger partition. How-
ever before you can run make, you must calculate the physical
device number for that partition. A physical device number
is a six diget octal number that tells the system how large
the partitonis and precisely where it is located on the disk
pack. Below is an example of a physical device number.

g9 g ué6 Joi
starting head no. controller drive unit no. x 2
2 address or

drive unit no. x 2 + 1

For every physical device number, ther is also a logical
device number. A logical device number is an octal number
assigned to a partition.during startup. The first partition
added to the system is logical device 1, the next partition

is logiczl device 2, etc.

Ir-2

RIYSICAL DEVICE NUMBER

NUOMBER | BDGINNING HEAD NUMBER

OF
SURFACES

0 2 4 G g 10 12 14 16 18
------------ i3 s BECRERE, 2 - 110061
0001G0 0104G0 0204G0 0:04G0 040460 050460 0COAGO 070460 100460 ————-
------ 010461 « - 100461 —————-
001060 011060 0210G0 021060 041060 05106C 061060 071060
001061 - = 071001
0014G0 0114C0O 0214CO CZ14G0 0414G0 051460 CG1460 ———m—m ——m——m —cmmem
< - 061461 =
002069 012060 027060 032060 042060 052060 ———=— ————m s e
= = % 052061 -
00216G 012460 0224GC 022460 042460 —————m —m—mmm i
= . 042461 e -

12 002060 015060 025060 030000 —=—mrv mnme i
1T e e s 032061 e
14 0034G0 013460 023460 -

NI s i o S RN & o et
1G 004060 014060 —————— —— - s s

17 amsans QIO cemins sinsiiemin i - =

18 00446C e o s s i i e
12 004461 - - - = = = = -

THIS TABLE CONTAIN ALL THE FOSSIBLE PHYSICAL DEVICE NUMBERS FOR TIIE 40, €C,
AND 3CO MB DISK DRIVES. TO USE THE TABLE DECIDE HOW MANY DISK SURFACES APE
TO BC INCLUDED IN YOUR PARTITION AND WHAT HEAD NUMBER 1S THE FIRST HEAD IN
THE PARTITION. USING THIS INFORMATION LOCK UP THE FHYSICAL DEVICE NUMBER
IN THE TABLE. 1F THE PARTITICN YOU DEFINT DOES NOT SHOW UP ON TH1S TABLE,
THAN IT J8 NOT A LEGAL PARTITION. FOR EXAMPLE, ALL PARTITIQNS MUST BEGIN
O AN EVEN 1EAD NWUMDER AND ONLY THE LAST PARTITION. ON'THE DISK PACK CAN
HAVE AN ODD RWMBER OF SURFACLS. THESE TWO RULES MUST BE OBLYED.:

NOTE - THE PHYSICAL DrVICE NUMBIRS IN THIS TABLE ASSUME THAT THL DISK PACK
15 MCUNTED ON DISK DRIVE C. TC FIND THE PIYSICAL DEVICE NUMBERS FCR DISK
PACKS MOUNTED CN OTIHER DRIVES, TAKE TIE DISK DRIVE UNIT NUMBER, MULTIPLE IT
BY 2, AND ADD 1T TC THE DIIYSICAL DEVICE NUMEER FEOM TIE TABLE. TIIS S IS
THE HIYSICAL DEVICE NIAMBLR.

PEWARE = NMIYSICAL DINVICIT NIMBERS C200G1, 010461, AND 001061 ARF ONLY

IOSSIBLE ON A 40 O 80 MB DISK DRIVLE. ALSO MOTE TIHAT THE 40 AND £0 MB
DISKS ONLY HAVE HEADS O TIHRU 4.

E-3

\

PHYSICAL DEVICE NUMBER ~ 2nd QONTROLLER

NUOMBER BEGINNING HEAD NUMBER
OF
SURFACES £
0 2 4 c 8 10 12 14 1G 18

1 D000 —imnn: wivmcrs o 110261
» 000GGC 012660 022660 022GCO GAZ6G0 050GG0 0G0GE0 070660 100650 —--—-
B o 012CG1 - - e 10066] ———==m
4 001260 011260 021260 0212G0 041260 051260 061260 0712C0

TR e e S R, S e 071261 -

G 0016GO 0116G0 021660 021660 0416G0 051€60 061660 ————=m ———=—= ————=v
T s SRR SISO SRR, UEIB0] —mrrmimm mmerts simmease
£ 0022C0 012260 022260 032260 042260 C52260 -

9 s = 052261 EC S ————
10 002GE0 012660 022660 CI26GO 0426C0 e
11 = 042661 - -
12 CO3260 012260 023260 053260 - E———
15 = 5 30061 = i i S
14 003EGO 013660 0216GCO - - - - e
15 - 023661 e e
16 0042C0 G14260 =< = B s
VT camemsion ASOB] rimon; isimsine — - -

18 0C4660 - SRS -

19 004GG1 = 2 i e R St Yo i

THIS TABLE QONTAIN ALL THE FOSSIBLE PIIYSICAL DEVICE NUMEERS FOR THE 40, &0,
AD 200 MB DISK DRIVES. TO USE THE TARLE DECIDE HOW MANY DISK SURFACES ARE
TO BE INCLUDED IN YOUR PARTITION AND WHAT HEAD NUMEIR 1S THE FIRST HEAD IN
THE PARTITION. USING TIIIS INFORMATION LOCK UP THE PHYSICAL DEVICE NUMBER
IN THE TABLE. IF THE PARTITICN YOU DEFINE DOES NOT SHOW UP ON THIS TALLE,
THAN IT 1S NOT A LEGAL PARTITION. FOR EXAMPLE, ALL PARTITIONS MUST BEGIN
OM AN EVIN HFAD NUMBFER AND ONLY THE LAST PARTITICN ON_THE DISK PACK CAN
HAVE AN ODD NUMBER OF SURFACES. THESE TWO RULES !'.TUST_‘BE OBLYED.
..

NOTE - THE PHYSICAL DEVICE NUMBERS IN TH1S TABLC ASSUME THAT TIE DISK PACK
1S MOUNTED ON DISK DRIVE O. TC FIND THE I1YSICAL DEVICF. NUMBERS FOR DISK
PACKS MOUNTLD ON OTHEL DRIVES, TAKE THE DISK DRIVE UNIT NWDER, MULTIPLE 1T
BY 2, AND ADD 1T TO THE RIYSICAL DEVICE NUMBER FROM THE TABLE. THIS SUM 1S
THE PMYSICAL DEVICE NMBER.

BDEVARE - MUYSICAL DEVICLE NUMBERS 02C2C1, 012661, AND 0012G1 ARF ONLY

JVSSIBIE OGN A 40 ORS¢ MDD DISK DRIVE. ALSO NOTE THAT THE 40 AND SO MB
DISKS ONLY HAVE HEADS O TUHIEU 4. y

T4

B

;B

PARTITIONING OF CARTRIDGE MODULE DEVICES

Ramovable

Non-ranovable

liemovable

Non-ranovabio

Pomovabl e

Non-recmovabl e

First Controller

61 (16

1000G1 (16

Gl (16

100460 (32

1100G1 (16
or

100461 (48

61 (16

100460 (32
110460 (32
120061 (16
or
101060 (64
120061 (16
or
101061 (80
or
100460 (22
110461 (42

I-5

MB)

MB)

MB)

MB)
MB)

1B)

MB)

MB)

MB)
MB)

MB)
MB)

MB)

MB)

MB)

Sccond Controller

26! (16

1002G1 (16

261 (16

100GGO (22

110261 (16
or

100661 (48

261 (16

100GG0O (22
1106G0 (32
120261 (10
or
1C1260 (G4
120261 (16
or
101261 (80
or
100660 (32
110661 (4S

MB)

MB)

MB)

MB)
MB)

MB)

AB)

ME)
MB)
MB)

MB)
MB)

MAKE

MAKE is a utility program used to create new partitions on a new pack
or to change the size of existing partitionse.

In this example we shall recreate a 1062 partition into two partitionsy
462 and 10462« There is one badspot on this pack: TRACK=503 HEAD=3.
We shall run MAKE at user's terminal though it can be done at system consol

First step is goto system consol and type:

SHUTDN 1052
DISK 462 10452

Theny goto user terminal to run MAKE.

0Ky ASSIGN DISK 452

DKy MAKE
GO
MAKE 16«8

BUILDING NEW PARTITION.

PHYSICAL DISK: 462

40MB STORAGE MOD?ND

SPLIT DISK?: NO

DISK FILE-RECNRDS PAGE-RECORDS (DECIMAL)
000462 14814 0
FARAMETERS OK? YES

PACK NAME?CLASS1

BADSPOTS ON DISK? NO

VIRGIN DISK? YZ3 X
VERIFY DISK? YES

FORMAT DISK? YZ3

BEGINNING FORMAT

FORMAT COMPLETFD

BEGINNING WRITE

WRITE COMPLETE

BEGINNING VERIFY

DISK CREATED

OKy UNAS DI 42

MAKE (171)

+ MAKE partition with bad spots on ite.
« We shall run Make on 10462 at user's terminal

0Ky AS DI 10462

0Ks MAKE
G0
MAKE 1648

BUILDING NEW PARTITION.

PHYSICAL DISK: 10462

40MB STORAGE MOD?NO

SPLIT DISK?S NO

DISK FILE-RECORDS PAGE-RECORDS (DECIMAL)
010462 14814 0
PARAMETERS OK? YES

PACK NAME?CLASS

BADSPOTS ON DISK? YES

TRACK = 607

HEAD = 3
TRACK = 0 /* answWwer 0 to terminate BADSPOT List
HEAD = D
TRACK HEAD OF BAD SPOT
607 3

PARAMCTERS OK? YES
VIRGIN DISK? YES
VERIFY DISK? YES
FORMAT DISK? YES
BEGINNING FORMAT
FORMAT COMPLETED
BEGINNING WRITE
WRITE COMPLETE
BEGINNING VERIFY
LOST RECORDS

DISK CREATED !

OKe UNAS DI 10462

« Goto system consol issue the following commands to starts up the partitions:

DISK NOT 462 10452
ADDISK 462 10452

« NOTE: MAKE on paging surface can be done only under PRIMOS II
The CMDNCO and DOS are empty when a partition is made by MAKE.

Extira sfep must be taken if you wish to modify the partition
containing CMDNCO and DOS« You must move these UFD's elsewhere
before running MAKE.

L ~T

MAINTENANCE

2 B

FIXRAT

« FIXRAT is an utility program that checks the PRIMOS file integrity on
any partition. It reads every record in every filey directory and segment
directory and checks its integrity. Should there be any inconsistencys
FIXRAT prints out the discrepency Wwith an error messaygee.

« In this exampley we shall run FIXRAT on 462.
* Tojrun FIXRAT, first issue the following commands at system consol:

SHUTDN 462
DI 462

« Then proceed the following:

OKy AS DI 482

OKy FIXRAT

GO

FIXRAT 164

FIX DISK2 NI /* answer NO for the first time arouna
PHYSICAL DISK = 462

UFD COMPRESSION?YES

CISK PACK ID IS CLASS1
BEGIN MFD
BEGIN CMDNCO
END CMDNCO 1
BEGIN DOS
END D0S 1
BEGIN SPOOLA
END SPOOLQ 46
BEGIN LES
END LEE 15
BEGIN XRI400
END XRI400 414
BEGIN BEVERLY
END BEVERLY 12
BEGIN MIKE
END MIKE 11
BEGIN BCB
END 808 =
BEGIN ELTON
END ELTCN 9
BEGIN CHEN.2
END CHEN«2 23

END MFD 569

RECORDS USED(DECIMAL)I= 569
RECORDS LEFT= 14245
DSKRAT OK

* FIXRAT donee.
*+ UNASSIGN the disk
« Goto system consol and issue:l

DISK NOT 462
ADD 462

* Job done!
Ir-&

i h .’,'

BACKUPS

"I'E.

DISK TO DISK

Original

COPY EXANPLE

* IN ORDER TO BACKUP A PARTITION, YOU MUST SHUT DOWN THE PARTITION
YOU WISH TO COPY FROM. SINCE YOU SEOULD BE MOUNTING A BACKUP
DISK PACK, THE PARTITION YOU ARE COPYING TO 1S ALREADY SHUT DOWN.
—THE FOLLOWING COMMANDS MUST BE GIVEN FROM THE SYSTEM CONSOLE.

SHUTDN 10460
DISK 10460 104€2

* THE FOLLOWING 1S THE TERMINAL SESSION FOR COPY

OK, AS DISK 10460
OK, AS DISK 10462

OK, COPY

COPY 16.4

FROM PHYS DISK= 10460

40!B STORAGE %0D? XNO

TO PEYS DISK= 10462

40¥E STORAGE MOD? NO .

FROM, TC, RECORDS= 10460, 10462, 7407
PARAMETERS OK? YES

DONE

1F YOU ARE BACKING UP THE PARTITICN THEAT COXTAINS CNMDNCO, YOU MUST DO
SO UNDER PRIMOS 11. THEN YOU DO NOT HAVE TC SHUT DOWX THE PARTITION
OR ADD IT TO THE DISE ASSIGNAEILITY TABLE.

-1

* _L]LL]AN'S DIRECTORY WAS DELETED BY M
A COPY OF THE DIRECTORY OFF TH
~MUST MOUNT THE BACKUP DISK ON

RECOVERING FROM DISK

E BACKUP DI1SK.
THE SECOND DRIVE. THEN FROM A

1STAKE SO YOU MUST GET

F1RST; YOU

TER¥INAL USE FUTIL TO MOVE THE UFD LILL1AN.U OVER TO THE

OTEER DRIVE.

Ok, A MFD SECRET 1
ok, 'L

UFD=2FD 1 OWHNER
MASTER MFD BOOT
ok, STAT DISE

DISE LDEV PDLV
STUDNT 0 460
MAiSTER 1 10460
EALCKUP o 10462
Ok, FUTIL

> TO MFD SECRET 1

> TROM WID XXnaax 2
> TRECPY LILLIAN

2 8

N

UFD=1FD 1 OYNER
LABTER MFD BOOT
GEORGE.U

CMDNCO

DOS

®iZ

dAaGhleP

NANCY.P JACK1.P GEORCE.U

LIPL1AN.E

MAGNET | C
T APE
CR T

_]4.

F

MAGNETIC TAPE UTILITIES

MAGRST

OK, A MFD SECRET 1

OK, L

UFD=MFD 1 OWNER

MASTER MFD BOOT
GEORGE .U

Ok, AS NTI

Ok, MNAGSAV -L -UPDT
EEN. 1.2
GarEs ENT TG UTRR) 3

SETTING THE DUMP SWITCH

CMDNCO DOS

ENTER LOGICAL TAPE NUMEER: 1

TAPE NAME: BACKUP
ARE ST DAYy Vi
EEY KO:

KANE OR COMMAXD: €1 B MFD1 ©

XAME OP COLMAND: LED
e CTAREIOFESSANE T

***EXD OF SAVE**~»
wasr OR TORNAXD: SR

NANCY.P JACK1.P LILLIAN.U _

OK, A MFD SECRET 1
ok, L

UFD=MFD 1 OWNER

MASTER BOOT

GEORGE.U

MFD

OK, AS MNT1

Ok, MAGSAV -UPDT -1NKC
REX s J0GLE
TAPE UNIT (2 TRRK): 1

=L

E:TER LOGICAL TAPE NUMBER:

TAPE KANL: BACHKUP

SRE UK DYy)

REV RO

NAME OR COMMAND: &1 B MFDI

CMNDNCO DOS

INCREMENTAL BACKUPS

|

NAME OR COLMAXD: MFD
¥*ETART UF SAVER*S

#KD OF SAVE®
NAME OR COMNAND: SR

NANCY.P JACKI.P LILLIAN.U

RESTORING A DIRECTORY

OK, A MFD SECRET 1

* QNE OF THE USERS, GEORGE TO BE EXACT, HAS ACCIDENTLY _.DELETED HIS
WHOLE UFD. TO FIX TH1S PROBLEM, YOU NEED TO MOUNT THE TAPE HI1S
UFD WAS SAVED ON. THL INDEX YOU RAN WHILE YOU WERE DOING THE
SAVC W1LL HELP YOU LOCATE THE PROPER TAPE.

ok, ~L
UFD=MFD 1 OWNER

MASTER MFD BOOT CMDNCO DOS NANCY.P JACKI.P LILLIAN.U

Of, AS Ll

Ok, MAGRST

BEX . 16

TAPE EXIT (2 TRK): 1
ENTER LOGICAL TAPE NUMBER: 1
KAME: BACKUP

DATE(NY BB YY) 09-07-79
REN NO: 0

BEEL 2O 1

PEADY TO RESTORE: £1 2
BEADY TO RESTORE: PARTIAL
TPEENAMNE: MFD)>GEORGE.U
TREESAME:

=»» STARTING RESTORE ***

YFD > GECORBE L
FILE COMPLETE

=x% PESTORE COMPLETE ***

oK, L
UFD=MFD 1 OVNER

MASTER MFD BOOT CMDNCC DOS NANCY.P JACR1.P LILLIAN.U
GEORGE .U

d-18

OK, A MFD SECRET]

o A

UFD=MFD 1 OWNER
MASTER MNFD BOOT
GEORGE.U

Ok, £S MTI

OE, RAGSAV =L

gEv. 1C.D

TAPE UKIT (€ TRK): 1
ENTEPR LOGICAL TAPE NUMBER:
TAPE NAME: EACKUP

DATE (LN PP ¥Y):

REEV NO:

NAME OP COMMAND: &1 B MFD]

CMDNCO DOS

CONVENT1ONAL TAPE BACKUP

1

G

NLZME OR CONMAND: MFD
e eSTART OF SAVE®SS

R END OF SSACESRLE
NALE OR COMMAND: &R

-9

NANCY.P JACK1.P LILLIAR.U

U 5 A GE

I -20

USAGE

Provides system uszge information as difference readings

— Dbetween successive invocations of the program -
Runs as ring 3 process under standard operating sysiem

Rev. 15 usage runs on the 64 user versions (with or
without networking)

Counters may change whilst usage is looking at them so
results can be inaccurate if time between runs is short -
should no be less than.30 seconds

Segments 4, 6, 10 must be shared with read access from

ring 3
To run;
1. R usagels , followed by
S , at some time later

further readings can be tzken
whenever "5" is typed

2. R usagels i/n,
Runs periodically, the time between
Runs being n seccnds (octzl)

Outputs to terminal, use comgc o ge¢tl resulss into 2 file
Papes LU FES
LIKE 1.
Date and time of run
DTME - Time between present and previous invocation
in seconds
CPTOT - Total cpu time (seconds) used by all users

since last cold start

JL-2|

I0TOT

Rest of

runs

- LINE 2:

— DCPTOT
%CP

DPFCN
PF/SEC

LIRE 9:
DIOTOT
%10
DIOCKN

10/SEC

%0OVLAP
lapped

LINE &:
DLOCNT
10/SEC
DLOFCT
DLOS

]
Q)
=

¢

DLOUCT

LINE 5:
DLOCCT

-

Total I/0 time (seconds) by all users since
last cold start

output is difference between current and previous

with

'Total CPU time (seconds) by all users-

% of real time that CPU was running user
processes (DCPTPT/DTIME)

Delta number of page faults
Delta page faults per second (DPFCN/DTIME)

Total I/0 time (paging and file)
¢ of real time that I/0 was going on
Number of disk I/0 requests (paging and file)

Number of disk I/0 requests per second (DIOCK/
DTIME)

Estimzte of % cf the I/0 time that was over-
nonidle time (DIOCN - DCPBAK)/DIOCK)

Number

“i
4}]
(]
[
15}
m
I
m
g 2|
m
=~
n
1]
0
)
3
(9]
Y
=
b
D
&2
&
P
et
(5]
-1
.:'

Locate

Number on unusec buiiers

Number of on same bufier

KNumber of locate hits on used bufiers

Number locate misses

- &3

LM/SEC - Number of misses per second (DLOCCT/DTINE)

%MISS - % of locate requests which were misses
(DLOCCT/DLOCNT*#100)

%XCP - Unaccounted CP time (100 - the sum of

%CPU) (Process exchange time)

1LINE 6, SYSTEM PROCESSESS

%CLK - CPU for clock process

%ANL - CPU for ANMLC process
ZINPC - CPU for MPC process

%IPC - CPU for IPC process

%FAR - CPU for farnel process
%SLC - CPU for SMLC process
#3pK - CPU for backstop process

USER DATA

USR - User number

LOGIAN . Login nane

CUFD - Current UFD

pEK - Snapehot of runter of pzges in physical

TELOY

CPTIME - Totel CTU tirms since login (seconds)

DIF - CF - Selss Ty 2ipe (IEs IR DTILE)

%CP - Delts & {Fh ize { (BIF - CE)/DTINE)

I0TINME - Totzl 1/0 time sinee 1ogin (seconds)

DIF -I0 - Delta I/0 time (IE: IN DTIME)

%10 A Delta % I/0 time ((DIF - 10)/DTINE)
A -23

Users only appear if their CP or I/0 counters have changed
since the last usage run

When 2 user logs in or out, will get incorrect data for
thzt user on the next usage run

Occasionally get negative numbers when counters overflow

-4

Ok, USAGE -FREQ 2
GO ;

©c2/18/80 13:55:49,37 DTIME= 14.54 CPTOT= 4456.32 10TOT= 2622.237
&

DCPTOT= 5:203 *RCP= 35.793 DPFCN= 237 PF/SEC= 16.303
DIOTOT= 12.764 %10= 87.802 DIOCN= 365 10/SEC= 25.109 XOVLAP= 42.814
DLOCNT= 1176 LO/SEC= 80.90 DLOFCT= 10€Z DLOSCT= 10 DLOUCT= 0
DLOCCT= 74 LM/SEC= 5.00 TMN]SE= G.29 =XCP= 5.80
cCLK= 5.21 SAML= 4.73 %MPC= 0.00 %1PC= 0.00 %FAR= 0.00 %SLC= 0.15 %BAK=5C.Z]
USR LOGNAN MEM CPTIME DCP “CP 10TIME DI1IO x10

] SYSTEM 3593 1669.918 0.13C 0.951 450.785 0.139 0.959

o KANCY 7 2.862 0.452 2.106 3.948 0.712 4,809

6 SLUFD 13 23 +986 1.008 6.931 31.621 2.088 27.433

7 JACK] e 2.241 3.394 22.344 8.791 2.258 22.409

& SLUFD pid 5.6G3 C.041 0.28C 10.23 1824 33.807

19 SYSTEN 1 525.321] Q.00 0.258 04 .027 0.412 2.655
20 F&x 16 16C.627 C.0GC 0.451 166.176 C.8355 5.87&
21 SYSTEN] G.105 0.C53 0.266 5.821 C.227 2281

-
-

51T ARTUP
AND
SHUTDOWN

SHUTDOWN

BEFORE YOU SHUTDOWN THE SYSTEM, YOU SHOULD WARN EVERYONE ON THE
— SYSTEM THAT YOU ARE SHUTTING DOWN. TO DO THI1S, SEND A MESSAGE.

BELO% 1S AN EXAMPLE OF HOW TO SHUTDOWN THE SYSTEM. THIS PROCESS
= MUST BE DONE FROM THE SYSTEM CONSOLE. . :

OK, M ALL NOW
EVERYONE LOGOUT - THE SYSTEM 1S GOING DOWN

AFTER EVERYONE HAS LOGGED OUT, LOGOUT THE PHANTOMS. 1T MAY TAKE
MORE THAN ONE MESSAGE TO GET EVERYONE OFF THE SYSTEM.

OK, LO ALL

ALL THE LOGOUT MESSAGES WILL NOW TYPE OUT ON THE SYSTEM CONSOLE.

OK, SHUTDN ALL

REALLY? YES

WAIT,

LOGI1CAL DEVICE O, YOUR FILES ARE CLOSED
PRIMOS NOT 1N OPERATION

SYSTEM STARTUP

TURN ON THE POWER 1IN THIS ORDER

CPU (TURN THE KEY TO ON)
D1SK DRIVES (ONE AT A TIME)
TAFE DRIVES

OTHER PERIPHERAL DEVICES

BOOTING THE SYSTEN

TURN THE ROTARY SWITCH ON THE CPU TO STOP/STEP

PRESS MASTER CLEAR SWI1TCH

CHECK ADDRESS/DATA SWITCH SET TO ADDRESS

PRESS SENSE SWITCHES 10, 1C, 14 UP (13 AND 14 1F USING CARTRIDGE DRIVE)
TURN ROTARY SWITCH TO LOAD

PRESS START SWI1TCH

AT THE SYSTEM CONSOLE

1F TBE BOOT WAS SUCCESSFUL THE EYSTE)Y VI1LL PRINT -
PHYSICAL DEVICE=
ON THE SYSTEM CONSOLE. YCU RESPOND WI1TH THE PHYSICAL DEVICE NUMBER OF

YOUR
CORMANDESERERCE T .E. WEERE FRILGOE 18- S307ER,

TYPE VEAT 1S UNDERLINED AT TEE SYETL™ COXEBOLE
PHYS1CAL DEVICE=460

PRIMOS 11 REV 16
OK: STARTUP 460

OK: A PRIRUN OR A PF1400
OR: R -PRINOS

STARTUP FOR THE 50's SERIES

TURNING ON _THE COMPUTER

TURN ON POWER TO THE CPU

TURN ON THE DISK DRIVES ONE AT A TIME
TURN ON THE POWER TO THE TERMINET

TURN ON THE REST OF THE PERIPHERAL DEVICES

BOOTING THE SYSTEM

THE SYSTEM CONSOLE WILL HAVE THE 'CP>' PROMPT
YOU TYPE TN

CP> SYSCLR
CP> BOOT 114

THE SYSTEM CONSOLE WILL THEN PRINT OUT
PHYSICAL DEVICE=

THE REST 1S THE SAME AS THE 400 AND 500

ABBREV YES
PAGDEV 20081 /=
ALTDEV 200583 /
ASRATE 1010 [«
COMDEV 1Cs0 / *
LOUTQM 144 /=
MAXPAG 2000 /*
NET ON /=
SMLC ON /=
NPUSR S / =
NRUSR 4 /*
NTUSR 24 / x
NUSEG 65 &
ATEOUT YES
WIRMEM i
AMLBUF 20 1300 150¢
/%
LOGLGG YES i
ERASE /
DESLOG YES /=
GO

* %

Listing of CONFIG File **

PAGING DEVICE IS

ALTERNATE PAGING DEVICE

SYSTEM CONSOLE'S SAUD RATE IS 300

COMMAND DEVICE

INACTIVITY-LOGOUT TIME IS 100 MIN.

SPECIFY NUM3ER OF PAGSS CF MZMORY TO WYALIDATE
NETWORKS ARE TO BE CONFIGURED

ENABLE SMLC LINES

SPECIFY NUM3ER OF PHANTOM USERS

SPECIFY NUMBER OF REMOTE USERS

SPECIFY NUMBER OF TERMINAL USERS 4

SET NUMBER OF USER SZGMENTS PER USERS (default is 32)

PRINT SIZE OF WIRED MEMCRY

SET AMLC LINE 20'S INPUT 2 OUTPUT BUFFER SIZE IN WORDS

ALLOW LOGIN WHILE LOGGED IN
SZT SYSTEIM'S ERASZ CHARACTER IF OTHER THAN ™ IS DESIRZID
PERFORM LOGOUT WHEN AN AMLC LINE IS DISCONNECTED

Ir-29 A

SYSTEMS
HALTS

——

MEN—————— S

—

PRIMOS SYSTEM CRASH REPORT 400-500

WHEN THE SYSTEM HALTS DO THE FOLLOWING:

16‘
3i7s

18.

e ’ >

DO NOT MASTER CLEAR AT THIS TIME.

TURN ROTARY SWITCH TO STOP/STEP.

PUT ADDRESS/DATA TOGGLE SWITCH TO ADDRESS POSITION.

WRITE DOWN THE NUMBERS OF THE RED LIGHTS THAT ARE ON OR
NOTE THE OCTAL VALUE. LIGHTS ON

NOW TURN ROTARY SWITCH TO FETCH Y.

PLACE ALL NUMBERED TOGGLE SWITCHES TO NEUTRAL POSITION
(THE MAJORITY ALREADY ARE).

PRESS AND RELEASE DATA CLEAR.

PRESS AND RELEASE START.
PUT ADDRESS/DATA TOGGLE SWITCH TO DATA POSITION.

WRITE DOWN THE RED LIGHTS NOW ON. ADDRESS O

TERN ROTARY SWITCH TOFEETCH ¥ + 1.

PRESS AND RELEASE START.

WRITE DOWN THE RED LIGHTE NOW ON. ADDPRESS 1

PRESS AND RELEASE START.

[}

WRITE DOWN THE RED LIGHTS NOW ON. ADDRESE

TURN ROTAPRY SWITCH BACK TO FETCH Y.
PUT ADDRESS/DATA TOGGLE SWITCH TC ADDELES POSITION.

PRESS AND RELEASE DATA CLEAR.

RA1SE SWITCHES 1, 2, & 4.

PRESS NUMBERED SWITCHES 12, 13, 14, & 16 DOWN (THIS WILL
TURN ON THEIR ASSOCIATED L1GHTS).

PRESS AND RELEASE START.

=3

35.
LA
S8,
20,

40C.

PUT ADDRESS/DATA TOGGLE SWITCH TO DATA POSITION.

WRITE DOWN THE RED LIGHTS NO¥ ON. 35 H1 (DSWSTAT)

PUT SWITCH 4 1IN NEUTRAL POSITION.
PRESS AND RELEASE START.
WRITE DOWN THE RED LIGHTS NOW ON.

RAISE SWITCH 4.

35 LOW (DSW3TAT)

PUT ADDRESS/DATA TOGGLE SWITCH TO ADDRESS POSITION.

PRESS AND RELEASE DATA CLEAR.

DEPRESS NUMBERED SWI1TCHES 12, 13, & 14,

PRESS AND RELEASE START.

PUT ADDRESS/DATA TOGGLE SWITCH TO DATA POSITION.
WEITE DOWN THE RED LIGHTS NOV ON. 34 H1
PUT SWITCE 4 1IN NEUTRAL POSITION.

PRESS AND RELEASE START.

WRITE DOWN THE RED LIGHTS NOW ON. 34 LOW

(DSWRXA)

(DS¥RMA)

PUT ADDRESS/DATA TOGGLE SWITCH TO ADDRESS POSITION.

PRESS AND RELEASE DATA CLEAR.

RAISE SVWITCH 4, DEPRESS SV1TCHES 32 385,14 & 15
PRESS AND RELEASE START.

PUT ADDRESES/DATA TOGGLE SWITCE TO Seae POEITION,
WRITE DOWN THE RED LIGHTS NOW ON., 36 HI
PUT SWITCE 4 1IN NEUTRAL POSITIOCX.

PRESS AND RELEASE START.

¥RITE DOWN THE RED LIGHTS NOW ON. 36 LOW

(DSWPB)

(DSWPB)

46.

NO¥ DO A WARM START. 1F YOU CAN'T DO A WARM START YOU HAVE TO DO
A COLD START. TO DO A WARM START, TURN THE ROTARY SWITCH TO
STOP/STEP, PRESS MASTER CLEAR SWITCH, THEN PRESS THE START
SWITCH TWICE. '*=** WARM START ***' SHOULD PRINT OUT ON THE
SYSTEM CONSOLE 1F A WARM START 1S POSSIBLE. ALL THE TERMINALS
SHOULD BEGIN TO FUNCTION. IF THE WARM START 1S NOT SUCCESSFUL,
YOD SHOULD GO THROUGH COLD START PROCEDURES. THESE ARE THE

SAME AS A NORMAL STARTUP.

I -33

e ———————
-

SYSTEM HALTS ON A 50'S SERIES

WHEN YOUR SYSTEM HALTS, THE LIGET ABOVE THE MASTER CLEAR BUTTON GOES
ON AND THE TERMINALS STOP WORKING. THE SYSTEM CONSOLE SHOULD HAVE
PRINTED THE HALT LOCATION.. RECORD THESE NUMBERS IN YOUR SYSTEM LOG.
BELOW 1S A PROCEDURE FOR FINDING THE REASON FOR THE HALT.

+

CP> D DSWSTAT
CP> D DSWRMA
CP> D DSWPB

RECORD THE NUMBERS THAT PRINT ON THE SYSTEM CONSOLE IN RESPONSE TO
THESE COMMANDS. NOW YOU ARE READY TO ATTEMPT A WARM START. TYPE
THE FOLLOWING COMMANDS ON THE SYSTEM CONSOLE.

CP> SYSCLR
CP> RUN

HALTED AT : 1001: 000010
CP> RUN
¥*% YARM START #***
IF YOU ARE SUCCESSFUL WITH THE WARM START ATTEMPT, ALL THE USERS VILL

BE ABLE TO CONTINUE. 1F THE WARM START ATTEMPT WAS NOT SUCCESSFUL,
YOU MUST THEN TRY A COLD START. THIS 1S THE SAME PROCESS AS NORMAL

SYSTEM STARTUP.

THE
EVENT
RECORDER

-35

H

OK,LOGPRT TTY
LOGPRT REV 16.3
INPUT TREENAME: CMDNCO>LOGREC

sxx»» CMDNCO>LOGREC, 22:20:12 FR1 25 JAN 1980 **#*=*» -

09:25:00 FR1 18 JAN 1980

MEMORY PARITY (ECCC) DSWSTAT= 020110 146400 DSWRMA= 000006 017253
DSWPB= 000006 017367 PPN ,WN= 000024 001253 BIT= 6 OP=1

09:25:52 FRI 18 JAN 1980

SHUTDOWN BY OPERATOR

09:27:20 FRI 18 JAN 1980

COLD START CPU TYPE= 6 MICROCODE REV= 2
1D= 000000 000006 000000 000002 000000 000000 000000 000000

DISK MOUNT: OP/SYS ON 000460

09:27:26 FR1 18 JAN 1980

DISK MOUNT: ANLYS1 ON 010460
NDISK MOUNT: MRKREP ON C20460
DISK MOUNT: ADMIN ON 0Z0460.
DISK MOUNT: CUST1 OXN 021060
DISK MOUNT: CUST2 ON 061060
DISK MOUNT: SCRTCHE ON 110041

00:28:04 FR1 18 JAN 1980

DISK MOUNT: SFTWAR ON 000462
DISK MOUNT: ANLYS2 ON 010462

D1SK MOUNT: DEMOPK ON 020063

V'S ‘N utapen
suoppdes jiesu] o)} Asea }| sa)ewW qe} uo abBpe pepreg eyy

‘SNOILAYD NMO HNOA ILIMM OL HOIHM NO SLYISNI
NIVId ONISN "LNIWIONVHHEY LOI[ENS NMO HNOA IAYKH
OL NOA TTHYNI SIXIANI EYL'ITEHVIHISNI TWNOILYN

P
~N

nvariromnvAaL

23-680

NEW STRUCTURE OF USRCOM AND UTCOM:

ojl.“.

. URSCOM . UFcon
10/705 o 10/13105 z
. {
UTCOM_(16)
ENTRY PER 4 | i
| UNITAB (B4)

CONFIGURED
USER CURATT (1)
HOMATT (1) | qﬁﬁ\\h___;

Y| LOGNAM (16)

OHLY & CHARACTERS OF LOGMAM ARE USED AT REV. 15. UNRITAB, CURATT
AND HOMATT ARE 16 BIT POINTERS INTO UTCOM. WHEN USED AS AN ATTACH

PBINT, UTCOM DOES NOT KEEP ASCII CHARACTER STRING (USE UFDNAM.)

ey

-
»

F
o

“"\TA STRUCTURES CF THE PRIMCS FILE SYSTEM DISK

I'“-l f‘o

ded OVERVIEN

The fo:mat of a Primos disk is similar for all disk types supported.-by Prime. Each
logical? disk corsists of a series of sequentially numbered records. Each disk record
consists of a record header and a data section. All records of a given lcgical disk are
the same size; every record has a record header. Disk records are used to contain all
.. data on the disk including directories. Primos currently supcorts two record sizes.
Storage Modules have 1848 word records divided into a 16 word record header and a 1824
word data section. All other Prime supcorted disks have 448 'word records divided into
an 8 word record header and a 4498 word data sectien.

1.2 RECCRD HEALER FCRMATS

'1.2.1 Overview

The data items in the record header of both Storage Modules and all other disks are
the same. The size of each data item and the order of the items in the record header

are diff:rent.

Below will be discussed the meaning of each data item and its usage. The name of the .
data item is the name used to referenct the item in Primos IV operatlng system

FORTRAN ccde.

REXCRA Current Record Address
The record address (record number) of this record will generally be

checked by the disk driver (DVDISK).

REXFOP Beginning Record Address or Father Record Address
For all records except the first record in a SAM string, this data item
contains the record address of the first record in the file (BRA). I£
the record is the first record in the file, REXKXOP contains the
beginning record address of the d1rectory in which the file is entered.
If the file is a DAM file and the record is the first record in an index
level, but rot the highest index level, REXFOP contans the record
address of the first record in the next highest index level (SAM

strirg).

REXDCT Record Data Count
A Nonter of words which are valid in the data section of the record. If

the record is not the last record in a SAM string, the data count must
be the maximum allowed for the record.

.
LR Rl

REXTYP FPile Type
The {tem is cnly valid in the first record of each file (BRA). = In all

other records, REXTYP must be zaro,

-4

Bit 16: g => SA¥ file, 1 => DaM file
15: -~ 1 => gegment directory, else 9
14: 1l =>.UFD, else 8 X
Bits 2-13: on record £ (BRA of BCOT) and record 2 (EEA of LSKXRAT
only, 1 if disk has 1248 word records (StDrage Mocule);
else O, i}
Forward Pointer
Record address of next record in SAM string.
last record in SAM string.

Zero if current record is

Back Pointer ® :
Record acdress of previous record in SAM string. Zero if current record

is first record in SAM string.
.

I
Zero if a SAM file. Else/the mdex level of the SAM string of wich the
current record is a member. The highest index level has the numericzlly
highest numer; the data level is zero.

Index Level

1.2.2 Record HBeader Format - 1042 word records (Storage Module)

2 REKCRA INTEGER*4
2 | rexor INTEGER* 4
4 REXCCT INTEGER*2
5 REXTYP INTEGERY*2
& REXTFT INTEGER*4
r 4
B REXSFT INTEGERY4
18 REXLVL INTEGER"2
ke 8§ reserved 5 INTEGZR*2 words, must be zero
15
1.2.3 Record Beader Format = 448 word records
2} REXRA INTEGER®*2
1 REXERA INTEGERY2
22 REXKFFPT INTEGER®2
3 | REX@PT INTEGER*2 s
-3 | eEeT INTEGER®2 :
5 REXTY? INTEGER®2 3
6 | REXLVL INTEGER"2 °%
| resarved INTEGERY2, must be zero

K

1.2.4 Accessing Record Beader Data Items

The ring 2 subroutine LCCATE is usad to access both the record header and the data
section of a disk record. Details on the usage of LCCATE are given elsewhere in this

cocui=nt. -

[

I

Cne ‘:gaf “the actions of LCCATE is to arrange the record headers so that the data item
lendths are those given for 1248 word records. The proper method of accessing the
variables from FORTRAN ccde is: A

I = REKCRA (BUFNEW)

ard similarly. DNote that each data item must be accessad irdividually; note
ordering of the data items can be assuned.

1.3 STRUCTURE CF FILES

1.3.1 Overview

All collections of information on a Primos file system disk are organized into files.

.. Directories are files whose data sections contzin “"special” information. fTwo basic

- types of files are currently supported, SAM (Sequential Access Method) and DAM

(Direct Access Method). There is no difference in the user interface to access

information in either SAM or D&M files. Thus the editor will work on either type of
“ile without any special ccding conventions.

1.3.1.1 SAM Files

A SAM file consists of a single "SAM string” in which all the records in the file
are linked together in a linear doulby linked list using the pointer REXFPT and
REXBFT in the record headers of the records in the file.

P

I
|

g<—| |
| |
) I<
ar | |

e e e e e, -
- " -
13 Ed

>

|
I
I
|

8<— The data in any SN file may be accessed using PRWESS either sequentially or
rardan access. Rardam accesses wich are relatively far apart will be slower than
" if the file were a DAM file, .

1‘.3l.1.2 LA™ Files

A DAM file consists of a hierarchy of "SAM strings”™. The data ir a LAY file may
be accessed either rardaomly or sequentialy using PRWZSS. £1ther type of acces

will cccur with approximately the same speed. g
. - R i
- =
. |
l d
f<—] |=—>
{ |
I !
I= I
level 2 I I
I |
|
I
B<—-l [—>] |
| I | |
I | I !
! | | |
level 1 I | | I
| | I I
e | | |
|
I
B<—| | > | j==p =] p==>| |—>8
J-evel g l I I I e o I I l l
(Sata) | | Qo | Rl < d et e
| I ! I I e |

Pictired above is a moderate size (514 data records on a Storage Module) DAM file.
Note that each index level including the data level is a SAM string. That is the
records in each 1level are linked together in a linear doubly linked list using
REKFPT ard REKBFT in the record headers. REXKFOP in the record header of the first
record in each level points to its "father®, either the first record in the
immediately superior level or the BRA of the dzrectm'y in which the file is
entered. The data words of all records which are not in the date level contain
pointers to (record addresses of) records i{n the immediately inferior level. The
top level index is constrained to be exactly one record long. :

E 4
Y

1.3.2 EXTEDING AND TRUNCATING DAM FILES

¥When a [AM file is newly created it consists of two records. The -beginning reccré
address (BRA) {s that of the index record. The irdex record will-have a data co.~*
of 2. (record adlresses always INTEGER'4 even on 448 word disks) as the data sect:-.
will: contain one pointer pointing to the data record of the file. As user datz is
written to the file, records will be chained into the data level and record address
pointers added 'to the index record until the data section of the index record is full
(512- data records on Storazge Modules, 222 data records on all other disks). Since’
the top level index is constrained to be one record long, another level of irdex must
be created in order to grow the file. The next level of index is created by
logically adding another record to the existing index and then creating another
higher level index which contains 2 two record address pointers, each of which points
to the two lower level index records. This is done by the ring 8 procedure NIWLAM
and the COPYUP entry to the ring 8 module LCCATE in such a manner that the BRA
(physical record address) is still the first record in the file (lecgically the newly
created higher level index) while the data that was formerly in the physical BRA is
copied to a freshly acquired record. :

When a [AM file is truncated, the number of index 1levels is never reduced. The

‘number of records in each SAM string can be truncated to one. Thus, if the DaM file

pictured above is truncated to zero data words, the structure will be changed to:
ROP

-] |—>@

. |——]
level 2 | |
| |
I
|
g<—1|" |—>8
| ———1
level 1 | |
| |
I
|
3 g<—| |—>8
level 2 | |
(ata) | |
- & ———————

R LU RN

1.3.3 STRUCTURE OF CIRECICRY FILES

l"|.l (‘. '

1,3.3.1 Overview

2ere are two types of directories currently supported by Primos: (1) User File
Sirectories (UFDs) and (2) Segment Directories (SEGDIRs). MNote that a directory
$5 itself a file and may be either a SAM or DAM file. Currently, DAY UiDs are not
suprorted. The structure of record header and irdex record pointers as outlinec
above is wvalid for all directories. The directory "information® is entirely in
the dsta section (of the data level, if DAM) of the records wich make up the
directory file.

. UFDs are always accessed in a seguential manner, usually looking for a match con
file name. File entries in a UFD allow for flexible setting of attributes such as

protection, date ard time mcdified, etc.

SEGDIRs may be accessed either randamly or sequentizlly. File entries in a SEGCIR
consist of only the beginning record address of the inferior file; all attributes
are derived from the UFD entry of the topmest SEGDIR in 2 hierarchy of SECCIRs.
Only data files and other SEGDIRs can be entered (inferior to) a SEGDIR. That is

a UFD is not 2llowed under a SZGDIR.

1.3.3.2 UFD Structiure

1.3.3.2.1 Overview

All UFds are SAM files. All information within a WD is contained in “UFD
entries®. [Each entry starts with an Entry Control word (ECW). The left byte
of the ECW (bits 1-8) contans the UFD entry type and the right byte (bits 5-16)
contain the length of the entry in 16 bit words. Each UFD entry type has a
fixed length header (which may be zero lerngth) and zero or more scb-entries.
Fach sub-entry has a Sub-entry Control Word (SWC) containing sub-entry type and
length similar to the ECW. Thus, the internal format of a UFD is somewhat
self-defining. In order to allow forward ard backward compatibility, all ccce
which deals with VFD entries is written so that "unknown”" entry and sub-entry
types are ignored. The length field is used to skip over unknown types.

Oarreﬁr_ly there are 3 defined UFD entry types.
- ! UFD heacer

e 2 Vacant entry
- 3 File entry

.
AN gy

-——
- 5

. . 1.3.3.2.2 UFD Beader

The UFD header is always the first entry in every UrD. It contzins the owner
ard non—cwner passwords. > :

L? .l";‘l . ‘

e g ANy
¢ SRR % Owner password (3 words)
4 .
Non-owner passwords (3 words)
7
Reserved, must be C
23 16 words

1.3.3.2.3 File Entry

| The file entry is used to enter a file (data or directory) in a UrD. The entry
contans the intermal name (BRA), external name (character string), and

attributes.
81 3112+L1 EO¥ (Entry Control word) R e il
|~ A S
T 1{ BrRA | Beginning Record Address
\ | !
3 | Reserved | Must be zero
| | 3 words
| |
6 | PROTEC | Protection
7 | Reserved | Must be zero
8| DATIKD | Date last mcdified
9| TIMCD | Time last mcedified

18 | FILTY? | Tile type
11 | 8l *d sCv (Subentry Control word)

. 3% | FIINAM | File Name
= :] 3
-i - | v
*oan | }
N

. PROTEC Bits 1-8 Owner Rights

Bits 9-16 Non-Owner Rights in each byte

1 read -
2 write -
4 truncate/delete =

DAT™MOD Bits: 1-7 Year 2
= ' 8-11 Month
12-16 Day

TIMMCD (Seconds since Midnight) /4

FILTYP Bits 5-§ reader/writer concurrency lock
g => system default
1 => reader xor 1 writer
2 => n readers xor 1 writer
3 => n readers AM0 n wtaters

Bit 4: 1 if "special” file (BOOT,LSKFAT
(MD,BADSPT) ;

Bits 9-16: file type
P => sam data

=> dam data

=> SamSEGDIR

=> dam SEGDIR

=> UFD

E BV SN

FIILNAM File name is a left justified, blank padded character string (2SCII).
The filename may be 1 to 32 characters (1-16 words) in length. Thus,
the length field in the SCX ("1") must be between 2 and 17.

1.3.3.2.4 Vacant Entry

The vacant entry type is used to lcgically delete a file entry. The contents
of all words in the entry other than the ECw are undefined. Space comsression
is not done so that existeng file entries do not change relative position
within the UFD. The "get position " and "set position” functions of RDENDS
require the file entries not move.

1.3.3.3 SEGMENT DIRECTCRY STRUCTURES

-

—

LA

\IO

1.3.3.3.1 Overview

e
v

SEGDIRs contain only internal names (BRA) or null entries (Ih':;'L(C}) .
s

Y

. 'le3.3.3.2 Structure

2 | BRA 8 | Beginning Record Address
| | (file in entry 8-

Ve l" '

2 | BRA 1 | .
= ‘1 »
41 & | BNal) Bnery

Il 8 | . (no file in entry 2)

! - - - [

I I
2nl BRA n

1.3.3.4 SFECIAL FILES

]
.5| g

1.3.3.4.1 NFD

The MFD (Master File Directory) is the root ncde of the hierarchial file
structure. The MFD is a UfD. The BRA of the MFT is defined to be 1. There is
a file entry for "MFD" in the MD. Cne of the passwords of the MD mus:t be

S

1.3.3.4.2 Disk Record Availability Table

The "ISKRAT" is a sam data file entered in the MD which contains a bit-map
which indicates which records on the disk belong to files and which are free.
The name of the logical disk is the character string name given to the dskrat
file. The BRA of the dskrat is defined to be 2.

o |

.
oAU ey

AR)

g | 8 | length of dskrat header

1| recsiz | nurber of words in disk record (inc. header)-

2| NRECS | number of records in partition <
1 Sin (INTEGER*4) L

4 | NeE=ADS | nunber of heads in prtition

5 | Reserved | Must be 2ero

| BITMAP | Mep of used/free records
I | 1 bit/record

Users should never change the data in the ISKRAT file. Typically (i.e., when

" myxxxxx” is the MFD non-owner password) the protection should be set to 1 1

Aty)

(read only rights for both owner and non—owner).

1.3.3.4.3 BOOT

The sam dJdata file BOOT is the record zero bootstrap used to read in and start
the FRIMCS II operating system. The BRA of BOOT is defined to be 2.

1.3.3.4.4 BALSPT

The sam cdata file named BADSPT is entered in the MD by the disk formatting
utility MAKE. It contains the heads and track numbers of disk reccrds which
are known to be tnreadable. The file is only used by the disk consisting
verification utility FIXRAT.

1.3.3.4.5 INTERNAL DATA BASES

1.3.3.4.5.1 N1LOCKS

N-readers—cne—writer locks, or "nllocks”, allow concurrent use and
interlocked urdating of a database. An nllock may be locked for “writing”
(exclusive wuse or update) or for reading (nor—exclusive use).

The f£ile system uses a collection of ordered nllocks. THey are orderad in
the sense that they must be locked only in priority order {i.e., a precess
cannot lock a priority 1 lock while bholding a priordty 4 lock). This
prevents the classic deadlock situation in which process l*has locked A ard
pesds B [where priority (B) > priority (A)] while process 2 hgas locked B
and needs A [process 2 would be in priority violation].

The sixz file system lccks are described following.

- 13

T

. R4
.1-.‘P el Ty

RATIOK

OSKIOK

o

1OCSEM

o

dote that, for mest nllocks, recursive locking is not allowed (e.g., Pr
canrot lock A if it already has A locked). The only exception is ($5iC
which may be recursively locked for reading, or locked for reading aiter
being locked for writing, but not locked for writing aftear bemg locked for

rexding.

'
ety

[File System Global lock] E

Beld for reading whenever referencing ANY file : tem datakzs . ;

Prevents addition or shutdown of disks. L

Beld for writing during a2ddisk, shutdown—disk, and certam special
cases of SRCHSS {change—access) . _

[UFD Lock]
Beld for reading whenever any directory is being searched.

Beld for writing whenever any directory will be (or could be)
mdified (e.g., creating a file).

[Unit Teble Lock]

Beld for writing whenever referencing the Unit Table, to prevent

changes to that table by other processes. In particular, the Cpen

operation conflict check is interlocked in this way.

[Transaction lLock]
Used to ensure that a given read or write call will never be
interleaved with another read or write on the same shared file.

Beld for readirg or writing as appropriate. Scme coperations on
segment directories use this lock.

[Record Available Table Iock]

Beld for writing whenever the RAT for a given disk is being
accessed. Serializes disk allecation and deallocation.

[Disk DIM Lock]
Used to single-thread the Disk DIM. Always held for writing.
[Locate Semaphore, not an nllock]

Used for mutual exclusion in critical regions of the LOCATEZ routine.

ocs

-

rau

e,

B2

R e e 1 e
P .

.rr.|-u;,]

fb

q"pulu-

o de3e3.4.5.2 UNIT TABLE CATABASE

1.3.3.4.5.2.1 Layout of Usrem
USRCMS USRIAB
% 1ﬁ
d"/\“‘-
user 1 —
cdata
— L eI e
user 2 ——!
data i -
e
user 3 - ;_L
data
. 17 unit table entries hame
. directory information
. = current directory information
¢ login name
¢

) Hif g

.
oY Sy

R

3

vca

(5]

VIWP
VETiv

E B

"’"‘H

vEopra

/" 1.4.5.2.2 NIT TABLE ENTRY
L' -

contents

bit 1: wmcdified;

—9-16: open access (l=read, 2=write, 3=RW).

bits 2-8: filetype (4=dir, 2=segdir;, 1l=dzm); bits

If file closed: all B.

(2 words) Beginning Record Address of File.

Iogical disk of file.

(2 words) Current
invalid.

(2 words) Ordinal

position Rec Addr (of Lam Index), dam files only. =1 if

position, in records.

(2 words) Current position Rec Addr of data record. . .

Crdinal pesiticn,

bits 1-8: access

offset in record indicated by vdrwp.

control setting of file;

bits S-16: per-file RY Lock.

‘points to date/time medified field in parent directory entry. (2 words)

Rec. &Addr.

14 vpoprw word cffset for vpopra.

1]
Ao s

P AN ey

-k

"1{(' .4.5.2.3 BOME/CURRENT DIRECTCRY INFCRMATION

we
g
16
18
1
21

t

contents

Rl '(i-"

&:6 worcs) entryname of directery.

{}Z'wor_dds} Begimning Record Addr of directory.
lz-gica.l disk of directory

Record Addr of parent of directory

bits 1-8: @=ncnowner, l=cwner
bits 9=16: access control information.

lerséth of entryname.
Record Addr of DIV in parent diréctcry entry. ‘

offset in reccréd of DTH

o

Py gy

= 7

'

\

] ‘.3.41‘5.3.1 Clese file by unit or name

."3.4.5.3 File System Internal Subroutines

|'1 .l",.‘ lll [

clesa (b%a,évm,unit,ccde) =
" B
Eray@vro Point to file if unit=0, else ignored.
unit is specific wnit if >8, or 8 if close (bra,dvno)
ccde stardard error ccde (Output)
restriction: cannot go remote.

1.3.3.4.5.3.2 Charge Coen Access

tngacc (key,unit,type,ccde)

key 1(read), 2(write), 3(RW)

it wit wose acc is to be changed. Must be open

type file type of <unitd. (Output) :
cde standard error code (Output) -

restrictions:

RO remcte. New access must not conflict with other users. Unit takle

ISt not be locked en call.

1.0 ".4.5.3.3 Delete a Directory Entry

Jelete (dvm,bra,aldpr,entbed,entpos,ccde)

édvno
bra
oldpar
enthed
entros
ccle

estrictions:
roud call.

logical disk of file

beginning rec 2d3r of file

trve if an cld part'n

first word of file's directory entry

(int*4) position of enthed in the Farent directory
stardard error ccde. (OCutput)

TRNIOK must not be locked on call. UFDLOK should be locked for writing

.3.3.4.5.3.4 Celete All Fecords in a File

2lrec Tica,dvmo, filpop, cade)

- £
e v
dvro
filpop
ccde

st tion:

Beginning Rec Addr of file to be gutted.
logical disk of file

B.R.A. of parent directory of file
stardard error ccda, {Cutzut)

A gy

RATICK must not be lecked en call,

w18

, "’3,3,4.'5..3.5 Search Directory for Named File

ufd (name,length.dirpos,dirent,.ccde)
name of file to be looked wup.

'\ .r".'i "\ i 1

nane
length bits 5=1D0: directory select
g (B = user cufd, :77 = susr curd, &
e other = that lcgical disk mfd) oy
dirpos points to start of directory entry, or

suitable hole if file not found (Output)
dirent(2S) dirent(l) = 1 if old part'n, @ if new
dirent (2:29) = copy of directory entry if
file found, else dirent(2) = size of hole in
3 words for new prt'n only (Output)
; cde standard error code (Cutput)

restrictions: UFCLOK must be set for reading (at least). TRNIOK must not be locked at
call. DNIT D will be used to open source directory. It will be left open and

positioned to DM slot for a file found.

1.3.3.4.5.3.6 Allocate a Disk Record
pewrec = getrec (ra,dvno,ccde)

ra -record 2ddress of current place in file. New rec
will be allocated "near” this one if possible.
dvno lcogical disk on which to allccate.
- tede Standard error code. (Output)
newrec record a8dr of new record, if allocated.

restrictions: RATIOK must not be locked at call. Must not be called for remote disk.

1.3.3.4.5.3.7 Compare Two File System Entrynames
equal = namec$ (namel,lengthl,name2,length2)

namel is first name.

lengthl is length (namel) in characters.
name2 is second name

length2 is length (name2) in characters.
equal is trve if names are egual. (Cutput)

Note: Iower case i{s converted to upper case.

Fr
-

1.3.3.4.5.3.8 A3d Pecord to New-Partiticn DM File

| O LU A

newdam (drwp,dvro,datsiz,nrall,cra,bra,dcra,ccde)

~ triction: must pot go remcte.

-9

kt ©,3.3.4.5.3.9 Create 2 New Entry in Current Directory
whra = pewfil (namé:lergth,pos.dirent,type,ccde)
name Of entry to be created

: '\ ,r',.l .i[-.
'

name
lencth lendth of name in chars. g
oS - position in directory of bole in which to write S

&% — rpew ety (intd) ' '
dirent (29) irj’“’é‘%@ﬁ’;"g ggg‘g? format as fsufd. (Output)
cde stadard error code. (Output)
mavbra a.R:A. of new file. (Cutput)

restrictions: cannot §° fremote. UFDIOR must be held for write. RATIOR cannot be

locked at call.

1,_3.3.4_5_3.19 Allecate Space on Disk for New File
newbra = newfll (oldyar.type.dvno,filpop,code)

oldpar = truve if 2n o0ld partition.
type of file being created.
Ao logical disk on which to create
fump BRA of ,:.arent dlIECtDrY-
#7 etdw ‘standare error code. (Output)
(\ pewhra BRA of p2w file's space. (OUtPUtJ
index in Wit table of unit NOT to be checked in
this scat- Ignored if -l.
fhra BRA of jile in guestion
desired W1 lock settime to check

mitx

rwlock :
(6 = exclusive, 1 = n readers x or 1 writer,
: 3 = n rexders of 2 writer, 5 = cpen]
fop desired Spen mde (1 =R, 2= W, 3 = R,
4 = pelite, QName, etc.)
OK true if "o conflict. (Output)
" restrictions: must »¢ called with UTLOK held at least for reading.

1.3.3.4.5.3.11 Perfoi® SRCHSS Functions on Segment Dir

bra = schseg (key'seémt,mit,type,ccdﬂ

All argifients from cresponding args to SRCHSS. : 3
may ot 90 ramots. UFCLCK ard UTICK and TRNIOX must no:.’: be set at call.

&3
restrictions:

Pauw

2 -Qo

- 3.3.4.5,3.12 Check If File System Entryname legal
xS (nzme, length,trulen,(X)

name is the nzme to check

lem3th length (name) in chars.

trylen length (name) less trailing blanks. (Output) .
CKws, —truoe 1if name is CX

e

-

A r‘,.l -"‘w
\

1.3.3.4.5.3.13 Truncate File to Current Position

t.runr:S (mit fCCﬁE}

it is file uvnit to be truncated.
©vcde is stardard error ccde. (Output)

restrictions: may not go remote. UTLOK must not be locked at call. TRNLOK must not be
locked at call. :

1.3.3.4.5.3.14 A33 or Shut Down Disk

trwrat (l{éy,ldevc)

key l] = add, 2 = ghud down
ldev logical disk to do.

restrictions: must be called with FSIOK held for writing.

1.3.3.4.5.3.15 Associative Buffer 'Hanager

locate (key,ra,ldev)

key bit 1: bypass read if set
bit 2: demote previous buffer if sot
bit 16: mark new buffer mcdified if set
- Ta record a3dr to cprate on
1dev logical disk of <ra2>

restrictions: must not be called with ISKLOK set.

i
4w AT

ol Gaedyy

_.‘;2’

K

gacom iy

PRIMOS IVe Revision 18 PE-~T=455 Page 17

2 SUPPGRT FQGR MTW DEVICES

2.1 1€00/52%0 Taze Nrive Sugzort

At Revision 16y PRIMCS IV has Deen nogd tied to fdncluce software
supoort for 160u/825C 3BFI tape drivese.s For complete cetzilses see
€ection X anc Section 4.

FRIMOS Ivs Revision 1€ PE-T=467 Page 24

£ new land gtezpgrery) ¢irect entrance call fis provicea in
aevision 18 PRIMOS IV that will allow 2 user progranr runnineg in
rin- 3 to ceternine 34 a GUIT has taken oplacee. This - eatl s
~esianec to be used only when QUITs have Leen ijnhioitec ty 2 call

to ZREANT.

Zxample: CALL GUITS (LOGICAL)
1F (LOGICAL) GO TO hancle_auit

“his call will return +TAUC. only 4t QUITs are inhitcitec anc the
user bhas attesoted to GulTe I4% a CUIT was cencing (1 eeen «TRUE »
is returnecl)e tne snencing GUIT is clearec anz will not tcke rlace
~hen BREAKS s callec to re=naoled GUITs. Calls to CUITS will
naver reset user terminal dnput anc output butferse 4 seperate
~4rect entrance call is provicec for that purposes

The CUITs call 4s a temporaly facility 4n 'PRIMOS IV anc 1is

—— ——

suciect to _chsrce _OF reroval in_ the _future. OUITS 45 not

e ——— -...—._—..-.__.._-......_._.-—.-.__._..-_.—.—._—--_-

—— o T S m——" e M P S S S S ——— " — e e . ———— e S —

A new (znc temoorary) direct entrance call s provicec in

sevision 1% PRIMOS IV to allow a Dprocess to clear its own
terminzl input ang outout buffers. This facility 4s useful in

certain case2s (€«Ce when a8 process elects to hancle its cwn
JUITs)e)
Cxancles CALL TTYSFS (XEYs CODRE)

KEY §s an INTEGER=*2 variable which specifies which puffers are to
re cleareds A value of +1090000 szcecifies the output buffers
+40000s the input buffery ano :1400C0. both buffers., CCCE is an
INTEGER*2 variable that will contain an error coge upon rcturn
from TTY3IRS.

TTYSKS can te called when a user ring program decides that f{nput
to the program that has alreacy been typec {s to be giscarcece.
This might bte usefulo for examoles 4n 2 case where a text ecitor
Getects an error in its input and wisnhes to {gnore further input
that the user has alreacy typece

The TTEsSKS eall 48 % Xg=pofal) f4acdlity in PRIMOS 1I¥v and is

" suplect _to__chance ;?_-::;Eggl 4in__tne future. TTYSRS is not

e e —— s

availadle in the FORTRAN Library-

LA - - A s Y s o -

PRI®OS IVy Revision 15 PE=-T=4£¢ Face 25

3.5 CPU_anc _LOGIM Time Limits = CTMITS

A new cirect entrance call is nrovicded in Revision 18 PRIMOI IV
to allow a process to lower {ts CPU ancd/ar LOGIN time Llicitse.

hame3 LIMITS

Purpose:

The subroutine LIMTS 4s called to alter or read the acount of cpu
or Login time a process (user) 34s Limitec to. Each prccess
({user) possesses a ¢cou anc Login time Limit which are fnitdatly

“efined to be infinite. .

The zaximum tinite value either of these Lizits way be set to is
1006060 (cecimalds The Llogin time lLiajt §s messureg in minutesy
snd the cou time Limit is measured’ in seconcse. 1¢ efther of

these Limits is ever exceeced, the process (user) is loggec oute

Usaanoe?l
CALL "LTIATTS (Key = subkeye LIMIT, RESERYs €2DE)

key
js the cperaticon to be perforzec on the Liaite. valic
cperztions are XSKREAD (ls reag current Liajit valueldy anc
KSWRIT (29 set Limit valuel.

subkey
is the target Limit that ®key®™ operates cone. Valid target
Limits are KSCPLM (*400y CPU time Limit) anu KSLGLM
{216GQe LOGIN time Liadt)e.

LIMIT .
is an INTEGEZR=4 variable which re:e1ges the value of the
target Lisit when ®"key® g XSREAOs and which contains the
value for the target Li=zit when the "rey® is KSwRIT.

RESERY .
4 an INTEGER®2 varjable which §s reserved for future
useos The value of RESZRY must C=e De

COOE

4s an INTEGER*2 variadble that (upon return ftroa a3 call to
LINITS) 4s set toc 8 if no error has DoeCcurrecs 11 the
call to LIMITS was unsucessfuly CODE may be set to ESBXEY
or ESBPAR., £S3XEY {s returnec §f the "key < gubktey® 18
an 4nvalid coabination (sxee NOTES)e ES2PAR 4s returneag
44 LIMIT 4s either negative or greater than the curresnt
ttal . Ar BFSFRY 4= nanzefo.

]
1
|
E
!
f
|
5
:
i
1

PRIPCS IVe fevision 1¢ PE=T=4g5 Fage 2E

Hetasy The fcllowing cescribes the enly wvalid "keyssuctkeyn
coz>inations:

KSRIAC + KSCPLM returns 4n LIMIT the remaining cpu time vntil
forced Logout occcurs in seconcs. 4 value of zero

reans that the Llimit 4s infinitee.

. 4

returns dn LIMIT the remaining login time wuntil
forced logecut occurs in minutes., A value of Zero
means that the Limit 4s fnfinitee

KSREAD + KSLGL!

R3«RIT + KSCPLM sets the cpu time until forced Llocout to LIFIT
seconcs from nowe The <cpu time until fcrcec
logout mzy not be rajsec.

KIRAIT + K3ILGL™ sets the login time untiL forcec Locout to LIMIT
minutes from now. The Llogin tice Lirit until
forced Leogout may nct be rajisece.

CALL LINITi(KSwRIT+:400, 0000010e RESERYy CODE}
In this exarmpley the CPU time Limit is set to 1C seconcs.

The LIMITS call is a temporary tacility 4n PRINMDS 1V lane 3a

——— e e

susiect te chance -SL__Eezoval Ap the futures LIMITE $3 nmot

T — . ——— —— — —— —— — — . — ——

38 TSMT == RNay Instructions

The Tcllowing instructions have been added to TSVl {T3xT I1g
cescritecd 1in the Reference Guicde, Software Licrary.) These
instructions are enly valid with version twe and three @macnetic
tace controllerse Use of these instructions with ologer versions
ot the controller will cause an error message to pe printec¢ anc
the commana to Le abortede.

Octal “ex Action

15C02C 8010 Erase a 3 inch gap on the tape.

16004C #0209 Unload. Completely rewind the tape
and place the drive aftline.

100100 8040 Set density to 1600 BPI (PE)

100120 8050 Set density to 625C BPIl (GCR)

04CS00 0940 Reaac record backwarcse.

New anag mMoci1Tiegd FRXLIMUS LY FPaciviITICs

PRIMOS 1Ve kevision 15 PE=-T-456° Pace 27

3.601 Erase 3 Inch Gap

This operation causes 2 I {nch g2p tc be erased tronm the tapee.
This §s useful in error recovery schenes.

3.6.2 Unloac

This operation causes the tape be conpletely rewounda, anc the
drive to be placed offline. This 4$s useful 1in preventing
accidental wuse of the tape arive before the tace has been
removed from the cdrives

Sebel Conisity Selecticon

1t is assumea that tapes are written with one censitye. This
assumption s enforced By only peraitting chances in cdensity
at the loacd poeint. For this reasons it 1s not necessaryy or
possicles ta ss2t the cansity when reacing 2 tape, shen the
4irst recora is ready the density of the tade is geterminec.
. The rest of the tape will be read (er written) usinc tnat
censitye.

For examples 1f the user set the density to 6250 8PI with the
LSSIGN command and read the tirst recorc of a 1560 EPI tapes
then the rest of the tape vould be reacd using 1600 ©2Pl. If
after reading that recorc, a record was written onto the tape
(without rewinding to the loag point); then that record would
also be written at 1£00 EPIle It the tape was rewounc and then
a record was written, the density would be switchece to 6250
2Pl Although the cesnsity setting ot 6250 BPI 1is remem-erecs
4t will not go into affect until a recorc 4s written at the
Loac pointe. :

I+ the user assigns 2 tape without specifying a censitys the
undt will Left at the density from the previous use. The
default density (at systes {nitialization tiae) is 1600 BFle

3.5.% Read Racorcd Backwaras

This requesst causes the tapes to read a recorc whils =oving the
tape backwards.)i o i{s s3ometinmes gcossidle to reac a record
packwards when 3 bad tape prevents reading the recorc §n the
torward airection. Aftar the record {s reads 1t will 2e
necessary to reorganize the data. The worcs of the recorc
will be 14n reverse orders Each word will have the bytes
reverseds, The bits within pach dyte will be in correct ocrdere

PRIF¥OS IVe Revision 18 PE=T=4¢c Face 3C

xel2 _USS = Utnjpzerrupticle Sower Supply Support

PRIMCS IV now supports an Uninterructible Power Supplys It &
power failure should occury ang a site has UFS supports pcower to
the backplane is xaintaineo via batteries.s When normal power 1s
restcrec, an automatic warm-start will be performed after a
slizht oelay (ts allow the aisk(s) to buila up to the proper
numoer of RFMs)e The celay is set by the COMFIG directive UPS.
A power=-fail entry §s written to the LGGREC file by LOGPRT when
power is restorec. See the *UPS' CONFI3 cirective 4in Section 7
for rore getailse.

e g

BRIMOS IVe Revision 15 PE=T=855 Face 38

4.3 ASSIGM Comrmand Mcditication

The ASSIGN command has teen extendec to allow the setting of the
censity for 1600/6250 tape orives which use the version three
sagnetic tape controller (MFC=3).

ASSIGN MTn CEAIT) C=-62%508P11 [-160082PI1
-6250EP 1] Set the dencity to €250 BPl. The default §s 1£00 EP1I

for a software settable drivee This control arcument
4s only valic for the 160076250 SP1 tepe arive.

-1500EPT - Set the cesnsity to 1600 EPI. This control argument
js only valioc for a software settasle crive.

4.4 CHAP Commanc wodificatien

s uyser may now Lower the priority of his own process Dy
specifyinsg the LCOWER control argument.

. CHAP LOMER n

This commanc will lower the priority of the user's process ty "n"
Levels. Tha value cf "n® must be D €2 n <= Ia Tt S ono =005 SLhe
priority of the process {s unchangec: otherwises the process'
priority is lowerec by 'n' Levelse. If the resultant level 1is
less than the lowests then the priority of the process {5 set to
the Lowest. The LOWEZR control argument can only be usec from a
user processs not from the system console (process 1%e

4.3 LOGOUT Commang Mocddification

e . —, S—

The LCGOUT command has been nocifiec so that when v LOGBYT ALLS iS5
specified from the systenm console C(user 1) the remote file access
zanager (FAM) i1s not logged out 1f it is 2 running processe

4.6 LOOK Command Mocdification

The LOOKX commana has been modified so that a °*REALLY?? prompt is
jssued for any LOCKX command whose request s considerec tig. be
risky or g@angerous to system integritye. (11 the LOOK command
involves an attempt to do a FROM from a segment that ooes not
existy an atteocpt to do 23 T0 to a segment that acoes exist,y or
attempts to map either shared or stack segments sith write
permissions the command 1s consicdered risky or dangerous to
systez integrity.) A siopte 'YES® will allow the operation to

proceede

Internal GORRaiite: RS TSI

PRIMOS IVe Revision 18 PE-T=485 Page a1

DENY aftect only ¢dsx partitions alreacy startecd up at
the time of the REMOTE commande Disks shut cown ana startec up
again will get the gystenm gefault permissions untit an explicit
REMOTE PERMIT or REmQTE CENY commanc thanges theme. The systenm
cefault perrissions are deterained from the file NETCONM which is
createa BY NETCFG» The REMOTE PERMIT comaand will not
autozatically acc a disk to any systea. The REMOTE DENY coczmana
will not revoke 2 gystea's existing access to 2 diske

PERMIT and

a.10 STARTUP Command Moogitication

The STARTUP cozmand has Ddeen extencec to perzit 2 disk tc .be

software write=protected.

% atgk . 18 write=-protectec by specifying PROTECT in the STARTUP

commang as follows?
ETERTUR PROTECT avnel [dvnNe2 se= gvnoS]

PRCTECT may only pe specified 4or cisks which are started
Lecallys anc aoes net govern the richts of resotely acdced giskse
Pemotely accecC cisks assume the write=-protection status of the

Local syste=s

-protect feature may be changeac for 2

The status of the write
STARTUP aor ADDISK cormanc

given partition_ DbY respecifying the
with or without PROTECT.

If an supsacuent STARTUP comzand is 4ssued for the same cisky anc
PROTECT is not specifiea, the yrite-protect feature jg cdisatlece.
(An STARTUP PROTECT to an alresady protectea disk coes not chang*®
the protecticn.) 1f an STARTUP PROTZCT ecommand 3¢ 4ssuec for 3
disk which does not have protection enableds 1t 1is {aportant that
the disk ©be shutdown firsty to insure that the disk is not

fnacvertently written upone

4,11 UNMASSIGM Comrand Mocdification

cozmand has Dbeen extended t0° allow an unload
operation for tagpe drivese. This control arguzent s only valid
for a version two controller (#PC-2) anc 2 versicn three
controller (MPC=3) which controls 160076250 BP1 tape drives.

The UNASSIGN

UNASSIGN MTn [=UNLOAD p|

-UNLOAD Rewind the tape comolatelys anc 3zet the drive gtTtine
before unassigning the drives

ot bl e L e B S o g b S

T S—.

PRIMCS IVse Revision lg PE=T=4¢3 Fage 42
E__EZIE_SH:_L_.QQISEL_J_ZJQLE.I.E&IIQ 2S.A%D soi1TIcHs

MTCENS allows the user to set the Censity on a mracnetic tape
irfve troa the commanc level gager EAIRYS 1T« The ASSIG! cosmang

MTDENS "Tn [-62502PI3 [~-1ecospP1

PIn Meznetic tape drive fcentifier (MTC - MTT)s

-€25C08F1 Sct the censity te g2sg PPl The cefuult 4s i600 EP]
Tor A Ssoftware settaole crive. This coantrol arzument
is only valic for the 16800/e250 BP1I tzre crive.

H
|
i
)
L]
e
Ry
—

S&t tha gensity to 1&0¢ sr3. This cortrol arcument {g
only valic for 3 software settable drive.

PRIMCS IVsy Revision 18 PE=T=46¢% Pace 7R

100 IF (STATV(1).EGe0) GOTO 120 /+ SEE IF 10 1S ALREADY DOANE
CALL TsMT (UNIT4LOC(O)90921000004XSTATV) /1 dAIT
GGTO 10

129 . s .

40.2 Error Ffecovery for Tape Writes

There are many possiole grror recovery schemess The tweo that are
cescribec here are basec on different recorc torrats. The first
algorith=z can oe used when records contain only cata. The other
scheme requires that the records contain extra inforzztion for
Lrror recoverye.

tiote: The following schemes are Froviced as alternatives to
usinc the I0CS routines that FTN wuses. The efror recovery
provicec in the ICCS routines corresponc to that ogescribea tor
Sizple Wwrite Error Recovery. :

10.2.1 Simple Yrite Errer Racovery

The aim of the simple error recovery prograam is to cget Sy a
possible baz spot on the tape by erasing part of the tape
where the error occcurred ang rewritinc the recorc after that
gaps

The program does not try ts3 rewrite the record on the same
spot on the tape even though repeatec tries on the same spot
may improve the tape enouch to permit the write to succered.
The ta2pe 1s considered marginal at that spot ang may not be
readaole at a Later datee.

"Only the versicn three controller (MPC=2)s which supports the
6230 bpi tape drivess bhas an erase command. Cn cther
controllerss the tape can be erased by writing a file mark ang
then backspacing over the fiile.marks This will ecause three
inches of tape to be erasedes

	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	86
	87
	88
	89
	90
	91
	92
	93
	94
	95
	96
	97
	98
	99
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297

